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Abstract

An evaluation of distributed learning as a means to attenuate the category proliferation problem in Fuzzy ARTMAP based neural systems

is carried out, from both qualitative and quantitative points of view. The study involves two original winner-take-all (WTA) architectures,

Fuzzy ARTMAP and FasArt, and their distributed versions, dARTMAP and dFasArt.

A qualitative analysis of the distributed learning properties of dARTMAP is made, focusing on the new elements introduced to endow

Fuzzy ARTMAP with distributed learning. In addition, a quantitative study on a selected set of classification problems points out that

problems have to present certain features in their output classes in order to noticeably reduce the number of recruited categories and achieve

an acceptable classification accuracy.

As part of this analysis, distributed learning was successfully adapted to a member of the Fuzzy ARTMAP family, FasArt, and similar

procedures can be used to extend distributed learning capabilities to other Fuzzy ARTMAP based systems.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adaptive resonance theory (ART) is derived from

Grossberg and Carpenter’s work in human learning

processes (Grossberg, 1982b, 1988). Since then, several

artificial neural network architectures based on ART

postulates have been proposed. This family includes ART-

1 (Carpenter & Grossberg, 1987, 1988), for unsupervised

learning of binary input patterns; ARTMAP (Carpenter,

Grossberg, & Reynolds, 1991a) for supervised learning of

binary input patterns; and Fuzzy ART (Carpenter, Gross-

berg, & Rosen, 1991b) and Fuzzy ARTMAP (Carpenter,

Grossberg, Markuzon, Reynolds, & Rosen, 1992), which

introduce some elements from fuzzy sets theory in order to

deal with both analog and binary patterns for unsupervised

and supervised learning, respectively.

All ART based neural networks share a set of properties

that make them very suitable for applications requiring on-

line performance. These properties include a solution of the

stability–plasticity dilemma (Grossberg, 1982a), which

allows incremental learning in time-varying environments;

fast stable learning, multiple generalization scales and fast

convergence with a relatively small number of training

patterns.

As stated before, Fuzzy ARTMAP introduces some

Fuzzy Logic terms enabling the knowledge acquired by the

network to be expressed easily into fuzzy IF–THEN rules

(Carpenter et al., 1992), which makes Fuzzy ARTMAP a

powerful tool for constructing neuro-fuzzy systems. In the

literature, many examples of these Fuzzy ARTMAP based

neuro-fuzzy systems can be found, among them, FALCON

(Lin & Lin, 1997), Fuzzy Min–Max (Simpson, 1992, 1993)

and FasArt (Cano-Izquierdo, Dimitriadis, Araúzo-Bravo, &

Araúzo-Bravo 1996; Cano-Izquierdo, Dimitriadis, Gómez-

Sánchez, & López-Coronado, 2001) have been reported to

perform successfully on pattern recognition and function

approximation tasks.

However, Fuzzy ARTMAP based neural systems suffer

from a category proliferation problem, affecting their

0893-6080/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0893-6080(03)00009-1

Neural Networks 16 (2003) 1039–1057

www.elsevier.com/locate/neunet

* Corresponding author. Tel.: þ34-91-624-8759; fax: þ 34-91-624-

8749.

E-mail address: emipar@tsc.uc3m.es (E. Parrado-Hernández).

http://www.elsevier.com/locate/neunet


generalization capability (Carpenter, Milenova, & Noeske,

1998b). Moreover, when Fuzzy ARTMAP architecture is

incorporated into a Fuzzy system, category proliferation

may result in the generation of redundant rules, which leads

to a large rule set1 and an increase in processing time.

Furthermore, if the rule set is to be manipulated by a human

operator, the system complexity becomes a major problem.

In addition, the presence of noise in the training set

augments category proliferation since noise complicates

relations among input and output data, and may introduce

contradictory training patterns (Cano-Izquierdo, 1997;

Marriott & Harrison, 1995).

Approaches to solving the category proliferation problem

in ART neural systems can be divided into two main groups:

those which seek an off-line solution and those which try to

preserve the original on-line characteristic of ART systems.

The former solutions are basically represented by postpro-

cessing methods, like rule pruning (Carpenter, 1994), that

take place after training has been completed. The latter

methods imply the introduction of changes in the original

Fuzzy ARTMAP architecture in order to avoid massive

commitment of neurons during the training phase. These on-

line methods must guarantee that the derived architecture

retains Fuzzy ARTMAP stable learning. Within on-line

solutions, distributed learning has been proposed recently by

Carpenter (1997) and Carpenter et al. (1998) in dARTMAP

(distributed ARTMAP) architecture.

According to ART principles, knowledge representation

or coding by a neural network can be distributed among all

the neurons. However, all practical implementations of ART

architectures use competitive WTA (winner-take-all) learn-

ing, i.e. only the neuron that wins a competition for the coding

of each input pattern actually modifies its weights in order to

learn the pattern. In spite of this, several ARTMAP based

neural architectures, such as ART-EMAP (Carpenter & Ross,

1995), ARTMAP-IC (Carpenter & Markuzon, 1998) and

FasArt take advantage of other distributed features (different

from learning), like defuzzification at test. Apart from the

ART family, many other artificial neural networks (ANNs)

include distributed learning, like backpropagation trained

multi-layer perceptrons (MLPs) (Rosenblatt, 1958, 1962;

Rumelhart, Hinton, & Williams, 1986), or decision based

neural networks (DBNN’s) (Kung & Taur, 1995), typically

yielding less complex architectures, but without ARTs

desirable properties of fast, stable, and incremental learning.

Therefore, dARTMAP intends to merge distributed MLP

code compression and Fuzzy ARTMAP fast on-line

learning (Carpenter et al., 1998). In Carpenter (1997) and

Carpenter et al. (1998), dARTMAP is presented as an

extension of Fuzzy ARTMAP, capable of fast, stable on-line

distributed learning. Moreover, dARTMAP distributed

learning laws do not cause catastrophic forgetting. In

those papers, dARTMAP is tested against the original Fuzzy

ARTMAP in the circle-in-the-square benchmark, showing

that distributed learning reduces the number of categories

from 16.7 to 11.7 with accuracy decreasing from 92 to

90.6% (Carpenter et al., 1998).

The work described in this paper aims to study

systematically the introduction of distributed learning in

Fuzzy ARTMAP based neural systems as a means to

reduce category proliferation in these architectures.

Nomenclature

~I ¼ ð~a; ~acÞ input vector, in complementary code

M input vector dimension

N number of used units in F2 layer
~Wj ¼ {wji} weights in F2 layer for unit j in Fuzzy

ARTMAP, FasArt and dFasArt
~Cj ¼ {cji} new center weights in FasArt and

dFasArt of unit j

tji top–down threshold between units j

in F2 layer and i in F0 in dARTMAP

tij bottom – up threshold between

units j in F2 layer and i in F0 in

dARTMAP

Tj activation of unit j for Fuzzy

ARTMAP and dARTMAP, mem-

bership function for FasArt and

dFasArt

mji activation contributed by variable i

to unit j

a choice parameter in Fuzzy ART

b learning rate

bc learning rate for ~Cj in FasArt and

dFasArt

r vigilance parameter

g fuzzification rate in FasArt

l maximum size of each side of the

fuzzy support in dFasArt

~y ¼ {yj} F2 layer output
~Y ¼ {Yj} F3 layer output

~cj instance counting F2 units in

dARTMAP and dFasArt

~s ¼ {si} prototype for the evaluation of

matching criterion in dARTMAP
~Gj ¼ {Gji} geometric center of the fuzzy

support in dFasArt
~b desired output

l~xl ¼
PM

i¼1 xi L1 norm

a ^ b ¼ min{a; b} fuzzy AND operator

½f�þ ¼ max{f; 0} rectification operator

Superscripts and subscripts a or b refer to ARTa and

ARTb, respectively

1 In Fuzzy ARTMAP based neuro-fuzzy systems each category implies

one rule.
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The methodology starts with a theoretic study of the

innovations that dARTMAP introduces in the original

Fuzzy ARTMAP. Afterward, the FasArt neuro-fuzzy system

is adapted to use distributed learning so that the impact of

distributed learning can be analyzed in two different Fuzzy

ARTMAP based architectures (dARTMAP and the new

distributed version of FasArt, called dFasArt) and more

general conclusions can be extracted. A set of benchmark

problems has been selected to test the dependence of

distributed learning advantages over WTA on the character-

istics of the problem. These benchmarks include both pattern

recognition and function approximation tasks.

