
Adaptive Resonance Theory Microchips 

Teresa Serrano-Gotarredona and Bernab6 Linares-Barranco 

National Microelectronics Center (CNM), Ed. CICA, Av. Reina Mercedes s/n, 41012 
Sevilla,SPAIN. Phone: (34) 5-4239923, FAX: (34) 5-4239923, E-mail: bernabe@cnm.us.es 

Abstract. Recently, a real-time clustering microchip based on the ART1 
algorithm has been reported. That chip was able to classify 100-bit input 
patterns into up to 18 categories. However, its high area comsumption 
( lcm 2) caused a very poor yield (6%). In this paper, an improved 
prototype is presented. In this chip, a different approach has been used to 
implement the most area consuming elements. The new chip can cope 
with 50-bit input patterns and classify them into up to 10 categories. Its 
area is 15 times less than that of the first prototype and it exhibits a yield 
performance of 98%. Due to its higher robustness, multichip systems are 
easily assembled. 

1 Introduction 
Recently, a real-time clustering microchip neural engine based on the ARTI [1] 

architecture has been reported [2]. It is based on a slightly modified version of the 
ART1 algorithm which was shown [3] to preserve all its original computational 
properties, but has a more VLSI-friendly algorithmic structure. The reported ART1 
chip was able to cluster binary input patterns of up to 100 pixels into up to 18 different 
categories. The chip was able to classify an input pattern and learn its relevant 
characteristics by updating its internal knowledge, all in less than 1.8~ts. The chip 
internal circuit architecture also allowed modular expansion of the clustering system. 
Assembling an N x M  array of these chips would result in ART1 systems able to 
cluster N • 100 pixel input patterns into up to M • 18 categories. Unfortunately, the 
resulting area consumption (and cost) of the chip was extremely high (lcm2), and 
consequently its yield performance was extremely low (6%). Nevertheless, due to the 
fault-tolerant nature of the algorithm, most of the faulty chips still were able to 
perform satisfactorily [2]. 

In this paper, a new ART1 chip is presented which solves the yield problem by 
reducing chip area. After careful MOS transistor electrical parameter mismatch 
characterization of the technological process to be used [4]-[5], it was possible to 
identify the maximum chip area for which the parameter variations would remain 
within the necessary limits to preserve the required system operation precision. It was 
found that for the ES2-1.0~tm CMOS process, for transistors of size 10~tm x 10~tm, 
spread over an area of the order of 2.5ram x 2.5ram, and for current levels around 
10p.A, the transistor current standard deviation is around c (I) = 1%. Taking this into 
account, we designed and fabricated an ART1 chip capable of clustering 50-bit input 
patterns into up to 10 categories, with a yield performance of 98%, and whose area is 
15 times less than that of the first prototype. The chip showed a very robust behavior 
that allowed us to implement some multi-chip ART1 systems. 
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2 V L S I - F r i e n d l y  A l g o r i t h m  and Its H a r d w a r e  I m p l e m e n t a t i o n  
An ART1 system is a neural associative memory capable of generating in an 

unsupervised way stable recognition codes in response to arbitrary many and complex 
binary input patterns. An ART1 architecture consists of two layers. The F 1 or input 
layer has N nodes each of them receiving a component of the input vector 
I= (I1, ... ,IN) . Each of the M nodes in the F 2 or category layer represents a cluster 
of input patterns or learned category. Both layers are fully connected by a matrix of 
binary weights zij.  The weight vector that connects to the j t h  Fz node 
zj = (Zlj . . . . .  ZNj ) characterizes the learned F 2 category j .  Fig. 1 depicts the 
operation sequence of the VLSI-Friendly ART1 algorithm: 

1. All the binary weights zij are set to ' 1'. 

2. An input pattern I is applied to the system. 

3. A "choice funct ion"  Tj is computed for each categoryj. This function 
Tj = LA]I ~ Zjl- LBIZj[ + Z M is a measurement or distance of the similarity 
between the input pattern I and the learned vector zj corresponding to category j .  

4. The category J whose Tj is maximum is selected. The corresponding output y j  is 
set to ' 1' while all others are set to 3) ~ j = O. 

