
Pergamon

CONTRIBUTED ARTICLE
0893-6080(94)00092-1

Neural Networks, Vol. 8, No. 3, pp. 437-446, 1995
Copyright © 1995 Elsevier Science Ltd
Printed in the USA. All rights reserved

0893-6080/95 $9.50 + .00

Adaptive Resonance Associative Map

AH-HWEE TAN

National University of Singapore

(Received I 1 May 1994; revised and accepted 21 September 1994)

Abstract--This article introduces a neural architecture termed Adaptive Resonance Associative Map (ARAM) that
extends unsupervised Adaptive Resonance Theory (ART) systems for rapid, yet stable, heteroassociative learning.
ARAM can be visualized as two overlapping ART networks sharing a single category field. Although ARAM is
simpler in architecture than another class o f supervised ART models known as ARTMAP, it produces classification
performance equivalent to that o f ARTMAP. As ARAM network structure and operations are symmetrical, associative
recall can be performed in both directions. With maximal vigilance settings, ARAM encodes pattern pairs explicitly
as cognitive chunks and thus guarantees perfect storage and recall o f an arbitrary number o f arbitrary pattern
pairs. Simulations on an iris plant and a sonar return recognition problems compare ARAM classification perfor-
mance with that o f counterpropagation network, K-nearest neighbor system, and back-propagation network. Asso-
ciative recall experiments on two pattern sets show that, besides the advantages o f fast learning, guaranteed perfect
storage, and full memory capacity, ARAM produces a stronger noise immunity than Bidirectional Associative Mem-
ory (BAM).

Keywords--Self-organization, Neural network architecture, Associative memory, Heteroassociative recall, Super-
vised learning.

1. INTRODUCTION

This article introduces a neural architecture termed
Adaptive Resonance Associative Map (ARAM) that
performs rapid, yet stable, heteroassociative learning in
a real-time environment. Whereas a similar supervised
Adaptive Resonance Theory (ART) system, ARTMAP
(Carpenter et al., 1992), consists of two ART modules
interconnected by an inter-ART associative map field,
ARAM can be visualized as two overlapping ART
modules sharing a single category field. The category
field/72 receives bottom-up activities from the two fea-
ture fields F~ and FIb. Thus, an F2 category node learns
to encode a complete pattern pair. By synchronizing
the unsupervised categorization of two pattern sets,
ARAM learns supervised mapping between the pattern
sets. Code stabilization is ensured by restricting encod-

Acknowledgements: This article is based on a chapter of a doc-
toral dissertation submitted to Boston University. I wish to thank my
dissertation committee members: Gail A. Carpenter, Stephen Gross-
berg, and Michael Cohen. Thanks also go to the two anonymous
referees for giving many useful comments to a previous version of
the manuscript. I also thank Loo-Nin Teow for his help in refining
the article.

Request for reprints should be sent to Ah-Hwee Tan, Institute of
Systems Science, National University of Singapore, Kent Ridge, Sin-
gapore 051 I.

ing to states where resonances are reached in both the
ARTa and ARTb modules. Due to the code stabilization
mechanism, fast learning in a real-time environment is
feasible. As the network structure and operations are
symmetrical, associative recall can be performed in
both directions.

ARAM performs two slightly different memory
tasks, namely pattern classification and heteroassocia-
tive recall. Pattern classification involves the learning
of many-to-one mappings from a set of patterns to pat-
tern classes. Although ARAM has a simpler architec-
ture than ARTMAP, it exhibits the same dynamics as
ARTMAP under certain parameter settings (Tan,
1992). Simulations on a well-known iris plant data set
compare the ARAM performance with that of counter-
propagation network. Experiments on a sonar return
recognition problem show that ARAM produces better
generalization than back-propagation network at the
cost of creating more category nodes.