The outline of the paper is as follows. Section 2 includes

a brief review of WTA Fuzzy ARTMAP and FasArt neural

architectures, as they form the basis of the distributed

systems studied in the next sections. Section 3 is devoted to

a qualitative analysis of the dARTMAP architecture and

introduces dFasArt. The new elements of both architectures

are explained and the expectations of performance accord-

ing to this analysis are given. Section 4 starts with a

description of the benchmark set selection; afterward,

performances of the four neural systems on those bench-

marks are discussed. Finally, Section 5 reviews the most

important conclusions extracted from the present work and

identifies areas for future research.

2. Review of fuzzy ARTMAP and FasArt

A Fuzzy ARTMAP neural network consists of two Fuzzy

ART modules linked by a layer of neurons called the

interART map (see Fig. 1). Each Fuzzy ART module

performs unsupervised clustering either in the input or the

output space, and the map stores relationships among the

clusters created by both Fuzzy ART modules.

2.1. Fuzzy ART

In Fig. 1, an outline of the Fuzzy ART neural architecture

is shown (one Fuzzy ART module inside each dotted

rectangle) as part of Fuzzy ARTMAP. Basically, Fuzzy

ART consists of three neural layers: preprocessing F0;

matching F1 and competitive F2:

Every input vector component, ai; must be normalized

between 0 and 1. Layer F0 is formed by 2M neurons, with M

being the dimension of the input vectors, and provides the

complement code of the input vectors according to the

following expression:

Ii ¼
ai 1 # i # M

1 2 ai2M M þ 1 # i # 2M

(
ð1Þ

Layer F1 is also formed by 2M neurons and its function is to

verify the match between input patterns and prototypes

learned by the network. Finally, layer F2 is a competitive

layer. It works as a content addressable memory (Carpenter

et al., 1998) where each neuron stores a prototype of a class of

input vectors. F2 is formed by a total number of N neurons

which are recruited dynamically as they are needed to encode

new classes of incoming vectors. Each layer is connected to

the next through a set of adaptive weighted paths. These

weights, Wij; form the long term memory (LTM) element of

the neural network and evolve during the training phase.

Every weight is initialized to 1 at the beginning of the training

and monotonically decreases as the training proceeds and

patterns are learned. This monotonical decrease of weights

guarantees the eventual stability of the network.

Unsupervised learning in Fuzzy ART is performed in the

following way. Each input pattern, ~a; is put into its

complement code, ~I; according to expression (1), and then

it is transmitted through F1 to layer F2: Each neuron j in F2

receives an activation, Tjð~IÞ; that is a function of the input

pattern and the LTM weights:

Tj ¼
l~I ^ ~Wjl
aþ l ~Wjl

j ¼ 1;…;N ð2Þ

where ~Wj ¼ ½Wj1;Wj2;…;Wj2M� are the weights associated

with neuron j; l·l is the L1 norm, l~xl ¼
PM

i¼1 xi; x ^ y ¼

min{x; y} is the fuzzy AND operator, for vectors, ~x ^ ~y ¼ ~v

with vi ¼ xi ^ yi (Zadeh, 1965) and a [ ½0;1� is a choice

parameter (typically a < 0þ).

At this point, the neurons in F2 hold a WTA competition

to select which neuron, J; is going to learn the pattern:

TJ ¼ max
j

{Tj} j ¼ 1;…;N ð3Þ

After the competition, only the output of the winning neuron

remains set to 1 and descends through the top–down

weighted paths so that the prototype of neuron J is presented

in layer F1: In F1 the matching between the input pattern, ~I;

and the winner prototype, ~WJ ; is evaluated according to a

criterion determined by a user defined parameter r [ ½0; 1�:

The criterion is applied as follows:

† If ðl~I ^ ~WJ l=l~IlÞ $ r; then the input is considered to

belong to match prototype in J and pattern is learn by

neuron J:

† If ðl~I ^ ~WJ l=l~IlÞ , r; then the system is reset and neuron J

is inhibited so that it no longer enters the competition for

the current pattern. In addition to this, a match tracking

mechanism raises the value of parameter r so that the

next winner must be closer to the pattern. After this new

competition, another winner is selected. Eventually, a

new neuron in F2 will be committed if none of the current

neurons is found to match the pattern sufficiently. This

can happen not necessarily after all existing neurons have

been evaluated (Georgiopoulos, Fernlund, Bebis, &

Heileman, 1996).

When a winner successfully passes the matching

criterion, learning occurs. LTM weights are updated

E. Parrado-Hernández et al. / Neural Networks 16 (2003) 1039–1057 1041



according to the following learning law:

~Wnew
J ¼ bð ~Wold

J ^ ~IÞ þ ð1 2 bÞ ~Wold
J ð4Þ

where b [ ½0; 1� is the learning rate: b! 0þ implies slow

learning, while b ¼ 1 implies fast learning and each pattern

is incorporated to the knowledge stored by the network in

just one iteration. From this point on, fast learning is

assumed throughout the rest of the paper.

2.2. Fuzzy ART geometry

With complement coding of patterns and the L1 norm,

each F2 neuron can be represented geometrically as a

hyperbox in RM covering all the patterns that it has

already learned. The size of the hyperbox Rj associated

with neuron j; is determined by weights ~Wj as showed in

Fig. 2.

Competition in layer F2 has also a geometric interpret-

ation. Activation function, Tj; is a measure of the distance

between the pattern ~a and Rj (Fig. 2). Therefore, the neuron

with the box lying nearest to the pattern will receive the

highest activation. Parameter a in Eq. (2) is used to break

ties when several boxes include the pattern; in such case, the

smaller the box is, the higher the activation received.

Finally, the learning process can be viewed as the

expansion of the winner neuron box toward the pattern. If

fast learning is applied, the box grows until it actually

covers the pattern, while under slow learning the box just

expands toward the pattern but without covering it.

2.3. Fuzzy ARTMAP

The Fuzzy ART architecture described in Section 2.2 is

capable of unsupervised learning of either binary or analog

Fig. 1. Fuzzy ARTMAP structure. This neural network consists in two unsupervised Fuzzy ART modules (inside the dotted rectangles) that perform a clustering

in both input and output spaces, and a neural layer called interART map that links the input categories to the output ones enabling supervised learning.
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input vectors. For supervised learning, two Fuzzy ART

modules are connected through the interART map (Fig. 1).

Fuzzy ARTa receives a vector, ~a; from the input space, and

Fuzzy ARTb receives the desired output, ~b, when ~a is

presented.

When a neuron in Fa
2 (the F2 layer in Fuzzy ART a) is

recruited, it is linked through the map with the neuron in Fb
2

that stores the prototype that matches the corresponding ~b:

The operation of the map is as follows. After ~a and ~b are

presented to the corresponding Fuzzy ART modules, a

neuron J from Fa
2 will win the competition for coding ~a and

another one, K from Fb
2 ; will win the competition for ~b:

Then two cases may arise:

† If neuron J and neuron K are linked through the map,

then there is an interART matching and learning

proceeds independently in both Fuzzy ARTs.

† If neurons J and K are not linked, then interART reset

is triggered: neuron J is inhibited and Fuzzy ARTa is

reset so that a new category search takes place. This

reset and search process continues until a neuron J
0

that produces an interART matching is found. The

latter will always occur when a new Fa
2 category is

created.

One of the most valuable features of Fuzzy ARTMAP is

that relations among neurons stored in the map can be

expressed in terms of IF–THEN rules. The link between

neurons J and K can be stated in this manner: IF ~a belongs to

category J THEN the desired output belongs to category K

in the output space.

