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[57) ABSTRACT

An improved ART2 network provides fast and interme-
diate learning. The network combines analog and bi-
nary coding functions. The analog portion encodes the
recent past while the binary portion retains the distant
past. LTM weights that fall below a threshold remain
below threshold at all future times. The suprathreshold
LTM weights track a time average of recent input pat-
terns. LTM weight adjustment (update) provides fast
commitment and slow recoding. The network incorpo-
rates these coding features while achieving an increase
in computational efficiency of two to three orders of
magnitude over prior analog ART systems.
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RAPID CATEGORY LEARNING AND
RECOGNITION SYSTEM
This research was supported in part by the Air Force
office of Scientific Research (AFOSR 90-0175 and
AFROSR 90-0128), the Army Research office (ARO
DAAL-03-88-K0088), DARPA (AFOSR 90-0083), and
the National Science Foundation (NSF IRI-90-00530).

BACKGkOUNP OF THE INVENTION

Adaptive resonance thedry{ART) architectures are
neural networks that self-organize stable recognition
categories in real time in response to arbitrary sequen-
ces of input patterns. The basic principles of adaptive
resonance theory were introduced in Grossberg,
“Adaptive Pattern Classification and Universal Recod-
ing, II: Feedback, Expectation, Olfaction and Illu-
sions,” Biological Cybernetics, 23 (1976) 187-202. Three
classes of adaptive resonance architectures have since
been characterized as systems of differential equations
by Gail A. Carpenter and Stephen Grossberg.

The first class, ART 1, self-organizes recognition
categories for arbitrary sequences of binary input pat-
terns. See Carpenter and Grossberg, “Category Learn-
ing and Adaptive Pattern Recognition: A Neural Net-
work Model,” Proceedings of the 3rd Army Conference on
Applied Mathematics and Computing, ARO Report 86-1
(1985) 37-56, and “A Massively Parallel Architecture
for a Self-Organizing Neural Pattern Recognition Ma-
chine,” Computer Vision, Graphics, and Image Process-
ing, 37 (1987) 54-115. One implementation of an ART 1
system is presented in U.S. Application Ser. No.
PCT/US86/02553, filed Nov. 26, 1986 by Carpenter
and Grossberg for “Pattern Recognition System”.

A second class, ART2, accomplishes the same as

ART 1 but for either binary or analog inputs. See Car-
penter and Grossberg, “ART2: Self-Organization of
Stable Category Recognition Codes for Analog Input
Patterns,” Applied- Optics, 26 (1987) 4919-4930. One
implementation of an ART2 system is presented in U.S.
Pat. No. 4,914,708 issued Apr. 3, 1990 to Carpenter and
Grossberg for “System for Self-Organization of Stable
Category Recognition Codes for Analog Input Pat-
terns”.

A third class, ART3, is based on ART2 but includes
a model of the chemical synapse that solves the memory
search problem of ART systems employed in network
hierarchies in which learning can be either fast or slow
and category representations can be distributed or com-
pressed. See Carpenter and Grossberg, “ART3: Hierar-
chical Search Using Chemical Transmitters in Self-
Organizing Pattern Recognition Architectures,” Neural
Networks, 3 (1990) 129-152. Also see U.S. patent appli-
cation Ser. No. 07/464,247 filed Jan. 12, 1990.

SUMMARY OF THE INVENTION

The present invention provides an improved ART2
architecture which enables more efficient computation
such that pattern learning and recognition are obtained
in less computer processing time or with less required
hardware to implement. In particular, the present in-
vention provides an ART2 architechture with LTM
(long term memory) weights which provide signals
proportional to the input pattern such that learning of
the input pattern is enhanced. The LTM signals effec-

" tively adapt category selection and the category gener-
ated LTM template to the input pattern in a single com-
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2

putational step (and hence a manner which is nearly
exponential).

In a preferred embodiment, the invention network
employs (a) a short term memory input field for present-
ing input signals defining an input pattern, and (b) along
term memory category representation field comprising .
a plurality of category nodes. Each category node pro-
vides template signals which define a long term mem-
ory template. Each category node also provides an
indicator of state of the node with respect to commit-
ment and/or rejection. ’

A selector means in the network selects at least one
category node in the long term memory field based on
an input pattern from the short term memory field. The
template signals of the selected category node generate
the corresponding long term memory (LTM) template
of the selected category node.

In accordance with one aspect of the present inven-
tion, the selector means selects category nodes by
weighted signals of the input pattern. A reset member of
the selector means compares the weighted signals to a
predefined threshold 0=p*=1. In response to selection
of a committed category node by a weighted signal that
is less than that threshold, the reset member resets cate-
gory selection to an uncommitted category node in
LTM.

Adjustment means adjusts the commitment and rejec-
tion states of category nodes and adapts the LTM tem-
plate to the input pattern by comparing the template
signals to a predefined threshold. Where a template
signal falls below the threshold, the adjustment means
permanently sets the template signal to zero for the
subject input pattern.

Further, upon selector means selection of an uncom-
mitted category node in the long term memory field, the
adjustment means adapts the corresponding LTM tem-
plate to immediately match the input pattern. Upon
selector means selection of a committed category node
in the long term memory field, the adjustment means
adapts the LTM template to comprise a portion of the
previous LTM template of the committed category
node and a portion of the input pattern. Preferably, the
portions of the previous LTM template and the input
pattern are complimentary.

In accordance with one aspect of the present inven-
tion, in response to selection of an uncommitted cate-
gory node, the adjustment means adapts the LTM tem-
plate to exactly match the input pattern by the end of
the input pattern presentation time in STM. This is
particularly true for input pattern presentation times
substantially longer than a period of time 1/(1—d),
where 0<d<1.