5. The vigilance criterion is checked for the winning category: 

If 0llI < I I n zj[ the criterion is not satisfied, Ty is forced to '0' and a new winner 
is selected. 

If 01II -> [I c~ zjI the weights zj are updated according to the law 

I Initialize weights: 

z q =  1 I 
,# 

_ ~  Read input pattern: I I = (11,12,...1 M) I 

I I 

I Update weights: I 
z j  (new) = I c~ z j  (old) 

Fig. 1: Algorithmic Operation Description of 
VLSI-Friendly ART1 System 
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z j ( n e w )  = I c~ z j ( o l d )  . (1) 

Fig. 2(a) shows the schematic of the circuit implementing an ART1 network with 50 
input nodes and 10 category nodes. The schematic of a synapse sij is depicted in Fig. 
2(b) and Fig. 2(c) shows the schematic of an input cell C i . 

The array of input cells C i generates a current L A E I  i = LAIII , which enters a 
tunable gain current mirror of gain 9 �9 This mirror distributes a current PLAIII to the 
input of ten current comparators C C j .  

Each synapse outputs two currents: 

�9 A current  LAIiZij which flows to a common node for all the synapses in the j - th 
row, resulting in a total current L a ~ I i z i j  = LAI! ~ zjl that enters in the j - th 
current comparator C C j .  

�9 A current  L A I i Z i j  - LBZq, that results in a total current 
Tj = LA ~ I izij - Le  ~ ,  zij + L M which enters the j - th branch of the WTA. 

RESET, ,LEARN N1 . [ ~  ' ll 
R1 S ll s12 '1,50 N~ ~ ~ ~4:~C1 Cl Yl 

i2 s2 $ R2 

NI_( ~ ilO sic 
S ~,o,, ~,o,: ]o,o 1 N;o i i i~ ic ,o  

~ - - ~ , M L ~ c M C  ER 

[1 12 I50 

2 ~ _  ~ +~ I~  : LAZij ii_LBZij (C) Ii 

. . . . .  & (  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  "Kz j 

Fig. 2: (a) Schematic of the Circuit that Implements the VLSI-Friendly ART1 Algorithm, 
(b) Detailed Schematic of a Synapse, and (c) Schematic of an Input Cell 
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Each current comparator receives a total current LalI~zjl-OLAII[ and 
compares it against '0 ' .  If  this current is negative the vigilance criterion is not satisfied 
and signal cj is activated preventing current Tj from competing in the WTA. 

Once a winning node ( y j  = 1) is stable, signal "LEARN" is activated and 
weights zj  are updated changing its stored value to  Iizij .  

3 Yield and Area Optimization 
To obtain good system precision it is important to make all L a and L B synapse 

current sources to match within a certain limit. In our first prototype, a tree-like 
current-mirror structure was implemented to generate all L a and L B currents from 
two external current references. The external current references enter to a 
multiple-output current mirror which delivers several output currents which enter as 
inputs to another stage of multiple-output current-mirrors. Each multiple-output 
current mirror has at the most ten outputs and is laid out using common centroid 
techniques to reduce the gradient-induced mismatch. After a few stages several 
thousands of  L A and L a currents are available which match with a precision better 
than 1% for currents levels higher than 5ktA. However, this structure is very area 
consuming, which results in a very poor yield. That prototype had a die area of  1 cm 2 
while having a 100-node F 1 layer and an 18-node F 2 layer and exhibits a yield 
performance of  6%. 

Our results of  mismatch characterization [4]-[5] showed that is was possible to 
eliminate the tree-like current mirror structure while maintaining a current precision 
better than 1%. A new ART1 prototype was designed with an area 15 times less than 
that of  the first prototype and a 98% yield performance. This prototype chip occupies 
an area of  2 .5mm x 2 . 2 m m  having a 50-node F 1 layer and a 10-node F 2 layer. 

For the mismatch characterization, a special purpose chip in the ES2-1.0ktm 
technology was designed [4]-[5]. The chip contains a matrix of  cells, each of  them 
containing different sized PMOS and NMOS transistors, plus decoding circuitry. A 
simplified diagram of the chip and the experimental set-up to measure the transistors is 
depicted in Fig. 3. All NMOS transistors in the chip have their sources connected 
together to pin S. All NMOS transistors share their drains at pin DN and all PMOS 
transistors have their drains connected to pin DP. Every transistor in the chip has its 
gate short-circuited to its source except for one pair of  NMOS and PMOS transistors. 