2.4. FasArt

As stated Section 1, the study of the impact of

distributed learning on Fuzzy ARTMAP based architec-

tures is extended to the FasArt neuro-fuzzy system so that

more general conclusions can be drawn. FasArt expands the

scope of this study in two ways. From the neural network

point of view, FasArt shares Fuzzy ARTMAP architecture

(Fig. 1) and dynamics, like WTA activation and match

tracking, but implements a different neural activation

function. On the other hand, due to its fuzzy system nature,

FasArt is more suitable for dealing with other engineering

problems, such as function approximation (Cano-Izquierdo

et al., 2001).

FasArt was proposed to overcome some Fuzzy ART-

MAP defects from the point of view of Fuzzy Sets Theory.

FasArt can also be interpreted as a neuro-fuzzy system

(Cano-Izquierdo et al., 2001). FasArt incorporates fuzzy

sets, categories and defuzzification into the Fuzzy ART-

MAP architecture in a formal manner, and identifies the

degree of confidence with which IF–THEN rules are

triggered.

The duality between neural and fuzzy natures in FasArt is

established in the following way. Each neuron in the FasArt

F2 layer is associated with a fuzzy set whose support is

equivalent to the corresponding Fuzzy ARTMAP hyperbox.

FasArt replaces the L1 norm neural activation by triangular

fuzzy membership functions (Fig. 3). To construct the

membership function of Fig. 3, two new elements need to be

introduced in the FasArt architecture: weight vectors ~C and

a user defined parameter g: Vector ~Cj stores the center of the

fuzzy set associated with neuron j and follows the same

dynamics as ~Wj; while g determines what region of the input

space is allowed to be learned by a neuron in the current

pattern presentation, since, as shown in Fig. 3, it determines

the patterns with a non-zero membership function value.

This way, activation function, Tj; is computed according to a

triangular fuzzy membership function, given by:

Tj ¼
YM
i¼1

mjiðIiÞ j ¼ 1;…;N ð5Þ

Fig. 2. Geometric interpretation of Fuzzy ART. Box Rj is associated with

neuron j; while ~I ¼ ½I1; I2; I3; I4� is the complement code of input pattern ~a:

Size of box Rj is determined by weighs associated with neuron j; ~Wj ¼

½W1j;W2j;W3j;W4j�: In a generic M dimensions case, Rj size on dimension i

is determined by Wij and WiþM;j:

Fig. 3. FasArt triangular fuzzy membership function and fuzzy support in

an 1D example. According to expression (6), m is the activation reached by

the Ii component of the current pattern. Fuzzy support is determined by

neuron j weights ~Wj and ~Cj; and parameter g:
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mjiðIiÞ ¼

max 0;
gðIi 2 WijÞ þ 1

gðCij 2 WijÞ þ 1

( )
if Ii # Cij

max 0;
gð1 2 Ii 2 WiþM;jÞ þ 1

gð1 2 Cij 2 WiþM;jÞ þ 1

( )
if Ii . Cij

8>>>><
>>>>:

ð6Þ

Therefore, the FasArt membership function value increases

as patterns lie nearer to the center of the support, while

Fuzzy ARTMAP activation function gives the same value

for all the patterns lying inside the box associated with the

neuron.

In addition, FasArt is endowed with a learning law for the

center of the winner fuzzy support, ~CJ : This law is

analogous to the law given for LTM weights, ~WJ :

~Cnew
J ¼ ~Cold

J þ bcð~I 2 ~Cold
J Þ ð7Þ

where bc [ ½0; 1� is the learning rate.

Furthermore, FasArt incorporates defuzzification of the

output in function approximation tasks. This processing is

allowed due to the correspondence between fuzzy sets and

categories established in FasArt. The expression for the

defuzzified output b̂ð~IÞ is built over the fuzzy sets generated

in the output space by the corresponding unsupervised

module:

b̂ð~IÞ ¼

XNa

j¼1

TjC
b
l

XNa

j¼1

Tj

ð8Þ

where l is the neuron in Fb
2 predicted by j in Fa

2 ; and Na is the

number of neurons in Fa
2 : Defuzzification stands as a

precedent for distributed features incorporated into a Fuzzy

ARTMAP based neural system, since the output is

calculated as a combination of all the rule antecedents (Fa
2

neurons) activated by the input pattern.

With respect to the geometric interpretation, FasArt

fuzzy supports are no longer hyperboxes. In Fig. 4, a

representation of a FasArt fuzzy set with parameters ~W ¼

½0; 0; 1; 1�; ~C ¼ ½0:325; 0:52� and 1=g < 0 is displayed.

The contour plot indicates that FasArt will fit better in

oval shaped output classes, while Fuzzy ARTMAP boxes

fit better in squared ones. This fact will enable us to

study the impact of distributed learning and its relation-

ship to the geometric shape of the borders between

output classes.

3. Qualitative analysis of dARTMAP and dFasArt

3.1. Methodology

The work presented in the remainder of this paper is

divided in two main parts: a qualitative and a quantitative

analysis of the introduction of distributed learning in Fuzzy

ARTMAP based neural systems. The qualitative analysis

examines the relationships between distributed learning and

category reduction in those systems. The analysis starts with

a theoretic justification of the reasons why distributed

learning may reduce the recruitment of superfluous

categories. Then, all the innovations introduced into the

original Fuzzy ARTMAP WTA architecture are revised

from the point of view of their individual contribution to

enable fast and stable distributed learning. Afterward, these

innovations are adapted to fuzzy set peculiarities in order to

endow a FasArt neuro-fuzzy system with distributed

learning. The resulting neuro-fuzzy architecture, called

dFasArt (distributed FasArt), is capable of fast and stable

Fig. 4. (a) Graphic representation and (b) contour plot of a 2D FasArt activation function. The fuzzy set associated with this particular neuron is determined

under the following conditions: ~W ¼ ½0; 0; 1; 1�; ~C ¼ ½0:325; 0:52� and ð1=gÞ < 0: Fuzzy support on axis X1 is given by weights W1 and W3 and center C1; while

the one on axis X2 is given by W2; W4 and C2:
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distributed learning and posses meaningful interpretations

as both neural and fuzzy systems. In addition to this, the

development of dFasArt enables a study of the feasibility

and capability of the introduction of distributed learning in

other neural systems based on Fuzzy ARTMAP. Moreover,

conclusions about the influence of distributed learning on

new elements such as those deriving from fuzzy sets theory

can be drawn. Finally, the development of dFasArt may be

considered an extraction of the general advantageous

features of distributed learning and a systematic method

for adapting those features to any member of the Fuzzy

ARTMAP family.

After the qualitative approximation, a quantitative

analysis of distributed learning capabilities is carried out

in the experimental work (see Section 4). This second part

of the work involves comparing, in several benchmark

problems, the distributed versions, dARTMAP and dFasArt,

with the original WTA systems, Fuzzy ARTMAP and

FasArt. The analysis focuses on the relative reduction in the

number of categories and the test accuracy achieved by the

distributed systems.

3.2. Analysis of the new elements introduced in dARTMAP

Distributed learning is aimed to correct a major source of

category proliferation that is a consequence of Fuzzy

ARTMAP WTA learning dynamics. This undesirable defect

arises because the learning of every pattern that was not

previously covered by a hyperbox implies either the

recruitment of a new box or the expansion of a committed

one. As every box Rj expands, the activation, Tj; engendered

by previously learned input patterns decreases (according to

Eq. (2)). This fact may force the recruitment of some new

neurons in order to re-learn some of the patterns that j had

correctly learned before, because now these patterns induce

the highest activation, T
0

j ; in neurons connected to a wrong

output class through the interART map.

This phenomenon becomes particularly noticeable near

the classification borders. As training proceeds, the whole

input space gets completely covered with boxes leading to

different output classes, which means that non-square

classification borders must be approximated by rectangles.

This fact causes a lot of overlapping among boxes leading to

different output classes and results in an accentuation of

category proliferation.

Distributed coding can help alleviate this problem in the

following way. With distributed coding, each learned region

of the input space is coded by a group of neurons instead of

just one neuron whose box covers all the learned patterns.

According to this, an uncovered pattern lying in a region

learned in distributed mode produces the same effect as a

pattern lying inside a WTA box and thus neither a box

expansion nor a neuron recruitment are needed to learn it.

