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Abstract--This article introduces a neural architecture termed Adaptive Resonance Associative Map ( ARAM) that 
extends unsupervised Adaptive Resonance Theory (ART) systems for  rapid, yet stable, heteroassociative learning. 
ARAM can be visualized as two overlapping ART networks sharing a single category field. Although ARAM is 
simpler in architecture than another class o f  supervised ART models known as ARTMAP, it produces classification 
performance equivalent to that o f  ARTMAP. As ARAM network structure and operations are symmetrical, associative 
recall can be performed in both directions. With maximal vigilance settings, ARAM encodes pattern pairs explicitly 
as cognitive chunks and thus guarantees perfect storage and recall o f  an arbitrary number o f  arbitrary pattern 
pairs. Simulations on an iris plant and a sonar return recognition problems compare ARAM classification perfor- 
mance with that o f  counterpropagation network, K-nearest neighbor system, and back-propagation network. Asso- 
ciative recall experiments on two pattern sets show that, besides the advantages o f  fast learning, guaranteed perfect 
storage, and full memory capacity, ARAM produces a stronger noise immunity than Bidirectional Associative Mem- 
ory ( BAM ). 

Keywords--Self-organization, Neural network architecture, Associative memory, Heteroassociative recall, Super- 
vised learning. 

1. INTRODUCTION 

This article introduces a neural architecture termed 
Adaptive Resonance Associative Map (ARAM) that 
performs rapid, yet stable, heteroassociative learning in 
a real-time environment. Whereas a similar supervised 
Adaptive Resonance Theory (ART) system, ARTMAP 
(Carpenter et al., 1992), consists of two ART modules 
interconnected by an inter-ART associative map field, 
ARAM can be visualized as two overlapping ART 
modules sharing a single category field. The category 
field/72 receives bottom-up activities from the two fea- 
ture fields F~ and FIb. Thus, an F2 category node learns 
to encode a complete pattern pair. By synchronizing 
the unsupervised categorization of two pattern sets, 
ARAM learns supervised mapping between the pattern 
sets. Code stabilization is ensured by restricting encod- 
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ing to states where resonances are reached in both the 
ARTa and ARTb modules. Due to the code stabilization 
mechanism, fast learning in a real-time environment is 
feasible. As the network structure and operations are 
symmetrical, associative recall can be performed in 
both directions. 

ARAM performs two slightly different memory 
tasks, namely pattern classification and heteroassocia- 
tive recall. Pattern classification involves the learning 
of many-to-one mappings from a set of patterns to pat- 
tern classes. Although ARAM has a simpler architec- 
ture than ARTMAP, it exhibits the same dynamics as 
ARTMAP under certain parameter settings (Tan, 
1992). Simulations on a well-known iris plant data set 
compare the ARAM performance with that of counter- 
propagation network. Experiments on a sonar return 
recognition problem show that ARAM produces better 
generalization than back-propagation network at the 
cost of creating more category nodes. 

Heteroassociative recall, which is a general form of 
pattern classification, involves the learning of associa- 
tive mappings between two sets of possibly distributed 
patterns. With maximal vigilance settings, ARAM dy- 
namically allocates a category node for encoding each 
distinct pattern pair. It thus guarantees perfect storage 
and recall of an arbitrary number of arbitrary pattern 
pairs, a property that is highly desirable for Bidirec- 
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FIGURE 1. Computational map (Grossberg, 1976a, b; Carpen- 
ter, 1989). F1 and F2 form a competitive learning module. F2 
and F3 form an outstar learning system. 

tional Associative Memory (BAM) models (Kosko, 
1987, 1988, 1992; Lin & Chang, 1993; Wang, Cruz, & 
Mulligan, 1990, 1991; Zhuang, Huang, &Chen,  1993 ). 
Although ARAM uses high vigilance for pattern stor- 
age, the vigilance parameter values can be set as low 
as possible during recall to allow maximal generaliza- 
tion. Compared with BAM, ARAM is more effective 
for the storage and recall of small sets of pattern pairs 
with arbitrarily high correlation within each pattern set. 
ARAM is evaluated against BAM in two pattern stor- 
age and recall tasks. Besides the advantages of  fast 
learning, guaranteed perfect storage, and full memory 
capacity, simulation results indicate that ARAM pro- 
duces a much stronger noise immunity than BAM using 
three different learning rules. 