On the other hand in response to selection of a com-
mitted category node, the adjustment means adapts the
LTM template to the input pattern at a rate slightly
slower than exponential by a factor €, where 0<e< <1.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advan-
tages of the invention will be apparent from the follow-
ing more particular description of preferred embodi-
ments of the invention, as illustrated in the accompany-
ing drawings in which like reference characters refer to
the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the in-
vention.
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FIG. 1 is a schematic diagram of an ART2 neural
network circuit modified- to illustrate motlvatmg fea-
tures of the present invention.

FIG. 2 illustrates fast learning of 50 patterns in 23
categories utilizing a system embodying the present
invention.

FIG. 3 illustrates fast learning of randomly input
patterns in the system of FIG. 2.

FIG. 4 illustrates intermediate learning of randomly
input patterns utilizing the system of FIG. 2.

FIG. § is an illustration of a general neural network
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Generally by way of background, all ART networks
employ an attentional subsystem and an orienting sub-
system. The attentional subsystem contains in short
term memory an input representation field Fy (which
receives input signals defining an input pattern), a cate-
gory representation field F, (which holds category
nodes for matching and hence recognizing input pat-
terns of F;), and pathways between the two fields.
Along pathways from F; to F, there are respective
bottom-up adaptive filters Fi—F,. These filters provide
long term memory (LTM) learning of input patterns,
i.e. learning from some number of input patterns over a
relatively long period of time. Each bottom-up filter
provides an adaptive weight or LTM (long term mem-
ory) trace by which a signal along the respective path
from F)to F;is multiplied. Said another way, the adapt-
ive weights gate pattern signals from F to F;. Similar
gating of pattern signals or multiplying by weights oc-
curs along the pathways from F; to F; through top-
down adaptive filters Fo—F;. These top-down filters
provide the property of category representation self-
stabilization. Further the top-down filtered signals to
F) form a template pattern and enable the network to
carry out attential priming, pattern matching and self-
adjusting parallel searching.

When a bottom-up input to F; fails to match the
learned top-down template from the top-down Fr—F)
adaptive filter corresponding to the active category
node or representation in F», the orienting subsystem
becomes active. In this case, the orienting subsystem
rapidly resets the active category node. This reset auto-
matically induces the attential subsystem to proceed
with a parallel search. Alternative categories are tested
until either an adequate match is found or a new cate-
gory is established. As will be seen later, in the present
invention a new category is established immediately on
reset. The search remains efficient because the search
strategy through bottom-up adaptive filters is adap-
tively updated throughout the learning process. The
search proceeds rapidly relative to the learning rate.
Thus, significant changes in the bottom-up and top-
down adaptive filters occur only when a search ends
and a matched F) pattern resonates within the network.
The network carries out a search during many initial
input trials. Thereafter, however, the search mechanism
is automatically disengaged with each input having
direct access to its category node.

In an ART?2 network, the feature representation field
Fj is split into a set of multiple processing levels and
gain control circuits. One such circuit is associated with
each input 1; to node i in F;. Bottom-up input patterns
and top-down signals are received at different nodes in
F;. Positive feedback loops within F; enhance salient
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4

features and suppress noise. The multiple Fi levels
buffer the network against incessant recoding of the
category structure as new inputs are presented. The
network employs a vector analysis to define signals at
the different Fy nodes. And pattern matching is then by
the angle between pattern vectors. In contrast, LTM
equations are simpler than those of prior systems.

By way of illustration and not limitation, FIG. 1
depicts one such ART2 architecture, but discussed with
the present invention improvements in category learn-
ing as will become clearer hereafter. That is, the present
invention network has a fundamental basis in an ART2
architecture but employs rapid computation described
later which enables fast learning. For ease of under-
standing the present invention, details are presented
first in terms of the ART2 architecture (shown in FIG.
1) followed by a general architecture embodiment of
the present invention illustrated in FIG. §.

The traditional ART2 slow learning is better able to
cope with noise, but has not previously been amenable
to rapid computation. Further, when fast learning is too
drastic, for example in certain applications where the
input set is degraded by high noise levels, the present
invention’s rapid computations enable a much larger
range of learning rates referred to as “intermediate
learning”. Advantageously, intermediate learning per-
mits partial recoding of the LTM vectors on each input
presentation, thus retaining increased noise tolerance of
slow learning. Further details of the present invention
improvements are discussed below, preceded by a de-
scription of pertinent parts of a traditional ART?2 archi-
tecture necessary for the full understanding and appre-
ciation of the present invention.

In overview, a neural network 185 illustrated in FIG.

"1 includes a two layer preprocessing field Fg in short

term memory (STM), a three layer representation field
F; in short term memory (STM), and the circuit for
processing the signal received at a single F; input node
from a single selected F category node. Across the Fp
and F) fields a set of signals for example w9 and w;
respectively, defines a respective subfield of the STM
field. Each large circle in FIG. 1 represents the Euclid-
ian normalization computation of all signals of a particu-
lar subfield. Each of the smaller circles denotes a com-
putation (described below) for generating each of the
subfield signals w;, x;, u;, v;of Foand wi, x;, u;, v, p;and
qiof Fi.

Each layer of the Fp and F; STM fields carries out
two computations: vector summing of intrafield and
interfield inputs to that layer, and normalizing the re-
sulting activity vector. Specxﬁcally, pattern input repre-
sented by input vector I0 is initially received at the
lower level of Fo. The input vector I0 is subsequently
summed with the internal feedback signal vector au®
and forms vector w9, so that

wWo=10+4au® Equation 1
Next vector w0 is normalized to yield vector x? as de-
noted by the large filled circle 11 and arrowhead from
w0 to x0in FIG. 1. This is mathematically stated as

0= NP Equation 2

0
e

Equation 3

where Nw® =
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or the Euclidean normalization of the vector w0. This
normalization step corresponds to the effects of shunt-
ing inhibition in the competitive system of differential
equations that describe the full Fo dynamics. Next pro-
ccedmg from the lower layer to the upper layer of pre-
processing field Fo, vector x0 is transformed to vector
v0 according to a nonlinear signal function f, such that

W= Ty 0, Equation 4

Equation 5

xP ifxP> 6

where (T x0); = fixf) ={

0  otherwise

and where 0 is a threshold satisfying the constraints

Equation 6

0<0§14M

so that the M-dimensional vector v0is always nonzero if
vector 10 is nonuniform. If threshold 6 is made some-
what larger than 1/VM, input patterns that are nearly
uniform will not be stored in short term memory.