Heteroassociative recall, which is a general form of
pattern classification, involves the learning of associa-
tive mappings between two sets of possibly distributed
patterns. With maximal vigilance settings, ARAM dy-
namically allocates a category node for encoding each
distinct pattern pair. It thus guarantees perfect storage
and recall of an arbitrary number of arbitrary pattern
pairs, a property that is highly desirable for Bidirec-

437

438 A.-H. Tan

Outstar (Fan-out)

I
I 1

FIGURE 1. Computational map (Grossberg, 1976a, b; Carpen-
ter, 1989). F1 and F2 form a competitive learning module. F2
and F3 form an outstar learning system.

tional Associative Memory (BAM) models (Kosko,
1987, 1988, 1992; Lin & Chang, 1993; Wang, Cruz, &
Mulligan, 1990, 1991; Zhuang, Huang, &Chen, 1993).
Although ARAM uses high vigilance for pattern stor-
age, the vigilance parameter values can be set as low
as possible during recall to allow maximal generaliza-
tion. Compared with BAM, ARAM is more effective
for the storage and recall of small sets of pattern pairs
with arbitrarily high correlation within each pattern set.
ARAM is evaluated against BAM in two pattern stor-
age and recall tasks. Besides the advantages of fast
learning, guaranteed perfect storage, and full memory
capacity, simulation results indicate that ARAM pro-
duces a much stronger noise immunity than BAM using
three different learning rules.

The remaining sections of this paper are organized
as follows. Section 2 motivates the design of ARAM
architecture. Section 3 discusses in more details the
ARAM properties and design principles. Section 4
presents an analog ARAM model called fuzzy ARAM
that utilizes fuzzy ART operations. Section 5 reports
experimental results of fuzzy ARAM in pattern clas-
sification and heteroassociative recall. Concluding re-
marks and future research directions are given in the
final section.

2. F R O M C O M P U T A T I O N A L M A P T O A R A M

The design of ARAM architecture is motivated by that
of computational map (Grossberg, 1976a, b, 1987; Car-
penter, 1989). The core of a computational map is an
instar-outstar system (Figure 1). The input field F1
and the category field F2 form a competitive learning
system that comprises an instar adaptive filter (F~ ---'
F2) and a shunting competitive network (F2). The cat-
egory field F2 and the output field F3 form a fan-out
adaptive filter that performs outstar learning of output
patterns. A variant of computational map is counter-
propagation network (Hecht-Nielsen, 1987, 1988),

which, in its full form, is a bidirectional system. Com-
putational map has generated much interest because it
provides a powerful mechanism to associate pattern
sets of different dimensions and probability distribu-
tions. However, computational map suffers from a code
instability problem. It is the analysis of the instability
problem that leads to the introduction of Adaptive Res-
onance Theory (ART) (Carpenter & Grossberg,
1987a,b).

One way of stabilizing codes in computational map
is to replace the instar network by an ART module to
form an ART-outs ta r system, which self-organizes in-
put pattern categories and learns output patterns
through outstar sampling (Grossberg, 1987). However,
the outstar network may also suffer from the same in-
stability problem, given the simplest reason that the
input patterns coded into a category may be associated
with very different output patterns. By using the same
category node to sample diverse output patterns, fast
learning is not possible as the F2 --' F3 weights will
oscillate. Slow learning will make the weights more
stable, but the resulting template can hardly be repre-
sentative of many dissimilar patterns. The above con-
sideration points to a need for another matching mech-
anism at the output field. It is thus natural to extend the
ART-outs ta r system by replacing the outstar network
by another (inverted) ART module. The resultant sys-
tem is an Adaptive Resonance Associative Map
(ARAM) that can be visualized as two ART modules
sharing a single category field (Figure 2).

An interesting analogy can be drawn between
ARAM and counterpropagation network (CPN) (Fig-
ure 3). Without the top-down priming and reset mech-
anism, ARAM reduces to a compact counterpropaga-
tion network. F7 of ARAM subsumes layer 1 and layer
4 of CPN whereas F~ of ARAM subsumes layer 2 and
layer 5 of CPN. The category field F2 of ARAM cor-
responds to layer 3 in CPN. However, whereas the

4¢B b ARTb
I features representation I F1

category representation

I features representati°n [F] I I
-- -- -~ -A ARTa

FIGURE 2. A schemat ic Adaptive R e s o n a n c e Associat ive
Map (ARAM). It cons i s t s of two ART modules sharing a s ingle
c a t e g o w field F2.