The remaining sections of  this paper are organized 
as follows. Section 2 motivates the design of ARAM 
architecture. Section 3 discusses in more details the 
ARAM properties and design principles. Section 4 
presents an analog ARAM model called fuzzy ARAM 
that utilizes fuzzy ART operations. Section 5 reports 
experimental results of fuzzy ARAM in pattern clas- 
sification and heteroassociative recall. Concluding re- 
marks and future research directions are given in the 
final section. 

2.  F R O M  C O M P U T A T I O N A L  M A P  T O  A R A M  

The design of ARAM architecture is motivated by that 
of computational map (Grossberg, 1976a, b, 1987; Car- 
penter, 1989). The core of a computational map is an 
instar-outstar  system (Figure 1). The input field F1 
and the category field F2 form a competitive learning 
system that comprises an instar adaptive filter (F~ ---' 
F2) and a shunting competitive network (F2). The cat- 
egory field F2 and the output field F3 form a fan-out 
adaptive filter that performs outstar learning of output 
patterns. A variant of computational map is counter- 
propagation network (Hecht-Nielsen,  1987, 1988), 

which, in its full form, is a bidirectional system. Com- 
putational map has generated much interest because it 
provides a powerful mechanism to associate pattern 
sets of different dimensions and probability distribu- 
tions. However, computational map suffers from a code 
instability problem. It is the analysis of the instability 
problem that leads to the introduction of Adaptive Res- 
onance Theory (ART)  (Carpenter & Grossberg, 
1987a,b). 

One way of stabilizing codes in computational map 
is to replace the instar network by an ART module to 
form an ART-outs ta r  system, which self-organizes in- 
put pattern categories and learns output patterns 
through outstar sampling (Grossberg, 1987 ). However, 
the outstar network may also suffer from the same in- 
stability problem, given the simplest reason that the 
input patterns coded into a category may be associated 
with very different output patterns. By using the same 
category node to sample diverse output patterns, fast 
learning is not possible as the F2 --' F3 weights will 
oscillate. Slow learning will make the weights more 
stable, but the resulting template can hardly be repre- 
sentative of  many dissimilar patterns. The above con- 
sideration points to a need for another matching mech- 
anism at the output field. It is thus natural to extend the 
ART-outs ta r  system by replacing the outstar network 
by another (inverted) ART module. The resultant sys- 
tem is an Adaptive Resonance Associative Map 
(ARAM) that can be visualized as two ART modules 
sharing a single category field (Figure 2). 

An interesting analogy can be drawn between 
ARAM and counterpropagation network (CPN) (Fig- 
ure 3 ). Without the top-down priming and reset mech- 
anism, ARAM reduces to a compact counterpropaga- 
tion network. F7 of ARAM subsumes layer 1 and layer 
4 of CPN whereas F~ of ARAM subsumes layer 2 and 
layer 5 of CPN. The category field F2 of ARAM cor- 
responds to layer 3 in CPN. However, whereas the 

4¢B b ARTb 
I features representation I F1 
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-- --  -~ -A ARTa 

FIGURE 2. A schemat ic  Adaptive R e s o n a n c e  Associat ive  
Map (ARAM). It cons i s t s  of two ART modules  sharing a s ingle 
c a t e g o w  field F2. 
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number of  layer 3 nodes in CPN is fixed, the category 
nodes of  ARAM are allotted one by one as novel pat- 
terns are encountered. The strengths of  ARAM over 
CPN include fast learning, self-stabilizing, and need- 
based allocation of category nodes. 

3. ARAM DESIGN PRINCIPLES 

The design principles and properties of ARAM are out- 
lined below. 

(A)  Heteroassociative versus autoassociative 
memory. As category learning systems, ART networks 
are designed for autoassociative recall. ARAM extends 
ART to learn heteroassociative mappings between pat- 
tern sets of generally different dimensions and proba- 
bility distributions. 

(B) Recognition categories for encoding pattern 
pairs. ARAM learns pattern associations across two 
different fields by using a single category node to en- 
code a pair of  associated patterns. New category nodes 
are recruited automatically when novel patterns are en- 
countered. As many category nodes as required can be 
created until the system capacity is fully utilized. 

(C)  Fast stable learning. ARAM learns a pair of  
patterns only if the matches between the patterns and 
the selected weight templates satisfy the vigilance cri- 
teria in their respective modules. Moreover, in fuzzy 
ARAM (Section 4) ,  weight templates can only de- 
crease but not increase. With the code stabilizing mech- 
anism, fast and stable learning in a real-time environ- 
ment is made feasible. 

(D)  Continuous learning and performance. 
ARAM learns as it performs. A single set of system 
equations is used for both the learning and performance 
phases. The model exhibits different functional behav- 
iors in response to different pattern presentation para- 
digms (Figure 4).  