Therefore, in distributed learning boxes are not forced to

cover all the input space and less learning is involved, thus

there is less opportunity for category proliferation to

develop.

The aspects of distributed dynamics that solve the

category proliferation problem can be summarized as

follows. When a pattern is presented to the network, F2

neurons are activated in a distributed manner, i.e. the value

of the activation received by each neuron has to be a

function of its LTM component (as in Fuzzy ARTMAP) and

of the activation reached by the other neurons. Then, F2

output is calculated by means of a new competitive rule, that

allows several winner neurons to stay active after the

competition and learn the pattern in a distributed mode.

Supervised learning demands a mechanism to find the

output class to which the pattern belongs from the neurons

that won the competition. Finally, the actual distributed

learning stage proceeds and pattern features are incorpor-

ated into the distributed code.

Some innovations are introduced in dARTMAP

architecture to enable distributed learning and they are

explained below. In Fig. 5, an outline of the dARTMAP

structure and neural layers showing these new elements

is depicted.

3.2.1. Dynamic weights to enable distributed activation and

help avoid catastrophic forgetting

Activation of F2 neurons when an input pattern is

presented to the network is evaluated as a function of the

stored weights and the current input pattern. Since

dARTMAP requires a new distributed activation, Fuzzy

ARTMAP multiplicative weights, Wij are replaced by

dynamic weights ½yj 2 tij�
þ; where ½a�þ ¼ max{a; 0}:

These dynamic weights consist of an LTM threshold, tij

and of the current value of the neuron output, yj: For the

bottom–up path, tij is related to the Fuzzy ARTMAP Wij

through the following expression:

Wij ¼ 1 2 tij i ¼ 1;…; 2M; j ¼ 1;…;N ð9Þ

so that the LTM parts of both systems are equivalent.

Therefore, thresholds are initialized to 0 and monotonically

increase during training. An expression analogous to Eq. (9)

stands for the top-down paths.

The current output, yj; is a short term memory (STM)

component of the dynamic weight and represents the

dependence of the neuron activation on the other

neurons.

Furthermore, dynamic weights contribute to avoid

catastrophic forgetting during the learning stage, since

LTM thresholds impose a limit on the total change suffered

by the network after the learning of an individual pattern. As

will be explained in Section 3.2.5, in distributed learning

laws the learning rate for each connection is multiplied by

the value of its dynamic weight, so that only those

connections with non-zero weights (yj . tij) modify their

LTM thresholds.

In addition to this, dynamic weights involve a new

geometric interpretation of dARTMAP. As shown in Fig. 6,
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hyperboxes consist of an LTM part plus an STM part. The

LTM part is equivalent to the corresponding Fuzzy

ARTMAP coding hyperbox, while the STM part can be

interpreted as a transitory lengthening toward the current

pattern location that depends on the activity of yj; which in

turn depends on other neurons activity. Because of this STM

lengthening, there is no need of covering the whole input

space with boxes anymore, and thus neuron recruitment is

reduced. As long as the F2 dynamics cover the space, there

is no need for learning to expand the LTM boxes.

The matching criterion, r; is evaluated using a hyperbox

resulting from the combination of the top-down dynamic

weights of all the neurons that remain active after the

competition.

3.2.2. Distributed activation and competitive rule that

allows multiple winners

The value of the activation that each neuron reaches after

a pattern presentation is calculated in two stages. At the

first one, a temporary activation value, Tj ðyj ¼

1; t1j; t2j;…; t2M;jÞ is computed using only the LTM

thresholds and the input pattern according to:

Tjðyj ¼ 1Þ ¼
X2M

i¼1

Ii ^ ½1 2 tij�
þ þ ð1 2 aÞ

X2M

i¼1

tij ð10Þ

with a [ ½0; 1�; j ¼ 1;…;N: At this moment, yj ¼ 1 is

assumed for all F2 neurons.

Then, neurons interact in a competitive fashion to

find the STM component of their dynamic weights, yj:

Fig. 5. dARTMAP structure. The dARTb module on the right is the symmetric of the dARTa module on the left. The differences with Fuzzy ARTMAP

structure are the introduction of F3 instance counting neural layer, and the information flow loop (F0 ! F2 ! F3 ! F1 instead of Fuzzy ARTMAP

F0 ! F1 ! F2). The structure and function of F0;F1 and F2 neural layers remain the same. Black rectangles indicate the additive thresholds of the dynamic

weights, while black semicircles indicate multiplicative weights.
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The competition determines the steady state output reached

by each neuron for the current pattern using the expression:

yjðT1;T2;…;TNÞ ¼
1

1 þ
X
l–j

ð2 2 aÞM 2 Tj

ð2 2 aÞM 2 Tl


 �p

with p $ 1

ð11Þ

This competitive rule inherits Fuzzy ARTMAP activation

function philosophy of giving higher values to neurons with

boxes lying closer to the pattern, and to neurons with

smaller boxes in case of equal proximity.

If there is any box whose size is of just one pattern (point

box) that includes the current input pattern, then expression

(11) is no longer valid, and output is calculated as follows:

yj ¼

1

L
if j includes the pattern

0 if j does not include the pattern

8><
>: ð12Þ

whereL is the number of point boxes that include the pattern.

After the competition the dynamic weights values, ½yj 2

tij�
þ; are completely determined and available for the rest of

the input pattern processing. All neurons with yj . 0 are

said to have won the competition and contribute as non-zero

components in the distributed code of the pattern ~y ¼

½y1; y2;…; yN�; but only those neurons with yj . tij will

modify their LTM thresholds to learn the pattern.

3.2.3. Output class prediction implemented as a voting

balanced by instance counting

In Fuzzy ARTMAP, the output given by the network is

simply the category of Fuzzy ARTb linked with the winner

in Fuzzy ARTa through the map. In dARTMAP, a voting

strategy is implemented, that takes into account the output

of every neuron in dARTa that remains active after the

competition. The outputs of every neuron linked to the same

class are summed, and the network classifies the pattern into

the class that has the maximum sum.

Every neuron associated with a particular output class, k;

contributes to the sum for class k; thus the prediction is

biased toward classes encoded by many Fa
2 neurons versus

classes encoded by a few neurons. An F3 neural layer is

introduced in the dARTMAP architecture to balance this

situation (see Fig. 5). The F3 layer output is a vector ~Y ¼

½Y1;…;YN� resulting from the normalization of the F2

output, ~y; by the number of patterns previously coded by

each category:

Yj ¼
cjyjXN

l¼1

ylcl

j ¼ 1;…;N ð13Þ

where cj is the number of patterns previously coded by

neuron j: This signal ~Y is used to evaluate the matching

criterion in layer F1:

3.2.4. Distributed match tracking that ensures a sufficient

resemblance between the distributed code and the pattern

According to the ART dynamics, an evaluation of the

match between the input pattern and the distributed code

must take place before the learning stage in order to

guarantee that the code ~Y is an acceptable representation of

that pattern. A distributed match criterion is evaluated

between the input pattern and a prototype determined as a

combination of the active neurons’ top-down dynamic

Fig. 6. Geometric interpretation of dARTMAP in 2D. dARTMAP hyperboxes have an LTM part, in gray, and an STM part, in white. LTM part, Rjð1Þ; is

equivalent to the corresponding Fuzzy ARTMAP box since dARTMAP thresholds tij are related with Fuzzy ARTMAP weights Wij through expression (9).

STM part (RjðyjÞ2 Rjð1Þ) depends on the location of the current pattern and on the activation reached by the other neurons.
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weights:

si ¼
XC
j¼1

½Yj 2 tji�
þ i ¼ 1;…; 2M ð14Þ

Then, if ðl~I ^ ~sl=l~IlÞ $ r the match criterion is satisfied and

learning proceeds. Otherwise, reset is triggered and the

network operation is switched to WTA mode. After the

pattern is correctly classified in the WTA mode (following

Fuzzy ARTMAP dynamics), the network is switched back

to the distributed mode and the next pattern is presented.