The nonlinearity of the function f, embodied in the
positive threshold 6, is critical to the contrast enhanc-
ment and noise suppression functions of the short term
memory field. Subthreshold signals are set to zero,
while suprathreshold signals are amplified by the subse-
quent Euclidean normalization step denoted at large
circle 13 in the upper Fp layer which sets

u0=N0 Equation 7
N is a defined in Equation 3. As shown in FIG. 1 vector
ul equals the output vector from preprocessing field Fo
to the orienting subsystem 17, the internal Fo feedback
signal in Equation 1, and the input vector I to represen-
tation field F;. Thus
I=10 Equation 8
STM Fyrepeats the foregoing preprocessing for each
input 10 to node i in Fo. More accurately, Fo prepro-
cesses series of inputs I%; to a node i in Fg as well as
preprocesses in paralle]l simultaneous inputs to plural
nodes in Fg according to the foregoing. For each such
preprocessing of an input signal 19, Fo generates an
Fo—F) input vector I. Each Fo—F), input vector I
reaches asymptote after a single Fypiteration, as follows.
Initially all STM variables are 0. So by Equation 1,
w0=10when i0is first presented. Equations 3 through 5
next imply that

Equation 9

I
ifIf > 6| °
w={ eI [ [Pl

0 otherwise

By Equations 7 and 9 there is a constant K> 1/ 19]|
such that on the first Fo iteration

Equation 10
KIP  if ieQ
up = !
0

if ieQ
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where ( denotes the suprathreshold index set defined
by

o={i%>6| 1P|} Equation 11

Next by Equation 1

(Equation 12
IO + aK) ifieQ
w1° =

1P if ief).

Thus, at the second iteration the suprathreshold por-
tion of w0 (where i€Q) is amplified. The subsequent
normalization by Equation 2 therefore attenuates the
subthreshold portion of the pattern. Hence, the supra-
threshold index set remains equal to 2 on the second
iteration, and the normalized vector u0is unchanged so
long as I0 remains constant.

In sum, after a single Fy iteration, the Fo—F} input
vector I is given by

I=NTyN P Equation 13

where 10is a nonuniform M-dimensional input vector to
Fo, :

Ny = —% . Equation 14
[EII
Equation 15
x;i ifxi> 86
(Tox); = .
0 otherwise; and
" Equation 16
0<O =1/ J M .

Equations 13 through 16 imply that vector I is nonzero.
To that end,

I; > 6 if and only if i is a member of Q, Equation 18
and
I; = 0if and only if / is not a member of Q, Equation 18

where Q is defined by Equation 11.

As in Fo, each Fj layer sums vector inputs and nor-
malizes the resulting vector. The operations at the two
lowest F; layers are the same as those of the two Fy
layers described previously. At the top F) layer, vector

is the sum of the internal F signal u and all the
F2—+F1 filtered signals. That is,

Pi=u;j+ g0z, Equation 19
where g(y;) is the output signal from the jth F2 node,
and zjiis the LTM trace (or weight) in the path from the
jth Fa node to the ith F node. As described in detail
later, z;; from typical ART2 systems is scaled by a con-
stant for ease of exposition and denoted z*%;in the pres-
ent invention.

If F is inactive, all g(y)=0, so Equation 19 implies

p=u Equation 20
On the other hand, if F3 is active, g(ys)=d, where d is
a constant between 0 and 1 (i.e. 0<d < 1), and J denotes
a node activated in F> according to the total input from
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F}. As a result the summation in Equation 19 reduces to
a single term
Pi=u;+dzy; Equation 21

More specifically, F2 when active is a competitive
field and is designed to make a so called “choice”. The
initial choice at F; is one node indexed j=2J which re-
ceives the largest total input from F. If more than one
node F; receives maximum Fj input, then one of such
F; nodes is chosen at random.

Whether or not Fa is active, the F vector B is normal-
ized to vector q at the top F layer as indicated by the
large circle 19. At the middie F; layer, vector v is the
sum of (a) intrafield inputs from the bottom layer,
where the Fo—F bottom-up input vector I is read in,
and (b) intrafield inputs from the top layer, where the
F»—F) top-down input is read in.

Thus,

vi=fIx)+b6fg) Equation 22
where f is defined in Equation 5.

Parameters a and b in F; are large enough so that if
the ith F) node receives no top-down amplification
along f(q;) then STM at that F; node is quenched even
if input signal I; is relatively large. Specifically, when
zy; falls equal to or below /(1 —d) then g;, the value of
vector q (the normalized STM vector of p), falls equal
to or below 0. As a result f(q;) =0 from Equation 5. This
property allows the network to satisfy the ART design
constraint that once a trace zj; falls below a certain
positive value, it will decay permanently to zero.

Thus, once a feature is deemed “irrelevant” in a given
category, it will remain irrelevant throughout the future
learning experiences of that category in that such a
feature will never again be encoded into the LTM of
that category, even if the feature is present in the input
pattern. For example, the color features of a chair may
come to be suppressed during learning of the category
“chair” if these color features have not been consis-
tently present during learning of this category.