(E)  Associative recall in both directions. The net- 
work structure and operations of  ARAM are symmet- 
rical. No distinction is drawn between the input and 
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output patterns. Presenting part of  an encoded pattern 
pair results in the readout of  the complete pattern pair 
(Figure 4).  

(F) Many-to-one and one-to-many mappings. 
Real-world applications sometimes require both many- 
to-one and one-to-many mappings. For example, in a 
medical diagnostic system, many different sets of  
symptoms can map to a disease and a set of  symptoms 
may appear for more than one disease. Essentially, 
learning many-to-one and one-to-many mappings in- 
volves the task of encoding the following set of  pattern 
pairs: 

(AI, B), (A2, B) . . . . .  (Am,  n),  

(A, Bt), (A, BI) . . . . .  (A, B.). 

By the pattern pair encoding scheme (Property B),  
ARAM is able to encode the above set of  pattern as- 
sociations and thus allows both many-to-one and one- 
to-many mappings. 

(G) Maximal generalization under external de- 
mands. Depending on the constraints and demands of 
the problem domain, the vigilance parameters can be 
set as low as possible to allow maximal generalization. 
Applications that require high accuracy and/or concern 
critical consequences can be assigned a higher vigi- 
lance level. Otherwise, the vigilance level can be re- 
laxed. The use of  two separate vigilance parameters 
allows the system to respond differently to constraints 
imposed on two pattern populations. 

4. FUZZY ARAM 

In an ARAM network (Figure 5),  the unit for recruiting 
an F2 category node is a complete pattern pair. Given 
a pair of  patterns, the category field F2 selects a winner 
that receives the largest overall input from the feature 

A B 

A' ~ ARAM 

B' 
(a) Input : (A,B) 

I 
A ' "  

(b) Input : (A,._) 

'~ B' 

B 

A' ~ I ARAM 

B' 
(c) Input : (_,B) 

FIGURE 4. Operational dynamics of ARAM. The model learns 
pattern associations as pattern pairs are presented. When an 
incomplete or noisy pattern pair (A, B) is presented, the 
model recovers the complete pattern pair (A', B'). 
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FIGURE 5. Adaptive Resonance Associative Map architec- 
ture. 

fields F'{ and F~'. The winning node selected in F2 then 
triggers a top-down priming on F'l' and F~, monitored 
by separate reset mechanisms. Code stabilization is en- 
sured by restricting encoding to states where reso- 
nances are reached in both modules. 

The ART modules used in A R A M  can be A R T  I 
( Carpenter & Grossberg, 1987a), which categorizes bi- 
nary patterns, or analog ART modules such as ART 2 
(Carpenter & Grossberg, 1987b),  ART  2-A (Carpen- 
ter, Grossberg, & Rosen, 1991a), and fuzzy ART (Car- 
penter, Grossberg, & Rosen, 1991b), which categorize 
both binary and analog patterns. The fuzzy A R A M  
model, which is composed of  two overlapping fuzzy 
ART modules (Figure 5) ,  is described below. 

Input vectors. Normalization of  fuzzy ART inputs 
prevents category proliferation. The F'~' and F~' input 
vectors are normalized by complement  coding that pre- 
serves amplitude information. Complement  coding rep- 
resents both the on-response and the off-response to an 
input vector a. The complement  coded FI' input vector 
A is a 2M-dimensional  vector 

A = (a, a') = (at . . . . .  aM, a] . . . . .  a~t) (1) 

where a~ -= 1 - a~. Similarly, the complement  coded 
F~' input vector B is a 2N-dimensional vector 

B = (b, b ') =-- ( b l  . . . . .  bN,  b'l . . . . .  b~) (2) 

where b ' i=-  i - b ~ .  
Activity vectors. Let x" and x b denote the F'{ and 

F~ activity vectors, respectively. Let y denote the F2 
activity vector. 

Weight  vectors. E a c h / ' 2  category node j is associ- 
ated with two adaptive weight templates w2 and w~. 
Initially, all category nodes are uncommitted and all 
weights equal ones. After a category node is selected 
for encoding, it becomes committed. 

Parameters.  Fuzzy A R A M  dynamics are deter- 
mined by the choice parameters ce, > 0 and c~, > 0; 
the learning rates /3, C [0, 11 and /3b E [0, 1]; the 
vigilance parameters p, E [0, 1] and p~, E [0, 1]; and 
a contribution parameter 7 E [0, 1]. 