G I -  . . . . . .  i 
145 

Fig. 3: Experimental Set-Up for Transistor Mismatch Characterization 
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The selected pair transistors have their gate connected to pin G. A host computer 
controls the selection decoder and a curve tracer (HP4145). If pin DP is left 
unconnected and the curve tracer is connected to pins S, DN and G each NMOS 
transistor can be separately characterized. In a similar way, if pin DN is left 
unconnected, each PMOS transistor can be measured by connecting the curve tracer to 
pins S, DP and G. 

NMOS and PMOS transistors of size 10btm x 10btm spread over an area of 
2 . 5 m m  x 2 . 5 m m  were forced to the same V~s and Vos voltages so that their nominal 
current was around 10btA. The effective measured currents flowing through the 
transistors are depicted in Fig. 4. Fig. 4(a) shows the currents flowing through the 
NMOS transistors as a function of transistor position in the array. Fig. 4(b) depicts the 
same but for PMOS transistors. As can be seen, each surface Io (x, y) has two 
deviation components: a long-distance gradient component, and a short-distance noise 
component. For each surface, the plane loP (x, y) = A x  + By  + C that best fits the 
points of the measured surface I o (x,  y) is computed. Afterwards, the standard 
deviation ~ (Alo)  of the difference 

AI  o (x,  y)  = I o (x, y) - loP (x, y) (2) 

is computed. This deviation is due to the noise component of surface I o (x,  y) .  The 
gradient component is defined by plane loP (x, y). The maximum deviation due to the 
gradient component is given by 

AIP o = m a x  {lop (x, y)  } - rain {lop (x, y) } . (3) 

On the other hand, for the noise component, 98% of the points remain within the 
+3o(Alo)  . Consequently, let us define the ratio between noise component and 
gradient component contributions as 

6 o ( A I  o) 
r - (4) 

AIo~ 
Eight chips could be fully characterized. Each chip contains several arrays of NMOS 
and PMOS transistors of different sizes spread over an area of 2 . 5 m m  x 2 .5mm. Table 
I shows the results for NMOS transitors of size 10btm x 10btm driving a nominal 
current of 10ktA . The table shows the noise error component o (A/o) , the gradient 
error component AlP,  the ratio 

" ~  

(a) 

r ,  and the total error component 

1 o 1 ~  

1 

Or ( I  o) 

Fig. 4: Measured Currents for an Array of MOS Transistors with the same VGS 
and VDS values, (a) NMOS Transistors, and (b) PMOS Transistors 
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(gradient+noise). Table I contains the same information but for PMOS transistors. As 
can be seen, for this chip dimensions, this current level and transistor geometries the 
noise error contribution is of the same order or higher than the gradient error 
contribution, and the total current error o r (Io) is always less than 1%. Consequently, 
for these conditions it is possible to avoid the use of high area consuming tree-like 
mirror structures and directly implement a simple current mirror with all the needed 
outputs. This is the approach used in the present ART1 chip prototype. The chip has a 
die area of 2.5mm x 2.2ram , and contains an array of 50 x 10 synapses. Fig. 5 
depicts the measured L B output currents as a function of the output transistor position 
in one chip for an input current level of 10gA . Table III contains the deviation 

chip 

1 

2 

3 

4 

5 

6 

7 

8 

a (A/o) (%) A P  o (%) r o T(Io) (%) 

0.57 1.30 2.652 0.67 

0.62 1.98 1.874 0.83 

0.47 3.10 0.921 0.79 

0.52 0.90 3.456 0.56 

0.54 1.65 1.959 0.64 

0.58 3.01 1.160 0.88 

0.65 1.96 1.996 0.82 

0.73 2.15 2.027 0.90 

Table I: Output  current  error in an N M O S  array 

o (A/o) (%) AloP(% ) r ~r  (lo)(%) 