Moreover, if the output class predicted by the voting is

not the correct one, the interART reset is triggered and the

network is also switched to WTA.

3.2.5. Distributed learning laws to avoid catastrophic

forgetting, and credit assignment to preserve network

stability during learning

Finally, the LTM thresholds are modified according to

the distributed learning laws. In these equations, the

learning rate for each threshold is multiplied by its dynamic

weight. This dynamic learning rate updates every connec-

tion by an amount that is determined by its neuron output, yj

(calculated in a distributed way) and its learning capability,

tij; instead of the uniform Fuzzy ARTMAP learning rate.

Moreover, dynamic weights impose a bound on the total

change introduced into the neural network because connec-

tions with zero dynamic weights (zero learning rate) will not

be updated. This fact, in addition to learning laws that only

allow monotonic changes in the weights, prevents cata-

strophic forgetting.

The bottom–up thresholds are updated as follows:

tnew
ij ¼ told

ij þ b½yj 2 tij 2 Ii�
þ ð15Þ

while the top–down thresholds are updated by:

tnew
ji ¼ told

ji þ b½sold
i 2 Ii� þ

½Yj 2 told
ji �þ

sold
i

ð16Þ

Both equations reduce to Fuzzy ARTMAP learning law (4)

in the WTA mode (after a mismatch).

In addition to this, instance counting is updated by:

cnew
j ¼ cold

j þ yj ð17Þ

Since
PC

j¼1 yj ¼ 1 (0 # yj # 1), it can be assumed that each

active neuron j has learned a fraction yj of a presented

pattern after the stabilization of the network.

Previous to thresholds updating, a credit assignment

procedure takes place in order to reset all the Fa
2 neurons that

remain active but do not lead to the correct output class. In

this way, the discrimination capability of the system is

guaranteed since only those neurons that have contributed to

the correct prediction are allowed to learn the pattern. After

credit assignment, the outputs of the winners are recalcu-

lated so that
PC

j¼1 yj ¼ 1 is satisfied.

3.3. dFasArt: the result of adapting distributed learning

dynamics to FasArt

To complete this qualitative analysis, this section studies

how to adapt distributed learning to the FasArt neuro-fuzzy

system. This will broaden the comparative between

distributed and WTA systems. Readers interested in the

comparative between Fuzzy ARTMAP and FasArt systems

should refer to Cano-Izquierdo et al. (2001). Some

dARTMAP elements like instance counting, match track-

ing, credit assignment, switching to WTA after mismatch

and output class prediction are exported to dFasArt

architecture without any modification. However, further

adaptation is needed for fuzzy set construction, a competitive

rule and learning laws.

3.3.1. Distributed fuzzy sets construction

dFasArt fuzzy sets, like dARTMAP categories, must be

formed by an LTM part plus an STM lengthening. FasArt

already has a similar structure, since a segment of length 1=g

is added to each side of the fuzzy support prior to the

evaluation of the membership function (see Fig. 3).

However, this lengthening is a fixed value and does not

depend on either the other neurons activity or the location of

the current pattern.

Moreover, FasArt fuzzy support size is determined by

two parameters: g; which determines the support maximum

increase after each iteration, and r; that limits the global

increase (during the whole training) of the support. Under

certain conditions, interaction between the two parameters

may cause recruitment of superfluous neurons, thus

boosting category proliferation. In addition to this, the

FasArt triangular membership functions give the highest

activation value to the neuron with the largest support that

include the pattern, which is opposed to Fuzzy ARTMAP

and dARTMAP activation, which gives the highest value to

the smallest box.

To make FasArt consistent with other distributed ART

systems, a new way of building the fuzzy sets is proposed in

dFasArt. The new fuzzy sets inherit triangular membership

functions, weight vectors ~Wj; and centers ~Cj; but the role of

parameters g and r is now played by a single parameter l;

the maximum size of each side of the fuzzy support. In Fig. 7,

the construction of a dFasArt fuzzy set is shown. When a

pattern is presented, each side of the support stretches until

it reaches a size l: This lengthening forms the STM part.

Successive learning increases the LTM part (weights),

causing the STM part to decrease.

3.3.2. Distributed competitive rule

Competition in the dARTMAP Fa
2 layer, given by

expression (11), can be interpreted as a normalization of

activation values, Tj; since the output of the layer is such

that verifies
PN

j¼1 yj ¼ 1: Because of the dFasArt’s fuzzy

nature, the activations are also the degree of membership to

fuzzy sets. In this sense, a normalization of the activations
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would mean a loss of information about the degree of truth

of the individual fuzzy rule associated with each set. To

avoid this problem, the dFasArt competition occurs in the

following way. All triangular membership functions are

evaluated individually for each fuzzy set using the supports

constructed as shown in Fig. 7; this temporary membership

value is analogous to that of Tjðyj ¼ 1Þ calculated in

dARTMAP. Afterward, each neuron output is given by

the following competitive rule:

yj ¼

Tj Ii [ ½Wij; 1 2 WiþM;j� ;i ¼ 1;…;M

Tj·
TjXN

l¼1

Tl

otherwise:

8>>>><
>>>>:

ð18Þ

If the pattern is included in the LTM part of the support the

membership degree is not normalized, preserving the rule

degree of truth; otherwise, the membership value Tj is

weighted by the ratio of Tj to all the activities. This

normalization can be interpreted as a system resistance to

modify some rules, when there are other rules that have

already involved the pattern. Geometrically, the output

normalization is a shortening of the STM part caused by

other neurons activity.

After a distributed competition in dFasArt, a match at F1

is not evaluated because, since the prototypes are also fuzzy

rules, a combination of these rules to verify the matching

criterion has no sense.

3.3.3. Distributed learning laws

Finally, it is necessary to adapt distributed learning laws

to dFasArt weights and center. The equation for weights

is derived straightforward from that given for dARTMAP

bottom-up thresholds (15) and the expression for

transforming thresholds into LTM weights (9):

Wnew
ij ¼ Wold

ij 2 b½yj 2 ð1 2 Wold
ij Þ2 Ii�

þ ð19Þ

This law does not incur catastrophic forgetting since the

same bound given for dARTMAP learning stands for

dFasArt.

The center of the support also needs special treatment

because if FasArt equation (7) is applied directly in

distributed learning, the center may be moved out of the

support limits. To avoid this, dFasArt center learning

distinguishes two cases:

† If the pattern is included in the LTM part of the support

and the neuron is active, the center is modified according

to Eq. (7).

† If the pattern lies within the STM part, ~Cj is moved

toward the geometric center of the support after the

weights Wij have been updated, instead of toward the

pattern, according to:

~Cnew
j ¼

~Cold
j ·cold

j þ ~Gnew
j ·ðcnew

j 2 cold
j Þ

cnew
j

~I in STM ð20Þ

where ~Gj is the geometric center of the support, and cj is the

instance counting for neuron j: Multiplication by instance

counting is introduced in the equation due to the fact that

center motion implies decreasing the membership of certain

points in the fuzzy set and increasing it in others. The more

patterns learned by the neuron, the more representative the

geometric center of those patterns is and thus it seems

reasonable that the system opposes center motions.

4. Experimental work: quantitative analysis of
distributed learning

Experimental work aims to get quantitatively asses

distributed learning’s impact on category reduction in the

studied systems. Category reduction usually involves a

small loss of test accuracy. This negative effect is also

measured in order to evaluate whether the reduction in the

coding set size compensates for the increased test error rate.

A pruning postprocessing is also evaluated to compare the

performance of distributed and WTA systems under equal

category number conditions.

A collection of benchmarks has been selected to compare

distributed architectures with the corresponding WTA ones.

Seven synthetic classification tasks have been used to reveal

distributed learning dependencies on the geometric charac-

teristics of the problem. These benchmarks are based on the

circle-in-the-square task (Carpenter et al., 1998) and include

simple geometric figures, like squares and circles, in a two

dimensional space (the unit square) so as to focus each

benchmark on some particular features (see Fig. 8).