Category choice. Given the F7 and F~' input vectors 
A and B, for each F2 node j ,  the choice function ~ is 
defined by 

IA A w;'l IB A w~/I 
T , = y +  Iwj[ + (1  - 7 )  , (3) 

" - , ,+  Iwl'l 

where the fuzzy AND operation A is defined by 

(p A q)i --- min(pi, q~), (4) 

and where the norm l" [ is defined by 

Ipl -= ~ p ,  (5) 
i 

for vectors p and q. 
The system is said to make a choice when at most 

one F2 node can become active. The choice is indexed 
at J where 

Tj = max{ ~:for all F2 node j} .  (6) 

When a category choice is made at node J ,  yj = 1 ; and 
yj = 0 for all j ~e j .  In a choice system, the FI' and 
F~' activity vectors x" and x b obey the equations 

: if F2 is inactive 
x" = (7) 

A w~ if the Jth F2 node is chosen 

and 

B if F, is inactive 
x t' = ~ (8) 

B A w) if the Jth F2 node is chosen 

respectively. 
Resonance  or reset. Resonance occurs if the mawh 

fimctions, m~ and m~, meet the vigilance criteria in 
their respective modules: 

[ A A w j I  I B A w ~ I  
rn~-  - -  -->p,, and m~;- - - - > p ~ , .  (9) 

IAI IBI 

Learning then ensues, as de fned  below. If  any of  the 
vigilance constraints is violated, mismatch reset occurs 
in which the value of  the choice function Tj is set to 0 
for the duration of  the input presentation. The search 
process repeats to select another new index J until res- 
onance is achieved. 

Learning.  Once the search ends, the weight vectors 
w~ and w!; are updated according to the equations 

w~ ~'~w~ = (1 - #,,)w~ ~°m + #,,(A A w~ <''d') (10) 

and 

w~ "~w' = (1 - /3,,)w~ (°'a) + flh(B A w~°m), (11) 

respectively. For efficient coding of  noisy input sets, it 
is useful to set/3,, =/3h = 1 when J is an uncommitted 
node, and then take/3,  < 1 and/3~, < 1 after the cate- 
gory node is committed. Fast learning corresponds to 
setting/3,, = /3b = 1 for committed nodes. 

Match tracking.  Match tracking rule as used in the 
A R T M A P  search and prediction process is useful in 
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maximizing code compression. At the start of each in- 
put presentation, the vigilance parameter p, equals a 
baseline vigilance ~ .  If  a reset occurs in the category 
field F2, p~ is increased until it is slightly larger than 
the match function m~. The search process then selects 
another F2 node J under the revised vigilance criterion. 
With the match tracking rule and setting the contribu- 
tion parameter y = 1, ARAM emulates the search and 
test dynamics of  ARTMAP. 

5. EXPERIMENTAL RESULTS 

5.1. Pattern Classification 

5.1.1. lris Plant Classification. Fuzzy ARAM is first 
evaluated on an iris plant data set (Fisher, 1936) ob- 
tained from the UCI machine learning data base direc- 
tory (Murphy & Aha, 1992). The iris plant data set 
consists of three classes: setosa, versicolour, and vir- 
ginica, of  50 instances each, with four numeric attri- 
butes: sepal length, sepal width, petal length, and petal 
width. This well-known and relatively simple data set 
is used to study the behavior of fuzzy ARAM under 
different parameter settings. 

For each simulation, a 75-case training set and a 75- 
case test set are selected randomly. The training set is 
presented repeatedly until no reset occurs. The simu- 
lation results averaged over 100 runs are summarized 
in Table 1. Increasing p~ improves the predictive ac- 
curacy at the cost of  requiring more training epochs 
and category nodes. Increasing ao, on the other hand, 
provides better accuracy with only marginal increase 
in the number of category nodes. In all simulations, 
there is no misclassification for class 1 plant. The last 
two rows in Table 1 illustrate the performance of ART- 
MAP configurations. With the ARTMAP match track- 
ing process, the number of  category nodes is signifi- 
cantly reduced while the system maintains roughly the 
same level of  performance. However, as match tracking 
introduces a series of  search, test, and reset cycles, the 
learning time is slightly longer. 