The F{ STM values that evolve when vector 1 is first
presented, with F inactive are then as follows. First,
vector w equals vector 1. By Equation 13, vector x also
equals vector I, since I is already normalized. Next
Equations 5, 17, 18 and 22 imply that vector v also
equals vector I, on the first interation when vector g
still equals 0. To that end, u=p=g=1. On subsequent
iterations vectors w and v are amphﬁed by intrafield
feedback, but all F; STM nodes remain proportional to
vector I so long as F; remains inactive. To that end,
field F; may be effectively ommitted in the general
architecture of the present invention as indicated by the
dotted lines in FIG. 1 and described later in FIG. 5.

Having defined vector p:, the Fyinput to F2in FIG. 1

is described next. The F1—F; input is a sum of weighted
path signals from Fj nodes i to Fz nodes j. In the present
invention improved ART2 architecture, the input to the
jth Fa2 node is given by

Equation 23

al;I; ifjis an uncommitted node
I if j is a committed node
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8
where z*;is the scaled LTM vector defined as (1 —d) z
where zj is the bottom-up LTM weight z;; of prior

ART2 systems; and

Equation 24
a is a constant satisfying a = 1/ q M .

As used herein the term “uncommitted” means that the
activated F2 node j has never been active previously.
After an input presentation on which an F; node j is
chosen, that node becomes “‘committed”. Initially all F»
nodes are uncommitted.

The F> nodes which then satisfy

) Equgtion 25
Ty = max(T)
j

form a set of possible resultants of the choice function of
F, mentioned previously. Where the set contains two or
more elements, i.e. more than one such node in F3 is
maximumly activated by the F input defined by Equa-
tions 23 and 24, then one such node (set element) is
chosen at random. At the end of the input presentation,
the chosen node J becomes committed.

Chosen F> node J returns weighted signals to F;
along Fy—F; filter paths parallel to the input F1—F;
filter paths to node J. That is, node J returns a different
signal weighted by a respective LTM trace or weight
zj; to each F; node i from which node J receives and
input signal. As will be seen later, the present invention
actually provides scaled vector z*;for LTM weight zj;.
The LTM weighted F,—F; signals encode a previously
learned template pattern that serves as a feedback to
affect the input signal from F;.

In the present invention, for a given input presenta-
tion, the top-down weighted signals from the chosen
category J in F; partitions the nodes i of F) into two
classes (Qyand NOT Q) and defines different dynamic
properties for each class. The class Q}ydenotes a F1—F;
catagory index set defined as

.. M} if J is an uncommitted node

{i=1,2
= Id) PP .
{i: 252 > 6/(1 — @)} if 7 is a committed node.

If i is not an element of £, then zj; (initially set to zero)
remains equal to zero during learning. That is, LTM
weight zj;retains its memory of the past independent of
present F input I;. On the other hand, if i is an element
of Q, zJ; nearly forgets the past by becoming propor-
tional to the present input I; during learning. The only
reflection of past learning for an F) node i which is an
element of €y is in the proportionality constant
1/(1—d). Learning in the network 15 is described next.
Once an F; node J and hence F, category is selected,
the orienting subsystem 17 determines whether the en-
coded LTM trace or template pattern is a sufficient
pattern match to the input vector 1. If not, the orienting
subsystem 17 resets the active category (chosen Fa node
J), thus, protecting that category from sporadic and
irregular recoding. This is accomplished as follows.
Node 23 in orienting subsystem 17 receives from Fp
and F an indication of the input signals to Fa2. As neces-
sary, the signals are normalized as indicated by large
circles 25 and 27 in FIG. 1. From the indications of F»
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input received at node 23, the orienting subsystem 17
compares Ty (the F; input to node J chosen by Equation
25) to a vigilance parameter p*. Vigilance parameter p*
is settable between 0 and 1 (i.e. 0=p*=1). Node J in
catagory field F is maintained constant if either (a) J is
uncommitted, or (b) J is committed and Ty=p*. If J is
committed and T;<p* then the orienting subsystem 17
transmits a reset signal to catagory field F2. The reset
signal inactivates the selected node J and hence the
corresponding category. Further the reset signal acti-
vates an arbitrary uncommitted F; node. If no uncom-
mitted nodes exist in F», the network 15 has exceeded its
capacity and the input I®is not coded.

The foregoing resetting by orienting subsystem 17
and adjusting of LTM weights zj; during learning pro-
vide the following:

1) for an F; category J chosen for a first time, the
LTM template is made to correspond exactly with the
input pattern. Said in terms of LTM weights, z;=-
z5=1I;

2) for a previously chosen F; category J chosen a
subsequent time with I. z"‘,;_p‘ the LTM template
includes a portion of the previous LTM template for
that category J and a portion of the current input pat-
tern to maintain J. In particular, if an old LTM weight
from F; category node J to an Finode i was less than or
equal to 8/(1—d) in the previous LTM template, then
the new weight from node J to that node i is restricted
to zero and the other weights are adjusted to reflect the
current input value of I; and

3) for a previously chosen F» category J chosen a
subsequent time with I.zy<p*, the LTM template of a
randomly chosen uncommitted category J is made to
correspond with the input pattern.

It is noted that the resetting operation of orienting
subsystem 17 also supports requisite ART design con-
straints as follows. According to Equations 10 through
12, the Fy preprocessing stage is designed to allow the
network 15 to satisfy a fundamental ART design con-
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straint that an input pattern must be able to instate itself 40

in F1 STM, without triggering reset, at least until an F>
category node becomes active and sends top-down
signals to F;. Further according to Equations 8 and 20,
vector p=1I so long as F, is inactive. This enables the
network to satisfy the design constraint that no reset
occurs when F3 is inactive. From the above discussion,
the orienting subsystem 17 has the property that no
reset occurs if vectors iand p are parallel. By equation
21, vector p remains equal to vector I immediately after
F; becomes active. As further explained later, vector P
remains proportional to vector I during learning by an
uncommitted node. This enables the network 15 to
satisfy the design constraint that there be no reset when
a new F; category node becomes active. That is, no
reset occurs when the LTM weights in paths between
F; and an active F3 node have not been changed by
pattern learning on any prior input presentation.