Fig. 7. Construction of dFasArt fuzzy set in 1D with parameter l: The LTM

part of the support (thick line) is equivalent to the corresponding FasArt

fuzzy support since it is also determined by LTM weights Wij and Cj: When

a pattern ~I is presented, fuzzy support in enlarged toward ~I location until

each side reaches a total length of l: This enlargement forms the STM part

of the fuzzy support.
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Fig. 8. Classification benchmarks. Different gray scale indicates different output class. All training sets except for task 7 are obtained through uniform sampling

of the unit square, therefore the presence of patterns belonging to a certain class is proportional to the area occupied by this class. (a) Task 1: classify the points

within a circle in the unit square with both classes being equiprobable (circle-in-the-square benchmark of (Carpenter et al., 1998), (b) task 2: classify the points

within a circle in the unit square but class outside is far more probable than class inside, (c) task 3: classify the points within four circles in the unit square, (d)

task 4: classify the points within four squares in the unit square, (e) task 5: classify the points within five concentric rings in the unit square, (f) task 6: classify

the points within two circles in the unit square where the number of patterns of each class is proportional to its size, and (g) task 7: same than task 6, but now

class A has 50% of the patterns, class B 30% and class C 20%.
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Additionally, one R2 ! R1 function approximation task is

also included to confirm the results obtained in classification

tasks and because FasArt is specially suited for these kinds

of problems.

4.1. Benchmark selection

This subsection is focused on the particular problem

features that will be studied and the benchmarks that will be

used to investigate each feature. A summary of the

benchmarks is included in Table 1 and schematics of the

classification tasks (T-1 to T-4-n) geometries are depicted in

Fig. 8.

4.1.1. Geometries that favor the reduction in the number of

categories

As stated in the qualitative analysis, distributed learning

is intended to avoid a massive recruitment of categories by

reducing the amount of learning involved during the

training, i.e. not covering the whole input space with coding

boxes. Therefore, we expect the geometrical configuration

of the output classes to be of certain influence on the

applicability of distributed learning to category reduction.

In this sense, there may be problems whose classes are

difficult to learn without being completely covered with

boxes.

To study this effect, tasks T-3 and T-5 in Fig. 8 are

proposed. Task T-3 consists in classifying the points lying in

four circles, each one associated with a different class, while

in T-5 circles are replaced by annulus. In both tasks all the

classes have the same area and similar number of instances.

The main difference between both problems is that while

circles in T-3 may be coded by few boxes without being

completely covered, annulus in T-5 must be completely

covered with boxes. Therefore, smaller category reduction

rates are expected (if any) in those problems with difficult

geometries for distributed learning.

4.1.2. Geometries parallel to the axis

Fuzzy ARTMAP approximates the geometric regions

associated with each class by hyperrectangles. Conse-

quently, the application of distributed learning to problems

with rectangular shapes is expected to achieve category

reduction rates smaller than those obtained in problems

involving other shapes. On the other hand, FasArt coding

surfaces are not rectangles (Fig. 4), and therefore any

differences due to distributed coding should not be related to

the shape of input pattern distributions.

Tasks selected for this point are T-3 and T-4 (see Fig. 8).

In both tasks there are five equiprobable classes, four

different inside classes and one outside; the inside classes

are circles in T-3 and rectangles in T-4.

4.1.3. Number of patterns belonging to each class

The output of each neuron in a WTA Fuzzy ARTMAP

system depends on both the distance between the box

associated with the neuron and the input pattern, as well as

on the size of the box. Distributed systems introduce a new

element to determine the output of the neuron: the number

of patterns learned by the neuron. Therefore, the perform-

ance of the system does not only depend on the geometrical

shape of the regions forming each class, but also on the

quantity of patterns inside those regions and the neighbor

regions (associated with different classes). In this sense,

neurons coding regions with a high number of patterns will

reach a high value of instance counting; therefore, the

prediction of the network may turn out to be biased toward

the classes associated with those regions.

The combination of the size and the number of patterns

of each region in relation to the sizes and number of patterns

of the adjoined regions may affect the performance of the

system in terms of both category reduction and accuracy. A

small and low populated region could be considered as mere

noise and incorporated by the system into a more populated

region of a different output class.

To measure this effect, two pairs of problems have been

selected. The first one involves tasks T-1 and T-2 (see

Fig. 8). Both tasks involve classifying the patterns lying

inside a circle centered on the unit square. But while in T-1

the circle covers 50% of the area and 50% of the patterns, in

T-2 the circle covers only 30% of both area and patterns.

The second pair of experiments is formed by T-6 and T-7.

The geometrical shapes and sizes of the classes are the same

in both problems. In T-6, class outside covers 75% of the

area and of the patterns; class big circle covers 20% of the

area and patterns; and class small circle 5% of the area and

patterns. In T-7, class outside covers 50% of the patterns,

class big circle covers 30% of the patterns, and class small

circle covers 20% of the patterns. This way, T-6 is a situation

Table 1

Set of benchmarks selected for the experimental work

Name Dimension Noise Number of

classes

Probability of

each class

T-1 2 No 2 (50/50)

T-2 2 No 2 (70/30)

T-3 2 No 5 (20/20/20/20/20)

T-4 2 No 5 (20/20/20/20/20)

T-5 2 No 6 (16.6/16.6/16.6/

16.6/16.6/16.6)

T-6 2 No 3 (75/20/5)

T-7 2 No 3 (50/30/20)

T-3-n 2 Yes 5 (20/20/20/20/20)

T-4-n 2 Yes 5 (20/20/20/20/20)

Func

-App

2 No Continuous

range

–

Func

-App-n

2 Yes Continuous

range

–

For each benchmark, the dimension of the input, the presence or

absence of noise in the training set, the number of classes and the

probability of each class are given. The training and test sets have 2000

patterns for tasks T-1, T-2, T-3, T-4, T-5, T-6, T-7, T-3-n and T-4-n and

5000 patterns for tasks Func-App and Func-App-n.
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somehow similar to that in T-2. However, in T-7, although

there is not a global balance in the number of patterns,

output classes are more or less balanced at a local scale of

resolution.

4.1.4. Presence of noise

Distributed learning was also proposed as a means for

making Fuzzy ARTMAP more robust against the presence

of noise in the training set (Carpenter et al., 1998).

Distributed label assignment is expected to work better in

noisy environments since the decision about the label relies

on several neurons rather than just on the winner of the

competition, as in WTA architectures.

The impact of distributed learning on increasing the

system robustness against noise is studied in this work,

repeating tasks T-3 and T-4 after perturbing the training set

with Gaussian noise of 0 mean and 0.05 standard deviation.

4.1.5. Function approximation

A R2 ! R1 function given by expression (21) and

represented graphically in Fig. 9 was used to train the four

studied systems. This function was also used in Marriott and

Harrison (1995)

f ðx; yÞ ¼ 3½1 2 ð6x 2 3Þ�2e2ð6x23Þ22½ð6y23Þþ1�2

2 10
6x 2 3

5
2 ð6x 2 3Þ3 2 ð6y 2 3Þ5


 �

e2ð6x23Þ22ð6y23Þ2 2
1

3
e2½ð6x23Þþ1�22ð6y23Þ2 ð21Þ

FasArt and dFasArt performed output defuzzification

because of their fuzzy nature, while for Fuzzy ARTMAP

and dARTMAP, the center of the coding box in Fb
2

associated with the output label was given as the predicted

output value.

The influence of noise was studied by introducing

additive Gaussian noise with zero mean and 0.04 SD to

each pattern in the training set.

4.2. Results

Software simulations of the four studied systems were

developed and run on the benchmarks described earlier.