Simulations are also conducted to compare the per- 
formance of counterpropagation network ( H ech t -  
Nielsen, 1987, 1988) with that of ARAM. A forward 
version of counterpropagation network (CPN) consist- 
ing of only layer 1, 2, and 3 (Figure 3) developed in- 
house is used. Layer 3 of  the CPN is also known as the 
Kohonen layer as it performs Kohonen's  self-organi- 
zation. Layer 2 is the output layer that performs Gross- 
berg's  outstar learning. The main parameters of  CPN 
are the number of  units in the Kohonen layer and the 
learning rates a E [0, 1] and/3 E [0, 1] of  the Kohonen 
and Grossberg layers, respectively. Whereas/3 is fixed 
during learning, a decreases with time, as determined 
by the equation 

O/0 
a -  1 + 0.1~ (12) 

where ao E [0, 1] is the initial learning rate and t is the 
number of  training iterations. 

Using 10 Kohonen units, empirical experiments are 
first conducted with different learning rates a0 and/3. 
The best test accuracy is obtained with c~0 = 1.0 and fl 
= 0.1. The parameter values are then used in the sub- 
sequent simulations in which the number of Kohonen 
units varies from 10 to 50. As CPN does not guarantee 
convergence on the training data, learning in all sim- 
ulations is stopped after 300 iterations at which no or 
very little weight changes occur. 

Comparing performance, the best accuracy obtained 
by CPN is still slightly inferior to that of ARAM (Table 
2). The optimal number of Kohonen units of CPN for 
the iris plant problem seems to be around 10-20. It is 
about the same as that of ARAM without match track- 
ing, but is more than that of ARAM with ARTMAP 
configuration. Increasing the number of  Kohonen units 
beyond 20 results in degradation of test set generali- 
zation. This could be due to the overfitting effect on 
the training set. 

5.1.2. Sonar Return Recognition. The sonar return data 
set (Gorman & Sejnowski, 1988) contains 208 in- 

TABLE 1 
Performance of Fuzzy ARAM in Classifying Iris Plants 

Parameters Resource Util ized Predictive Accuracy 

(xa fla 3' p% MT No. Epochs No. Nodes Correct (%) SD 

0.01 0.9 0.5 0.0 No 1-2  3 93.5 2.1 
0.01 0.9 0.5 0.7 No 3 - 5  11-34 94.2 2.3 
0.01 0.9 0.5 0.9 No 2 -5  31 -53  94.7 2.3 
0.1 0.9 0.5 0.7 No 2 - 5  10-29 94.5 2.3 
0.2 0.9 0.5 0.7 No 2 - 5  9-31 94.9 1.9 
0.1 0.9 1.0 0.0 Yes 2 - 6  3 -10  94.3 2.3 
0.2 0.9 1.0 0.0 Yes 2 -7  3-11 94.7 2.1 

MT indicates whether match tracking is employed. SD stands for standard deviation. The ARTb parameter values are ab = 0.01, fib 
= 1, andpb= 1. 
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TABLE 2 
Performance of CounterpropagaUon Network 

in Classifying Iris Plants 

Predictive 
Resource Utilized Accuracy 

Parameters 
No. No. Correct 

c~0 fl Epochs Nodes (%) SD 

0.6 0.1 300 10 93.1 2.8 
0.8 0.1 300 10 93.5 2.7 
1.0 0.1 300 10 94.2 2.4 
1.0 0.1 300 20 94.3 2.9 
1.0 0.1 300 30 93.5 2.4 
1.0 0.1 300 50 93.5 2.5 

stances with 60 real-valued features, of which 97 in- 
stances are returns from roughly cylindrical rocks and 
111 instances are returns from metal cylinders. This is 
a relatively difficult domain as the number of training 
examples is small and the data contain noises. In Gor- 
man and Sejnowski 's aspect angle-dependent experi- 
ments, the data set was divided into a 104-element 
training set and a 104-element test set, with balanced 
representation in each aspect angle. After learning the 
training set, perceptron classifies only 73% of the test 
set patterns correctly (Table 3 ). Back-propagation net- 
work with 12 hidden units obtains a test set accuracy 
of 90.4%. Increasing the number of  hidden units to 24, 
however, degrades the performance. 

For comparison of performance, the same training 
and test sets are used here. The K-nearest neighbor 
(KNN)  system that stores all training patterns, is also 
evaluated on the sonar return data set. KNN performs 
best with K = 1, producing a test set performance of 
91.6%, that is, slightly better than that of back-propa- 
gation network. Each ARAM simulation is repeated for 
20 runs. In each run, the training patterns are presented 
in a random order. Fuzzy ARAM with ARTMAP con- 
figuration (y  = 1 and match tracking) performs best 
with slow learning (/3 = 0.1). The same level of ac- 
curacy as KNN is obtained with only 2 2 - 4 2  category 
nodes. The number of  learning iterations ranges from 
8 to 34, about 10 times less than that of back-propa- 