In any case, the present invention network 15
achieves resonance in about two to three orders of mag-
nitude faster than in prior ART systems. “Resonance”
means that the network 15 retains a constant code rep-
resentation from F; over a time interval that is long
relative to the transient time scale of F; activation and
reset.

Referring back to the LTM weights z; and zj; the
basis for the increased learning rate (and hence de-
creased time to reach resonance) of the present inven-
tion is an update rule that adjusts the LTM weightsin a
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single step for each input presentation interval during
which the input vector I is held constant. Considering
degree of increase in learning rate, a fast-learn limit is
important for system analysis and is useful in many
applications. However, a finite learning rate is often
desirable to increase stability and noise tolerance, and to .
make the category structure less dependent on input
presentation order. The present invention features inter-
mediate learning rates, which provide these advantages,
and which include fast learning as a limiting case (i.e.
upper limit). Further, the present invention intermedi-
ate learning embodies the properties of fast commitment
and slow recoding.

In contrast, LTM vectors of prior ART2 architec-
tures tend to approach asymptote much more quickly
when the active node J is uncommitted than when J is
committed. And once J is committed, the normalized
value of zy=zjy (denoted (|zs[|) stays close to
1/(1—d), where O0<d<1. -

In the present invention 21 denotes the scaled LTM
vector (for both bottom-up and top-down directions) of
node j in F7 and is defined by

z2%=(1—d)z; Equation 26;
where zjindicates bottom-up LTM weights z;to a cate-
gory node j in F7 as well as top-down LTM weights z;;
from node j to nodes i in F;. Initially all top-down LTM
weights i*j are set equal to zero (corresponding to
z;=0). This not only aids t}‘ie previously noted con-
straint: that no reset occur when F; is inactive but fur-
ther allows vector p to remain equal to vector I accord-
ing to Equation 18 immediately after F; becomes active.

The bottom-up LTM weights z*; (corresponding to
;) satisfy

dz,j

= g(yj)[.D: - Zq]

and are initially set between zero and a constant. This
constant needs to be small enough such that after learn-
ing, an input will subsequently select its own category
node j in F; over an uncommitted category node.
Larger values of this constant bias the network 1§
toward selection of an uncommitted F2 node over an-
other F» node whose LTM vector only partially
matches the input vector from F}. Preferably the initial
value of the bottom-up LTM weights includes random
noise so that different F1—F; signals are received at
different category nodes j in F».

Once F; is active, the network 15 maintains vector p
proportional to vector I to satisfy the ART constraint
that no reset occurs when an uncommitted F> node
becomes active (i.e. F2 node j is activated for a first
time). This is accomplished by both top-down and bot-
tom-up LTM vectors z; and z; approaching a limit
vector ¥ or a vector proportional thereto during learn-
ing. Limit vector ¥ is defined by

Equation 27

W_E{I,- if 22§24 >
i

0 otherwise,

where
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-continued
Equation 33
z*j; at the start of input presentation, I if Jis an
2 = if J is a committed node s uncommitted node
[} if J is an uncommitted node. z* y'w) = NBNY + (1 ~ B)Z'SOM)) ifJisa
. R . . committed node
Further, to incorporate intermediate learning, and
especially fast commitment and siow recoding, into the where 0is = 8 = 1, Equation 34
10

learning of F3, the network 15 employs the following.
For category node j=1J, the scaled LTM vectors be-
tween node J in F7 and nodes i of F; denoted z*satisfies

dz*y
- =-dd-z

Equation 28
By Equation 28, vector z*; approaches vector u at a
fixed rate. In particular when J is an uncommitted node
in F,, vector u remains identically equal to vector I
throughout the input presentation. Thus, vector z*;
approaches vector I exponentially, and both bottom-up
and top-down LTM vectors z*;~I at the end of the
input presentation if the presentation interval is long
relative to 1/(1—d). On the other hand, if ] is a commit-
ted node, vector u is close to vector z*;. In other words,

u=N(EeNV+(1—€)z%y Equation 29
where V¥ is defined in Equation 27 and 0<e < < 1. Since
€ is small,

u=eNV¥ +(1—e€)z%y Equation 30

Thus, Equations 28 and 30 imply

Equation 31

- = (1 — dNY — z*))

Hence, vector z*;begins to approach NV at a rate that
is slower, by a factor ¢, than the rate of convergence of
an uncommitted node. The size of € is determined by the
parameters a and b in FIG. 1. From common ART2
parameter constraints that a and b be large, the present
invention makes € small.

In summary if the network input presentation time is
large relative to 1/(1—d), the LTM vectors (z;and z;)
of an uncommitted node J converge to I on the first
activation of that node. Subsequently the LTM vectors
remain approximately equal to vector z*;, where

A= flzslf =} z*] =1 Equation 32.
Because vector z*7is normalized when J first becomes
committed and by Equation 28 it approaches vector n,
which is both normalized and approximately equal vec-
tor z*;, z*, remains approximately normalized during
learning. Finally, Equations 28 and 29 suggest that a
(normalized) convex combination of the N¥ and z*;
vector values at the start of an input presentation gives
a reasonable first approximation to z*;at the end of the
presentation. With that, at the end of an input presenta-
tion, z*7is set equal to z* (%) defined by
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and z* fok) is as defined for Equation 27.

In ART2 terms, at the end of the input presentation
ziy=z5=2fneW=NW¥/(1—d).