0.58 1.53 2.278 0.67 

0.47 034 3.830 0.51 

0.48 0.83 3.519 0.51 

0.40 2.18 1.100 0.63 

0.46 0.60 4.666 0.49 

0.45 2.18 1.236 0.72 

0.44 0.83 3.171 0.50 

0.41 1.28 1.926 0.50 

chip 

1 

2 

3 

4 

5 

6 

7 

8 

Table II: Output  current  error m a PMOS array 
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-1.015e-05 
-1,02e-05 

-1.025e-05 
-1,03e-05 

-1.035e-05 

;!o~: 
-1.05e-05 

-1.055e-05 
-1.06e-05 

-1.065e-05 

Fig. 5: Measured L a Current in an ART1 Prototype Chip 

components measured in the L 8 output currents. The random component is always 
higher than the gradient component and the total deviation is less than 1%. Similar 
results are obtained for the two L A current sources. 

4 Experimental Results 
All ten fabricated chip samples were fully operational and for none of them we 

were able to detect any fault in its subcircuits. All system components could be 
isolated and independently characterized. The circuit performances of the different 
subcircuits were similar to those of the first prototype [2]. 

Although the chip is analog in nature, its inputs and outputs are digital. Therefore, 
it is possible to test the system level behavior using a digital test equipment. We used 

chip 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

G (AL•) (%) AL~ (%) rL B oT(Ls)(%) 

0.62 0.62 6.076 0.64 

0.59 0.22 16.497 0.60 

0.56 3.330 1.015 0.89 

0.63 0.90 4.196 0.64 

0.65 1.83 2.118 0.76 

0.64 1.49 2.565 0.73 

0.60 1.58 2.255 0.67 

0.62 1.48 2.524 0.71 

0.63 0.37 10.080 0.63 

0.57 2.16 1.573 0.73 

Table III: Measured L 8 output  current  error 
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Experimentally obtained Training Sequence for a two chip ART1 System with 
100 F1 nodes and 10 F2 nodes, with t9=0.5 and (~=2 

the digital test equipment HP82000 to fully test the system level operation. The system 
proved to be very robust and therefore a multichip system was easy to assemble. The 
operation of two multichip systems was also tested: a two-chip ART1 system and a 
three chip system forming an ARTMAP architecture. 

The two-chip ART1 system consists of two horizontally assembled ART1 chips. 
The resulting system is able to cope with 100-bit input patterns, as is shown in Fig. 6. 
Vertical bars to the right of a pattern indicate the winning category which has learned 
the incomming input pattern. 

The ARTMAP architecture consists of two ART1 subsystems connected through 
an In t e r -ART  module as depicted in Fig. 7, where a is an Na-dimensional input vector 
to the first subsystem ART1 a, and b an Nb-dimensional input vector for the second 
ART1 b subsystem. An ARTMAP system is a supervised learning neural network that 
learns the correspondence between two simultaneous input patterns a and b. The 
In t e r -ART  module is simply an M a x M b array of binary weights which learns the 
correspondence between the ART1 a category which classifies pattern a and the ART1 b 
category which classifies pattern b. An ARTMAP hardware system was assembled 
using two ART1 chips and an extra chip for the In te r -ART module. The system level 
operation of the ARTMAP hardware system has also been tested using the HP82000 
digital test equipment. Fig. 8 shows a training sequence for this ARTMAP system, 
which has been obtained experimentally. Vertical bars to the right of the patterns 
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Fig. 7: Diagram of an ARTMAP Architecture 

indicate the winning categories. For the ART1 a module, the numbers below the 
winning category indicate the value of Pa Match-Tracking parameter the system 
adjusted [6]. 

5 ART1/Fuzzy-ART/ARTMAP/Fuzzy-ARTMAP Chip 
A new ART chip prototype is under development, which can be programmed to 

either operate as an ART1 chip, a Fuzzy-ART [7] chip, an ARTMAP chip or 
Fuzzy-ARTMAP [8] chip. It is based on a new memory cell concept, which 
simultaneously acts as a digital flip-flop and a current source. If such a system would 
be fabricated in a 0.35gm CMOS process, a Fuzzy-ART (or Fuzzy-ARTMAP) system 
with 135 F1 nodes and 750 F2 nodes could be implemented, or an ART1 (or 
ARTMAP) system with 810 F1 nodes and 750 F2 nodes. This chip, which is still 
under development, is described in [9]. 
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