PLANE 

I~! TANK 

:}~ COPTER 
FIGURE 6. The three pattern pairs devised by Wang el al. 
(1990). The dimensions of A-space that represents pictures 
and B-space that represents written names are 16 x 18 and 
35 x 8, respectively. 

gation networks. By raising ART, vigilance p, to 0.9, 
fuzzy ARAM with fast learning (/3,, = 1.0) converges 
in merely two iterations. Also, a better prediction rate 
is obtained at 92.9%. The number of category nodes, 
however, increases to around 70, but is still smaller 
than that of KNN. Using the voting strategy (as used 
in fuzzy ARTMAP) ,  an ARAM is trained in several 
simulation runs using different orderings of  the training 
set. For each test case, predictions made in multiple 
runs are averaged to produce a final prediction. Voting 
across five simulations improves the accuracy to 
94.2%. 

5.2. Associative Recall 

5.2.1. Three-Pattern Storage Experiment. Zhuang, 
Huang, and Chen (1993) used a sample pattern set 
originally devised by Wang, Cruz, and Mulligan 
(1990) to evaluate two new learning rules for BAM, 
known as the Bidirectional Perceptron Stability Learn- 
ing (BPSL)  rule and the Bidirectional Perceptron Ham- 
ming-Stability Learning (BPHSL)  rule. The sample 
pattern set contains a picture and a written name, each 
of a plane, a tank, and a helicopter (Figure 6). The 
pictures are each represented using a space of 288 ( 16 
× 18 ) binary bits, hereafter called A-space. The words 
are each represented using a space of 280 (35 × 8) 
binary bits, hereafter called B-space. Based on this pat- 
tern set, Zhuang et al. compared their BPSL and 
BPHSL rules with the Kosko's  formula of  computing 

TABLE 3 
Performance of Perceptron, Back-Propagation Network, KNN, and Fuzzy ARAM (a,,/~a, % pa, Match-Track) 

in Classifying Sonar Returns (Aspect Angle-Dependent Case) 

No. No. Hidden Accuracy 
Model Epochs Nodes (%) SD 

Perceptron 300 0 
Back-propagation network 300 12 
Back-propagation network 300 24 
KNN (K = 1) 1 104 
Fuzzy ARAM (12, 0.1, 1.0, 0.0, y) 8 -34  22-42 
Fuzzy ARAM (12, 1.0, 0.5, 0.9, y) 2 68-72 
Fuzzy ARAM (12, 1.0, 0.5, 0.9, y) (voting across five simulations) 

73.1 4.8 
90.4 1.8 
89.2 1.4 
91.6 0.0 
91.6 2.7 
92.9 0.9 
94.2 0.9 

The ARAM ARTb parameter values are c~b = 0.01, fib = 1, and pb = 1. 
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FIGURE 7. ARAM recall from A-space patterns in the three° 
pattern set with noise intensities of (a) 10%, (bl 25%, and (c) 
40%. The left-hand columns contain the initial noisy patterns. 
The right-hand columns contain the final recovered patterns. 

BAM weight matrix (Kosko, 1987, 1988, 1992), here- 
after called the Kosko 's  rule. Whereas both the BPSL 
and BPHSL rules store all the three pattern pairs stably, 
one of the three pattern pairs could not be stored using 
the Kosko 's  rule. In noise immunity tests, noisy pat- 
terns are generated by negating each bit of  the original 
patterns with a probability measured by a noise inten- 
sity. BAM networks trained using the three different 
learning rules were tasked to recall the original patterns 
from the A-space and B-space noisy patterns. Simula- 
tion results of  Zhuang et al. indicate that the BPSL and 
BPHSL rules, which perform equally well in this prob- 
lem, produce much better recall accuracy than the Kos- 
ko 's  rule. 

In ARAM associative recall experiments, the input 
patterns are not complement coded. Fast learning is 
used with fla = /3b = 1. 7 is fixed at 0.5. Using pa = 
Pb = 1 during encoding, the three pattern pairs are sta- 
ble after two pattern presentations, in contrast to the 
many learning iterations required by the BPSL and 
BPHSL rules. During recall, the vigilance parameters 
pa and Pb are each set to 0. Using a fixed noise intensity 
of  25%, empirical simulations are conducted with dif- 
ferent choice parameter values aa and ab.  For each pair 
of  the choice parameter values, 100 recall simulations 
are performed. The simulation results indicate that the 
ARAM performance is highly immune to the choice 
parameter values. In fact, 100% recall accuracy is con- 
sistently obtained with a ,  and ab ranging from 0.001 