The present invention LTM weight update rule
(Equation 33) for a committed node is similar in form to
Equation 29. However, Equation 29 describes the STM
vector u immediately after a category node J has be-
come active, before any significant learning has taken
place, and parameter € in Equation 29 is small. The
present invention approximates a process that integrates
the form factor Equation 29 over the entire input pre-
sentation interval. Hence, 8 ranges from O to 1 in equa-
tion 34. Setting 8 equal to 1 provides the fast learn-limit
in the present invention. Setting 8 equal to O turns the
present invention network of FIG. 1 into a type of
leader algorithm with the weight vector z*; remaining
constant once J is committed. Small positive values of 8
yield. system properties similar to those of a typical
ART?2 slow learning system. Fast commitment is ob-
tained, however, for all values of 3. Note that 8-could
vary from one input presentation to the next, with
smaller values of 8 corresponding to shorter presenta-
tion intervals and larger values of 8 corresponding to
longer presentation intervals.

Parameter a in Equation 23 corresponds to the initial
values of LTM components in a typical ART2 F1— F»
weight vector. As in Equation 24 a needs to be small
enough so that if z*; equals I for some J, then J will be
chosen when I is presented. Setting a close to 1/VM
biases the network 15 towards selection of an uncom-
mitted F2 node over F; category nodes that only par-
tially match input I. In the simulations described below,
a is set equal to 1/VM. Thus, even when p* equal 0 and
reset never occurs, the present invention architecture
can establish several categories. Instead of randomly
selecting any uncommitted node after reset, the value a
for all T;in Equation 23 could be replaced by any func-
tion of j, such as ramp or random function, that achieves
the desired balance between selection of committed and
uncommitted nodes, and a determinate selection of a
definite uncommitted node after a reset event.

Referring now to FIG. 5, the architecture of the
present invention is shown in general terms as opposed
to ART2 terms as in FIG. 1. The network 37 in FIG. §
has attentional subsystem 33 (formed of fields Fo, F> and
adjustments means 35) and orienting subsystem 31. In
the attentional subsystem 33, the preprocessing field Fo
is as described for FIG. 1 with au®=0 and an output of
vector I. According to Equation 23, vector I is directly
input to node j in F3. Thus Fg is considered the STM
input field.

F comprises a plurality of nodes j. Each node j re-
ceives input signals T; (from I.z*;) and has states of
committed/noncommitted and rejected. A choice is
made in F; according to Equation 25 such that the Fp
node receiving the greatest input from the field Fp is
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selected. Other selection or choice functions are suit-
able. :

Working in conjunction with the choice function is
the orienting subsystem 31, the two components form-
ing a selector means of the present invention. The ori-
enting subsystem 31 of FIG. § is as described for the
orienting subsystem 17 of FIG. 1. Briefly orienting
subsystem 31 compares T of Equation 25 (the Fo input
to selected node J) to vigilance parameter p*
(0=p*=1). If node J is committed and Ts< p* orienting
subsystem 31 resets the selected category to an arbitrary
uncommitted category (F2 node).

It is understood that “reset” is synonymous with
“rejection” in the present invention. That is, the more
general form of reset involves having orienting subsys-
tem 31 set the “rejection state” of the current choice of
the F; choice function, so that when the choice in Fa
selects again, it will not select the same node j. In the
preferred embodiment as stated above, this results in the
F; choice selecting an uncommitted category node j in
Fa. .

The selected node J in F; transmits template signals in
response to activation by Fp signals I. After an input
presentation on which an F; node j is chosen and not
rejected by orienting subsystem 31, that node becomes
“committed”. Initially all F; nodes are uncommitted.

As for weights z*;, according to Equations 26, 28 and
33 there is a single LTM trace z*;between each node i
in the input field and each node j in Fa. After the choice
in F, without rejection by orienting subsystem 31,
weights z*; are adjusted in response to each input pat-
tern according to Equation 33. The adjustment is per-
formed such that the LTM template generated by se-
lected (without rejection) F2 node J is adapted propor-
tionally to the input pattern.

In particular, if selected (without rejection) node J is
an uncommitted node then the LTM trace z*; (and
hence corresponding template) is updated to equal the
input vector I (and hence input pattern). If selected
(without rejection) node J is a committed node then, the
LTM trace z*; (and hence corresponding template) is
updated to comprise a portion of the previous LTM
trace (and hence previous LTM template) and a compli-
mentary portion of the input vector I (and hence input
pattern), except that adjustment means 35 compares a
predefined threshold 0=60=1 to template signals of
selected node j. And for each template signal below the
threshold, the adjustment means 35 permanently sets
those template signals to 0.

The foregoing functioning of the attentional subsys-
tem 33 and orienting subsystem 31 enable network 37 to
achieve resonance in nominal computation time com-
pared to that of prior art networks. That is, the forego-
ing features of the present invention provide fast com-
mittment, slow recoding and computational efficiency
in pattern recognition and learning.

1t is understood that the foregoing fast learn network
37 of the present invention can be incorporated in more
complex architectures in a similar manner as that dis-
closed for prior ART2 systems in U.S. Pat. No.
4,914,708. Details of such incorporation and processing
environment are herein incorporated by reference.

FIG. 2 illustrates a set of 50 analog patterns which
have been categorized (i.e. grouped and learned) by a
network of the present invention. Patterns in the col-
umn headed 10 represent the input pattern to Fo. Each
pattern is a plot of an input signal 1% (along the vertical
axis) against a set of input nodes i (along the horizontal
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axis) which are applied in parallel to the preprocessing
field Fo. The pattern may, for example, be a spatial
pattern across spatial inputs. Or the pattern may be
temporal with the intensity 1% plotted against time T:.