For the classification tasks in Fig. 8, the training set was

formed by 2000 patterns selected randomly from the unit

square. Results are the average of 100 different training

sets. The same 5000 test patterns were employed for

all the presentations. Network parameters for Fuzzy

ARTMAP and dARTMAP were ra ¼ 0:0; a ¼ 0:001 and

b ¼ 1:0; for FasArt they were ra ¼ 0:0; g ¼ 10 and b ¼

1:0; while for dFasArt they were la ¼ 1:0; ra ¼ 0:0 and

b ¼ 1:0:

In order to compare fairly the drop in accuracy with the

reduction of the number of categories achieved by

distributed systems, the classification tasks also have been

evaluated on the WTA systems, pruned until they had the

same number of Fa
2 categories than the corresponding

distributed ones. This way, we intend to show whether the

loss of accuracy is due only to fewer categories or whether

distributed learning contributes to not only a more compact

codification, but also a more efficient one. The pruning

algorithm consists of an iterative scheme that at each step

removes the category such that the classification error over

the training set is minimized. To reduce from n categories to

n 2 1; we classify the training data with each of the n

networks of n 2 1 categories, retaining that with smaller

classification error on the training set. We repeat this

procedure until the total number of categories is that

achieved by the distributed architecture. Then, the error

indices can be compared fairly.

Fig. 9. (a) Graphic representation of function f ðx; yÞ; given by expression (21) used for the approximation task. (b) Contour plot of f ðx; yÞ:
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Results are shown in Table 2 for the Fuzzy ARTMAP

versus dARTMAP comparison and Table 3 for the FasArt

versus dFasArt.

For the function approximation task, 5000 training

patterns were randomly selected from ½0; 1� £ ½0; 1� and

presented in 100 different orders to compute the averages.

Another 5000 patterns were used as the test set. The

accuracy of the systems was measured using the mean

absolute error (MAE). Network parameters were ra ¼ 0:0;

rb ¼ 0:98; a ¼ 0:001 and b ¼ 1:0 for Fuzzy ARTMAP and

dARTMAP; ra ¼ 0:0; rb ¼ 0:98; ga ¼ 1:0; gb ¼ 50 and

b ¼ 1:0 for FasArt and la ¼ 1:0; lb ¼ 0:02; ra ¼ 0:0 and

b ¼ 1:0 for dFasArt. To make defuzzification meaningful,

parameters g and l are modified so that in each

defuzzification at least three sets have non-zero membership

function value, i.e. testing is carried out in a locally

distributed fashion. Results on the function approximation

task are shown in Tables 4 and 5.

Table 3

Results for the classification tasks with FasArt and dFasArt

Task FasArt dFasArt Pruned FasArt

Number of categories Accuracy (%) Number of categories Accuracy (%) Number of categories Accuracy (%)

T-1 63.42 96.30 30.50 92.78 30.50 94.83

T-2 56.12 97.00 12.24 96.28 12.24 92.36

T-3 122.30 92.76 67.38 87.95 67.38 91.74

T-4 139.26 91.82 69.32 91.29 69.32 89.56

T-5 278.7 95.95 179.74 73.39 179.74 73.18

T-6 62.18 96.33 22.24 89.76 22.24 94.16

T-7 57.68 96.27 24.32 94.91 24.32 94.67

T-3-n 355.48 77.21 176.38 80.40 176.38 84.69

T-4-n 405.24 73.06 214.16 78.72 214.16 79.84

In tasks T-x-n training patterns are perturbed with noise. For both architectures, the number of categories and the test accuracy are displayed. The last two

columns show the performance achieved by a system resulting from pruning FasArt until it had the same number of categories than dFasArt.

Table 4

Results for the approximation task with Fuzzy ARTMAP and dARTMAP

Noise Fuzzy ARTMAP dARTMAP Relative

Cat(A) Cat(B) MAE Cat(A) Cat(B) MAE # Cat(A) (%) " MAE(%)

No 1350.52 62.68 0.015 1309.48 62.68 0.064 3.04 318.18

Yes 4133.94 64.14 0.033 3863.84 64.14 0.057 6.53 111.63

For both architectures, the number of categories recruited by each unsupervised module ( Cat(A) and Cat(B)) and the MAE are shown. The last two

columns show the reduction in the number of categories ( # Cat(A)) and the increase in test MAE ( " MAE) achieved by dARTMAP over Fuzzy ARTMAP

results.

Table 2

Results for the classification tasks with Fuzzy ARTMAP and dARTMAP

Task Fuzzy ARTMAP dARTMAP Pruned Fuzzy ARTMAP

Number of categories Accuracy (%) Number of categories Accuracy (%) Number of categories Accuracy (%)

T-1 23.22 93.72 12.34 88.90 12 89.79

T-2 17.64 94.92 6.96 75.79 6.96 84.11

T-3 53.10 88.16 33.38 87.19 33.38 88.18

T-4 31.96 96.21 30.72 95.68 30.26 95.44

T-5 124.82 84.56 125.14 80.85 124.82 84.56

T-6 21.20 94.82 8.64 78.93 8.56 90.22

T-7 20.74 94.61 12.96 95.23 12.54 95.25

T-3-n 145.70 76.52 84.70 81.07 84.70 81.59

T-4-n 175.56 72.76 110.74 80.40 110.18 78.51

In tasks T-x-n ðx ¼ 3; 4Þ training patterns are perturbed with noise. For both architectures, the number of categories and the test accuracy are displayed. The

last two columns show the performance achieved by a system resulting from pruning Fuzzy ARTMAP until it had the same number of categories than

dARTMAP.
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4.3. Discussion

4.3.1. Geometries that favor the reduction in the number of

categories

The comparison between dARTMAP and Fuzzy ART-

MAP performance on tasks T-3 and T-5 shows that the

geometrical configuration of the output classes is a key

factor for the usability of distributed learning. In T-3 each

circle can be coded in a distributed way without covering its

whole surface with boxes and a category reduction rate of

about 30% is achieved. On the other hand, in T-5 no

reduction is achieved since the annulus is a geometric figure

that cannot be learned without being completely covered

with boxes.

In general terms, output classes with their patterns spread

over several different regions of the input space are not

going to experience distributed learning reduction in the

number of categories.

With respect to FasArt and dFasArt, it has to be noticed

that there is a certain reduction in the number of fuzzy sets,

but this is due mainly to the improvements made in the

construction of those fuzzy sets, not to distributed learning.

4.3.2. Geometric shape of output classes

In T-4, dARTMAP does not achieve a significant

category reduction (4%) in relation to that obtained in T-3

(37.14%). As explained before, it is due to the fact that

Fuzzy ARTMAP coding rectangles fit perfectly in those

class domain geometries and there is no place for further

category reduction. Moreover, the distributed architecture

only slightly decreases the accuracy achieved by the WTA

one.

On the other hand, dFasArt achieves significant category

reduction rates (over 40%) in both tasks, since FasArt does

not take any particular advantage of the geometric shapes of

the output classes.

4.3.3. Number of patterns belonging to each class

The result of the comparison on the first pair of tasks, T-1

and T-2, reveals that the proportion of patterns belonging to

each class in the training set is a key factor for the accuracy

of distributed learning. While in T-1 a significant reduction

in the complexity of the network (46.86%) leads to a 5.14%

drop in accuracy, in T-2 the precision falls to 75.79%, which

indicates that dARTMAP is predicting the majority class

(here, the baseline precision would be 70%). This negative

effect is due to the fact that instance counting biases the

prediction of the output class toward the more populated

classes. As introduced before, the output of a neuron in a

distributed system is a function of the distance to the pattern

and of the number of patterns previously learned. This

experiment points out that under certain conditions the

influence of the instance counting may be excessively

dominant over the distance.

However, the results with dFasArt in terms of classifi-

cation error are more accurate. This is a consequence of

dFasArt performing a locally distributed test instead of a

global one. In dFasArt, due to the fuzzy triangular

activation, the trade-off between distance to the pattern

and instance counting is somewhat balanced. This balance is

enforced by the penalty suffered by the neurons whose LTM

support does not include the pattern.

The second pair of experiments, T-6 and T-7, confirms

the idea that the distributed learning usability is strongly

dependent on a function of the geometric shape (size) and

the number of patterns contained inside each one of the

regions into which each class is divided. In T-6 dARTMAP

achieves a good complexity reduction, but again its

accuracy drops to a value close to that we would achieve

using a predict-the-most-probable-class strategy. However,

in T-7, where the populations of the classes have been

chosen so that they are more or less balanced, dARTMAP

outperforms Fuzzy ARTMAP in both accuracy and

complexity. The results corresponding to dFasArt confirm

this strong dependence of distributed learning performance

on the relation between the number of patterns and the

geometric size of the region containing those patterns.