~ .~K~ PLANE 

~q TANK 

COPTER 

(a) 

U.r~:.~ff 

.~..~.-I~ 

PLANE 

~q TANK 

COPTER 

(b) 

PLANE 

TANK 

COPTER 

(c) 

FIGURE 8. ARAM recall from B-space patterns in the three- 
pattem set with noise intensities of (a) 10%, (b) 25%, and (c) 
40%. The left-hand columns contain the initial noisy patterns. 
The right-hand columns contain the final recovered patterns. 

to 400 due to the simplicity of  the problem. The choice 
parameters are thus arbitrarily set to 0.001 in the sub- 
sequent simulations in which the noise intensity is var- 
ied from 0% to 50%. 

For each noise intensity, ARAM simulation is re- 
peated for 1000 times. Figure 7 illustrates ARAM recall 
from A-space patterns with noise intensities of  10%, 
25%, and 40%. Figure 8 illustrates ARAM recall from 
B-space patterns with noise intensities of 10%, 25%, 
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FIGURE 9. Noise immunity of ARAM in A-space for the three- 
pattern set comparing with BAM using the Kosko's, BPSL, 
and BPHSL rules. 
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FIGURE 10. Noise immunity of ARAM in B-space for the 
three-pattern set comparing with BAM using the Kosko's, 
BPSL, and BPHSL rules. 
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and 40%. Figures 9 and 10 compare the ARAM noise 
immunity performance with BAM using the Kosko's, 
BPSL, and BPHSL rules in A-space and B-space, re- 
spectively. Clearly, ARAM has a much stronger noise 
immunity over all the three learning rules of BAM. In 
fact, ARAM recall accuracy is maintained at well 
above 90%, even with a noise intensity as high as 40%. 

RD 
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5.2.2. Extended Pattern Storage Experiment. Note that 
the first memory task requires storage of only three 
pattern pairs but uses huge pattern dimensions. Zhuang 
et al. (1993) devised a more challenging problem in 
which the number of bits was reduced to 168 ( 12 x 
14) in A-space and 55 ( 11 × 5) in B-space. Moreover, 
seven more pattern pairs were added to compose a total 
of 10 desired pattern pairs (Figure 11 ). The reduction 
in the number of bits and the increase in the number of 
desired patterns both make it more difficult to distin- 
guish among the stored patterns. Zhuang et al. reported 
that the Kosko's rule failed to store any one of the 
desired pattern pairs as a stable state. The BPSL and 
BPHSL rules, on the other hand, stored all the 10 de- 

FIGURE 12. ARAM recall of patterns in the extended pattern 
set with noise intensities of (a) 10%, (b) 20%, and (c) 25%. 
The left-hand columns contain the initial noisy patterns. The 
right-hand columns contain the final recovered patterns. In 
each table, two recall tasks each are illustrated for A-space 
and B-space noisy patterns. 

sired pattern pairs. Additionally, the BPHSL rule 
showed a stronger noise immunity than the BPSL rule. 

In ARAM simulations, the 10 pattern pairs are stable 
after two training iterations. Using a fixed noise inten- 
sity of 25%, simulations are again conducted using dif- 
ferent choice parameter values a~ and ot b . For each pair 

PL., ~ TFI 9o ',, "-. 
80 ", \ \ 

k 
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R B  C R  . L  o,ko.Rulo '-'-. 

0 10 20 30 40  50 
FIGURE 11. The extended pattern set that consists of 10 pat- 
tern pairs. The dimensions of A-space representing pictures 
and B-space representing written codes are 12 x 14 and 11 
x 5, respectively. 

Noise (%) 

FIGURE 13. Noise immunity of ARAM in A-space for the ex- 
tended pattern set comparing with BAM using the Kosko's, 
BPSL, and BPHSL rules. 
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FIGURE 14. Noise immunity of ARAM in B-space for the ex- 
tended pattern set comparing with BAM using the Kosko's, 
BPSL, and BPHSL rules. 

of the choice parameter values, 100 recall simulations 
were performed. It is found that with small choice pa- 
rameter values, a pattern can be easily confused with 
its subset pattern. For example, with a few bits off, a 
noisy HS A-space pattern can be misclassified as a ST 
A-space pattern. Increasing choice parameter values 
gives an advantage to patterns that have larger norms 
(number of  positive bits) and thus makes the patterns 
more distinguishable. The simulations find that ct, = 
25 and ab = 15 work best for this problem and are thus 
used in the subsequent simulations. 