Each input pattern is indexed in the left hand column
according to order of presentation. The input patterns .
were repeatedly presented in order (1, 2 . . 50) until
category structure stabilized. In the interim, after pre-
processing in Fo, input patterns to representation field
F) were formed. The formed input patterns are illus-
trated as corresponding to respective input patterns at
I0and are represented by signals plotted along a vertical
I signal axis against a horizontal F; node i axis. From
these signals, one of 23 category nodes J (indexed on the
right hand column of FIG. 2) in category field F> was
selected. The category structure stabilized to asypm-
totic state during the second presentation of the entire
input set. However, the suprathreshold LTM compo-
nents continued to track the relative magnitudes of the
components in the most recent input. FIG. 2 illustrates
the initial inputs grouped according to the F; category
node J chosen during the second and subsequent presen-
tations of each input.

The scaled LTM vector z*; of the winning F> cate-
gory node J at the end of each input presentation inter-
val is shown for each input pattern in the column
headed z*,;. The vector value is plotted along the verti-
cal axis against the F; node i plotted along the horizon-
tal axis. It is noted that the vertical axes for I and z*;run
from O to 1. .

Category 23 in FIG. 2 shows how z*; tracks the
suprathreshold analog input values in feature set {1y
while ignoring input values outside that set. Feature set
Q; is the F;-——F; category index set described previ-
ously. Intuitively ;is the index set of critical features
that define category J. In fast learning, the set {1scan
shrink when J is active, but can never grow. This
monotonicity property is necessary for overall code
stability. On the other hand, z,; learning is still possible
for i included in Qy when J is active.

The fast-learn categorizing of the present invention
illustrated in FIG. 2 utilizes the parameter settings sum-
marized in Table I and used only four seconds of
Sun4/110 CPU time to run through the 50 patterns
three times. A corresponding categorizing by a prior
ART?2 system takes 25 to 150 times as long to produce
the same results as FIG. 2, depending on the fast-learn
convergence criterion imposed. This increase in compu-
tational efficiency occurs even using a fast integration
method for the prior ART2 system in which LTM
values were allowed to relax to equilibrium alterna-
tively with STM variables.

TABLE 1
Parameters for FIGS. 2-4
Parameter Value
M 25
a 1 =2
4 M
] 1 -2
q M
FIG. 2 FIG. 3 FIG. 4
p* .92058 0 0
B 1 1 .01
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FIG. 3 illustrates fast-learn categorizing of the 50
input patterns of FIG. 2 but presented randomly rather
than cyclically to an embodiment of the present inven-
tion. FIG. 4 illustrates the intermediate learn categori-
zation of the same randomly presented 50 input patterns
as FIG. 3. This random presentation regime simulates a
statistically stationary environment, in which each
member of a fixed set of patterns is encountered with
equal probability at any given time. In addition, p* was
set to O in the operations of the present invention illus-
trated in FIGS. 3 and 4, making the number of catego-
ries more dependent on parameter a than when p* is
large. Other parameters are given in Table 1.

FIGS. 3 and 4 show the asymptotic category struc-
ture and scaled LTM weight vectors established after
an initial transient phase of 2,000 to 3,000 input presen-
tations. FIG. 3 illustrates that category nodes may occa-
sionally be abandoned after a transient encoding phase
(see nodes J=1, 6, and 7). FIG. 3 also includes a single
input pattern (index 39) that appears in two categories
(J=12 and 15). In the'illustration of FIG. 3 input index
39 was usually placed in category J=12. However,
when the most recent input to category J=12 was input
pattern index 21, category J=15 could win in response
to input index 39, though whether or not it did de-
pended on which pattern category J=15 had coded
most recently as well. In addition to depending on input
presentation order, the instability of pattern index 39 is
promoted by the system being in the fast-learn limit
with a small value of p*, here p* equals 0. A corre-
sponding prior ART?2 system gives similar results but
takes two to three orders magnitude longer than the
present invention network.

The foregoing anomalies did not occur in the inter-
mediate-learn case, in which there is not such drastic
recoding on each input presentation. Similarly interme-
diate learning copes better with noisy inputs than does
fast learning. FIG. 4 illustrates a run by an embodiment
of the present invention with the inputs and parameters
of FIG. 3, except that the learning rate parameter is
small (8=0.01). The analog values of the suprathre-
shold L'TM components do not vary with the most
recent input nearly as much as the components in FIG.
3. A slower learning rate helps the present invention to
stabilize the category structure by making coding less
dependent on order of input presentation.

While the invention has been particularly shown and
described with reference to a preferred embodiment
thereof, it will be understood by those skilled in the art
that various changes in form and details may be made
therein without departing from the spirit and scope of
the invention as defined by the appended claims.

We claim:

1. A pattern recognition device, comprising:

a short term memory input field for presenting input
signals defining an input pattern, the input pattern
having certain properties;

a long term memory category representation field
comprising plural category nodes, each such node
(i) providing template signals defining a corre-
sponding long term memory template, and (ii) hav-
ing an indication of state of the node including
commitment and rejection states of the node;

selector means for selecting at least one category
node in the long term memory field as a function of
at least the input pattern from the short term mem-
ory field; and
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adjustment means responsive to each input pattern,
for adjusting commitment and rejection states of
category nodes and for adapting the corresponding
long term memory template of the selected node to
the input pattern, such that (i) upon the selector
means selecting an uncommitted category node,
the adjustment means adapts the corresponding
long term memory template to match the input
pattern, and (ii) upon the selector means selecting a
committed category node, the adjustment means
adapts the corresponding long term memory tem-
plate to comprise a portion of a previous long term
memory template of the committed category node
and a complementary portion of the input pattern,
said adapting by the adjustment means including
(a) comparing template signals to a predetermined
threshold, and (b) for each template signal falling
below the threshold, permanently setting the tem-
plate signal to zero.

2. A pattern recognition device as claimed in claim 1
wherein in response to selector means selection of an
uncommitted category node, the adjustment means
adapts the corresponding long term memory template
to match the input pattern by the end of input pattern
presentation time in the short term memory field.