The explanation for this behavior observed in the

distributed systems is that they perform a kind of low-pass

filtering of the information from the input space that leads to

an increase of their generalization capability. In this sense,

the size of the region and the number of patterns inside it

determine if the distributed system is going to consider this

region as valuable information or just noisy patterns inside a

bigger region associated with a different class. In other

words, the region taken as dominant by the distributed

system absorbs the less significant region.

According to this reasoning, in T-2, dARTMAP

considers most of the circle to be a set of noisy patterns

in class outside. In T-6, both circles are considered to be

Table 5

Results for the approximation task with FasArt and dFasArt

Noise FasArt dFasArt Relative

Cat(A) Cat(B) MAE Cat(A) Cat(B) MAE # Cat(A) (%) " MAE(%)

No 1802.0 62.6 0.006 1619.78 61.00 0.0071 10.11 18.33

Yes 4439.24 63.52 0.016 4045.0 62.44 0.017 8.88 6.25

For both architectures, the number of categories recruited by each unsupervised module (Cat(A) and Cat(B)) and the MAE are shown. The last two columns

show the reduction in the number of categories ( # Cat(A)) and the increase in test MAE ( " MAE) achieved by dFasArt over FasArt results.
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mostly noise; hence the classification error (21%) is slightly

below the proportion of patterns inside both circles (25%).

On the other hand, the dFasArt locally distributed test relies

mostly on those neurons whose boxes are closest to the

pattern. This fact makes the filtering carried out by

distributed learning more selective. In T-2, dFasArt

perfectly classifies the circle in spite of being far less

populated than the other class. However, in T-6 dFasArt

considers most of the big circle (20%) of the patterns as a

significant region, but cannot detect properly the small

circle (5% of the patterns), which results in a classification

error of about 10%.

4.3.4. Presence of noise

Fuzzy ARTMAP and dARTMAP performances on

connected geometries with noisy training data (T-3-n and

T-4-n) achieve similar category reduction rates (over 30%)

as those without noise. However, dARTMAP results in tasks

with noise show a significant improvement in test accuracy

of about 6%, which agrees with expectations.

Experiments with FasArt and dFasArt confirm the

robustness of distributed systems since distributed learning

contributes to filter the noise contained in data.

4.3.5. Function approximation

In Fig. 9b, a contour plot of the approximation of f ðx; yÞ

made with a Fuzzy ARTMAP neural network is shown.

Notice that the distribution of classes obtained in such a way

usually yields very unconnected problem geometries, so

distributed learning shall be of reduced usability. Exper-

imental results of the four systems prove this statement.

Category reductions do not exceed 10% (Tables 4 and 5),

which definitely is not a significant gain over WTA. The

MAE of dARTMAP regression widely exceeds that

achieved with Fuzzy ARTMAP, while dFasArt MAE has

more acceptable figures. The difference in MAE is due

mostly to the fact that dFasArt performs defuzzification of

the output, added to the fact that dARTMAP uses all the

committed neurons for the label assignment, while the

dFasArt competitive rule performs a local distributed label

assignment.

4.3.6. Pruning or distributed learning to reduce category

proliferation

After studying the capabilities of distributed learning as a

means to reduce the complexity of Fuzzy ARTMAP based

systems, here we analyze its performance in comparison to a

postprocessing of the network consisting of pruning those

categories that least contribute to classifying the patterns

correctly. In the experiments carried out in this work, the

pruning stops when the WTA system achieves the same

number of categories than the distributed one.

Results in Tables 2 and 3 illustrate that pruned Fuzzy

ARTMAP achieves a smaller classification error than

dARTMAP in seven out of the nine proposed tasks. These

differences are ,1%, except for T-2 and T-6, where

the configuration of the problem is clearly unfavorable for

distributed learning, as explained earlier. On the contrary,

T-4 is a problem whose conditions are conduicive to Fuzzy

ARTMAP; distributed learning performs better than prun-

ing. This is due to the fact that Fuzzy ARTMAP fits

perfectly into T-4’s geometry, and none of the categories

requires pruning.

With respect to dFasArt and FasArt, pruned FasArt

outperforms dFasArt in five out of the nine tasks and both

performances are equivalent in two tasks. Between these

two systems, differences are greater than between Fuzzy

ARTMAP and dARTMAP (around 2 and 5%).

Therefore, it seems that in certain problems a pruned

system that was trained according to a WTA algorithm may

outperform a distributed system in terms of the reduction of

the complexity of the network. However, distributed

systems preserve the on-line characteristic of Fuzzy

ARTMAP learning. Moreover, pruning may be computa-

tionally costly, at least optimal pruning algorithms invol-

ving the evaluation of n networks to reduce from n to n 2 1

categories, unless heuristic methods are developed to make

training and pruning computationally affordable.

5. Conclusions and future work

This paper studies the usability of distributed learning as

a means to reduce category proliferation in Fuzzy ARTMAP

without loss of its on-line and fast learning features.

An important contribution of this paper is the study of the

portability of distributed learning into other members of the

Fuzzy ARTMAP family. The qualitative analysis of the new

elements introduced in dARTMAP together with the

procedure for adapting those elements into FasArt archi-

tecture can be used as a basis for endowing other Fuzzy

ARTMAP based systems with distributed learning capa-

bility. We compared the distributed architectures and the

original WTA ones, and the WTA ones after pruning,

according to several classification and regression bench-

marks, in order to study quantitatively the impact of

distributed learning on category reduction and test accuracy.

Experimental results show that in terms of classification

error, pruning may be a better choice to reduce the number

of categories in certain problems. However, the systems

resulting from this training and postprocessing scheme do

not preserve the on-line feature of Fuzzy ARTMAP, and its

computational cost may be extremely high.

The first conclusion extracted from this work is that

sparse output classes whose patterns are spread through

different regions in the input space are very difficult to learn

in a distributed manner while reducing the number of

categories achieved with a WTA system. Function approxi-

mation problems require a clustering of the output space that

result in classes with a high degree of sparsity. Conse-

quently, distributed learning results in low usability in these

problems. In addition, if the geometric shapes of the output
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classes are parallel to the axis, i.e. classes form hyperrec-

tangles, the applicability of distributed learning is also

reduced since Fuzzy ARTMAP coding hyperrectangles fit

perfectly into these geometries and there is no possible

reduction in the number of categories if a distributed

learning is performed.

The main conclusion is that distributed systems perform

a low pass filtering of the input space that may improve their

generalization capabilities with respect to that of original

WTAs. This is because the activation reached by a neuron

depends on the number of patterns that it has already

learned. In this sense, distributed systems tend to mistake

small regions with few patterns as groups of noisy patterns

inside a larger region associated with a different output

class. A distributed test that gives more importance to the

distance between the neuron and the pattern (like that

performed in dFasArt) contributes to alleviate this effect.

Furthermore, because of the instance counting mechan-

ism, classes with a low probability of occurrence are

classified by dARTMAP with high error rates despite being

correctly learned. In dFasArt this effect is attenuated by (i)

the triangular membership functions, and (ii) a competitive

rule that increases the difference of activation between

neurons that have already learned the pattern and those that

have not learned it yet.

The above mentioned improvement in the generalization

capabilities of distributed systems makes them outperform

the WTA ones when training patterns are affected by noise.

Experiments with pruned WTA systems confirm this

statement, since once the neurons that have learned merely

noise are removed from the network, performance of the

WTA system increases.

Finally, the porting of distributed learning onto dFasArt

has confirmed all the conclusions reported here and has

pointed out the convenience of performing a locally

distributed test. The locally distributed test performed by

FasArt and dFasArt appears to yield more accurate systems

than the dARTMAP test, which employs all the committed

neurons. Future work should look into exploiting local

features in a distributed way. Therefore, the key for full

usability of distributed systems over WTA ones can be

found in (i) a locally distributed test that outperforms both

WTA and a globally distributed test, and (ii) a competitive

rule that (a) enhances differences between neuron acti-

vations as described before and (b) balances the geometrical

features of the problem and the influence of the number of

patterns of each output class and their distribution into

regions.
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