For each noise intensity ranging from 0% to 50%, 
1000 ARAM recall experiments are conducted. Figure 
12 illustrates ARAM recall from noisy A-space and B- 
space patterns. The noise immunity test results of  
ARAM compared with BAM trained using the Kos- 
ko's ,  BPSL, and BPHSL rules in A-space and B-space 
are summarized in Figures 13 and 14, respectively. 
Again, ARAM consistently outperforms all the three 
learning rules of  BAM across the entire range of noise 
intensities. 

5.2.3. Comparing ARAM With BAM. ARAM adopts an 
approach fundamentally different from BAM to learn- 
ing heteroassociative mappings. Whereas ARAM au- 
tomatically guarantees storage and recall of an arbitrary 
number of  arbitrary pattern pairs using maximal vigi- 
lance settings, BAM utilizes perceptron learning rules 
to ensure that the desired patterns are stably stored. 

ARAM and BAM are comparable in network size. 
Let M and N denote the dimensions of  A-space and B- 
space respectively, and S denote the number of  desired 
pattern pairs. The weight matrix of  BAM contains 
M * N  weight values and ARAM uses a total of  S * ( M  
+ N) weights. I f  S is small, ARAM is more efficient 
than BAM. For the two pattern storage tasks evaluated, 
ARAM utilizes a much smaller number of  weights than 
BAM (Table 4).  If  S is large, BAM is more econom- 
ical. However, as the largest possible S in BAM is typ- 
ically smaller than M or N (explained below),  ARAM 
uses at most twice the number of  weights of BAM in 
the worst case. 

The number of  patterns that can be successfully 
stored in BAM depends highly on the pattern dimen- 
sions M and N. Given a fixed network size, the per- 
centage of successful storage in BAM drops dramati- 
cally when S becomes greater than M or N. When a 
larger number of  patterns needs to be stored, one has 
to switch to another BAM model with larger space di- 
mensions and retrain all the patterns. In ARAM, the 
number of  patterns stored does not affect the accuracy 
of storage and recall. By expanding network architec- 
ture dynamically, ARAM ensures perfect storage of an 
arbitrary number of patterns and has full memory ca- 
pacity. Moreover, as strong contrast enhancement in 
the category field always results in a choice, ARAM 
does not have the spurious memory problem of BAM. 

6. CONCLUSIONS AND EXTENSIONS 

A neural network architecture termed ARAM has been 
described. As a direct generalization of ART systems, 
ARAM inherits ART properties including self-organ- 
izing, self-stabilizing, fast yet stable learning, and does 
not distinguish between learning and performance 
phases. In addition, ARAM performs supervised learn- 
ing and bidirectional associative recall. 

Whereas BAM model is limited to learning het- 
eroassociative mappings between two sets of patterns, 
ARAM architecture can be readily generalized to K- 
way ARAM that learns pattern associations across mul- 
tiple pattern channels (Tan, 1994). Whereas ARAM 
consists of  two input representation fields sharing a cat- 
egory field, K-way ARAM comprises K input repre- 
sentation fields and a category field. Two-way ARAM 
is essentially ARAM. With K = 1, the system reduces 

TABLE 4 
Comparison of BAM and ARAM System Size in Terms of the Number of Weights 

A-Space B-Space No. Patterns 
Dimension Dimension Encoded BAM ARAM 

Pattern Set (M) (N) (S) Size Size 

3-Pattern set 288 280 3 80640 1704 
10-Pattern set 168 55 10 9240 2230 
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to  A R T .  K - w a y  A R A M  h a s  b e e n  u s e d  as a b u i l d i n g  

b l o c k  o f  a h i g h e r - l e v e l  c o g n i t i v e  a r c h i t e c t u r e  t e r m e d  

C o n c e p t  H i e r a r c h y  M e m o r y  M o d e l  ( C H M M )  tha t  is 

d e v e l o p e d  fo r  c o n c e p t u a l  k n o w l e d g e  r e p r e s e n t a t i o n  

a n d  c o m m o n  s e n s e  r e a s o n i n g  ( S o o n  & Tan ,  1993a,  b;  

T a n ,  1 9 9 4 ) .  B a s e d  o n  K - w a y  A R A M  tha t  s u p p o r t s  f a s t  

a n d  s t a b l e  a s s o c i a t i v e  l e a r n i n g ,  C H M M  p r o v i d e s  a sys-  

t e m a t i c  w a y  fo r  c r e a t i n g  n e w  c o n c e p t s  a n d  o r g a n i z i n g  

a c o n c e p t  h i e r a r c h y .  
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