3. A pattern recognition device as claimed in claim 1
wherein in response to selector means selection of a
committed category node, the adjustment means adapts
the corresponding long term memory template to ap-
proach the input pattern in a single computational step.

4. A pattern recognition device as claimed in claim 1
wherein the predetermined threshold is in the range 0 to
1 inclusive.

5. A pattern recognition device as claimed in claim 1
wherein:

the selector means selects category nodes by
weighted signals of the input pattern; and

the selector means further comprises a reset member
such that in response to selector selection of a com-
mitted category node by a weighted signal less than
threshold p*, the reset member resets category
selection to an uncommitted category node, said
threshold being predefined as 0=p*=1.

6. A pattern recognition device as claimed in claim 1
wherein for each adaptation, the adjustment means
adapts the corresponding long term memory template
proportionally to the input pattern.

7. A pattern recognition device, comprising:

a short term memory input field for providing input -

signals defining an input pattern;

a long term memory field comprising plural category
nodes, each such note (i) providing template signals
defining a corresponding long term memory tem-
plate and (ii) having an indication of state of the
node, including commitment and rejection states
thereof; ‘

selector means for selecting at least one category
node in the long term memory field based on the
input pattern from the short term memory field;
and

adjustment means for adjusting commitment and re-
Jjection states of category nodes and for adapting
the corresponding long term memory template of
the selected node to the input pattern in response to
the input pattern such that
i) selector means selection of a previously uncom-

mitted category node results in adjustment
means adapting the corresponding long term
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memory template to immediately match the
input pattern, and )
ii) selector means selection of a previously commit-
ted category node results in adjustment means
adapting the corresponding long term memory
template to comprise complementary portions of
the previous long term template of the selected
category node and the input pattern.

8. A pattern recognition device as claimed in claim 7
wherein the adjustment means adapts the correspond-
ing long term template to the input pattern at a nearly
exponential rate.

9. A pattern recognition as claimed in claim 7
wherein the adjustment means adapts the correspond-
ing long term memory template to the input pattern by
comparing template signals to a predetermined thresh-
old, such that for a template signal below the threshold,
the adjustment means permanently sets the template
signal to zero.

10. In a pattern recognition device having a) a short
term memory field for providing input signals defining
an input pattern, b) a long term memory field comprised
of category nodes, each such node providing template
signals defining a long term memory template, and c) a
selector for selecting at least one category node in the
long term memory field based on an input pattern from
the short term memory field, template signals of the
selected node generating a corresponding long term
memory template, a method of adapting the corre-
sponding template to the input pattern, said method
comprising the steps of:

comparing template signals to a predefined threshold,;

for each template signal below the threshold perma-

nently setting the template signal to zero;

when the selector selects an uncommitted category

node, adapting the corresponding template to
match the input pattern; and

when the selector selects a committed category node,

adapting the corresponding template to comprise a
portion of a previous long term memory template
of the committed category node and a complemen-
tary portion of the input pattern.

11. A method as claimed in claim 10 further compris-
ing the steps of:

providing an indication of commitment and rejection

states of each category node;

adjusting commitment and rejection states of cate-

gory nodes in response to an input pattern;

in response to selector selection of a previously
uncommitted category node, adapting the corre-
sponding long term memory template to immedi-
ately match the input pattern; and

in response to selector selection of a previously
committed category node, adapting the corre-
sponding long term memory template to include
a combination of a portion of the previous long
term template of the selected category node and
a complementary portion of the input pattern.

12. A method as claimed in claim 11 further compris-
ing the step of resetting selection of a committed cate-
gory node to an uncommitted category node where a
weighted signal of category selection is less than thresh-
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old p*, where p* is predefined in the range 0 to 1 inclu-
sive.

13. A method as claimed in claim 10 further compris-
ing the step of adaptation the corresponding long term
memory template proportionally to the input pattern
for each adaption thereto.

14. A pattern recognition device, comprising:

a short term memory input field for presenting input
signals defining an input pattern, the input pattern
having certain properties;

a long term memory category representation field
comprising plural category nodes, each such node
(i) providing template signals defining a long term
memory template, and (ii) having an indication of
state of the node including commitment and rejec-
tion states of the node;

selector means for selecting at least one category
node in the long term memory field by weighted
signals of the input pattern, said selector means
comprising a reset member such that, in response to
selector selection of a committed category node by
a weighted signal less than threshold p*, the reset
member resets category selection to an uncommit-
ted category node, said threshold being predefined
as 0=p*=1; and

adjustment means responsive to each input pattern,
for adjusting commitment and rejection states of
category nodes and for adapting the corresponding
long term memory template of the selected node to
the input pattern, said adapting by the adjustment
means including (a) comparing template signals to
a predetermined threshold, and (b) for each tem-
plate signal falling below the threshold, perma-
nently setting the template signal to zero.

15. In a pattern recognition device having a) a short
term memory field for providing input signals defining
an input pattern, b) a long term memory field comprised
of category nodes, each such node providing template
signals defining a long term memory template, and c) a
selector for selecting at least one category node in the
long term memory field based on an input pattern from
the short term memory field, template signals of the
selected node generating a corresponding long term
memory template, a method of adapting the corre-
sponding template to the input pattern comprising the
steps of:

providing an indication of commitment and rejection
states of each category node;

adjusting commitment and rejection states of cate-
gory nodes in response to an input pattern;

in response to selector selection of a previously un-
committed category node, adapting the corre-
sponding long term memory template to immedi-
ately match the input pattern;

in response to selector selection of a previously com-
mitted category node, adapting the corresponding
long term memory template to include a combina-
tion of a portion of the previous long term template
of the selected category node and a complementary
portion of the input pattern;

comparing template signals to a predefined threshold;
and -

for each template signal below the threshold perma-

nently setting the template signal to zero.
* ® ¥ %X *
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