A R A M

layer 2

layer 1

e
,

layer 3

FIGURE 3. Counterpropagation network
1987, 1988).

layer 4

la er 5

IHecht-Nielsen,

number of layer 3 nodes in CPN is fixed, the category
nodes of ARAM are allotted one by one as novel pat-
terns are encountered. The strengths of ARAM over
CPN include fast learning, self-stabilizing, and need-
based allocation of category nodes.

3. ARAM DESIGN PRINCIPLES

The design principles and properties of ARAM are out-
lined below.

(A) Heteroassociative versus autoassociative
memory. As category learning systems, ART networks
are designed for autoassociative recall. ARAM extends
ART to learn heteroassociative mappings between pat-
tern sets of generally different dimensions and proba-
bility distributions.

(B) Recognition categories for encoding pattern
pairs. ARAM learns pattern associations across two
different fields by using a single category node to en-
code a pair of associated patterns. New category nodes
are recruited automatically when novel patterns are en-
countered. As many category nodes as required can be
created until the system capacity is fully utilized.

(C) Fast stable learning. ARAM learns a pair of
patterns only if the matches between the patterns and
the selected weight templates satisfy the vigilance cri-
teria in their respective modules. Moreover, in fuzzy
ARAM (Section 4) , weight templates can only de-
crease but not increase. With the code stabilizing mech-
anism, fast and stable learning in a real-time environ-
ment is made feasible.

(D) Continuous learning and performance.
ARAM learns as it performs. A single set of system
equations is used for both the learning and performance
phases. The model exhibits different functional behav-
iors in response to different pattern presentation para-
digms (Figure 4).

(E) Associative recall in both directions. The net-
work structure and operations of ARAM are symmet-
rical. No distinction is drawn between the input and

439
i

output patterns. Presenting part of an encoded pattern
pair results in the readout of the complete pattern pair
(Figure 4).

(F) Many-to-one and one-to-many mappings.
Real-world applications sometimes require both many-
to-one and one-to-many mappings. For example, in a
medical diagnostic system, many different sets of
symptoms can map to a disease and a set of symptoms
may appear for more than one disease. Essentially,
learning many-to-one and one-to-many mappings in-
volves the task of encoding the following set of pattern
pairs:

(AI, B), (A2, B) (Am, n),

(A, Bt), (A, BI) (A, B.).

By the pattern pair encoding scheme (Property B),
ARAM is able to encode the above set of pattern as-
sociations and thus allows both many-to-one and one-
to-many mappings.

(G) Maximal generalization under external de-
mands. Depending on the constraints and demands of
the problem domain, the vigilance parameters can be
set as low as possible to allow maximal generalization.
Applications that require high accuracy and/or concern
critical consequences can be assigned a higher vigi-
lance level. Otherwise, the vigilance level can be re-
laxed. The use of two separate vigilance parameters
allows the system to respond differently to constraints
imposed on two pattern populations.

4. FUZZY ARAM

In an ARAM network (Figure 5), the unit for recruiting
an F2 category node is a complete pattern pair. Given
a pair of patterns, the category field F2 selects a winner
that receives the largest overall input from the feature

A B

A' ~ ARAM

B'
(a) Input : (A,B)

I
A ' "

(b) Input : (A,._)

'~ B'

B

A' ~ I ARAM

B'
(c) Input : (_,B)

FIGURE 4. Operational dynamics of ARAM. The model learns
pattern associations as pattern pairs are presented. When an
incomplete or noisy pattern pair (A, B) is presented, the
model recovers the complete pattern pair (A', B').

440 A.-H. Tan

i J /
/ /

/

- ,?

AR-I A

category fie~ ~ - -.
F \

/ /

/ b

/ / *
feature fidld ~ feature field I
+ J / +/ +l

B ARTb

FIGURE 5. Adaptive Resonance Associative Map architec-
ture.

fields F'{ and F~'. The winning node selected in F2 then
triggers a top-down priming on F'l' and F~, monitored
by separate reset mechanisms. Code stabilization is en-
sured by restricting encoding to states where reso-
nances are reached in both modules.

The ART modules used in A R A M can be A R T I
(Carpenter & Grossberg, 1987a), which categorizes bi-
nary patterns, or analog ART modules such as ART 2
(Carpenter & Grossberg, 1987b), ART 2-A (Carpen-
ter, Grossberg, & Rosen, 1991a), and fuzzy ART (Car-
penter, Grossberg, & Rosen, 1991b), which categorize
both binary and analog patterns. The fuzzy A R A M
model, which is composed of two overlapping fuzzy
ART modules (Figure 5) , is described below.

Input vectors. Normalization of fuzzy ART inputs
prevents category proliferation. The F'~' and F~' input
vectors are normalized by complement coding that pre-
serves amplitude information. Complement coding rep-
resents both the on-response and the off-response to an
input vector a. The complement coded FI' input vector
A is a 2M-dimensional vector

A = (a, a') = (at aM, a] a~t) (1)

where a~ -= 1 - a~. Similarly, the complement coded
F~' input vector B is a 2N-dimensional vector

B = (b, b ') =-- (b l bN, b'l b~) (2)

where b ' i=- i - b ~ .
Activity vectors. Let x" and x b denote the F'{ and

F~ activity vectors, respectively. Let y denote the F2
activity vector.

Weight vectors. E a c h / ' 2 category node j is associ-
ated with two adaptive weight templates w2 and w~.
Initially, all category nodes are uncommitted and all
weights equal ones. After a category node is selected
for encoding, it becomes committed.

Parameters. Fuzzy A R A M dynamics are deter-
mined by the choice parameters ce, > 0 and c~, > 0;
the learning rates /3, C [0, 11 and /3b E [0, 1]; the
vigilance parameters p, E [0, 1] and p~, E [0, 1]; and
a contribution parameter 7 E [0, 1].

Category choice. Given the F7 and F~' input vectors
A and B, for each F2 node j , the choice function ~ is
defined by

IA A w;'l IB A w~/I
T , = y + Iwj[+ (1 - 7) , (3)

" - , ,+ Iwl'l

where the fuzzy AND operation A is defined by

(p A q)i --- min(pi, q~), (4)

and where the norm l" [is defined by

Ipl -= ~ p , (5)
i

for vectors p and q.
The system is said to make a choice when at most

one F2 node can become active. The choice is indexed
at J where

Tj = max{ ~:for all F2 node j} . (6)

When a category choice is made at node J , yj = 1 ; and
yj = 0 for all j ~e j . In a choice system, the FI' and
F~' activity vectors x" and x b obey the equations

: if F2 is inactive
x" = (7)

A w~ if the Jth F2 node is chosen

and

B if F, is inactive
x t' = ~ (8)

B A w) if the Jth F2 node is chosen

respectively.
Resonance or reset. Resonance occurs if the mawh

fimctions, m~ and m~, meet the vigilance criteria in
their respective modules:

[A A w j I I B A w ~ I
rn~- - - -->p,, and m~;- - - - > p ~ , . (9)

IAI IBI

Learning then ensues, as de fned below. If any of the
vigilance constraints is violated, mismatch reset occurs
in which the value of the choice function Tj is set to 0
for the duration of the input presentation. The search
process repeats to select another new index J until res-
onance is achieved.

Learning. Once the search ends, the weight vectors
w~ and w!; are updated according to the equations

w~ ~'~w~ = (1 - #,,)w~ ~°m + #,,(A A w~ <''d') (10)

and

w~ "~w' = (1 - /3,,)w~ (°'a) + flh(B A w~°m), (11)

respectively. For efficient coding of noisy input sets, it
is useful to set/3,, =/3h = 1 when J is an uncommitted
node, and then take/3, < 1 and/3~, < 1 after the cate-
gory node is committed. Fast learning corresponds to
setting/3,, = /3b = 1 for committed nodes.

Match tracking. Match tracking rule as used in the
A R T M A P search and prediction process is useful in

ARAM 441

maximizing code compression. At the start of each in-
put presentation, the vigilance parameter p, equals a
baseline vigilance ~ . If a reset occurs in the category
field F2, p~ is increased until it is slightly larger than
the match function m~. The search process then selects
another F2 node J under the revised vigilance criterion.
With the match tracking rule and setting the contribu-
tion parameter y = 1, ARAM emulates the search and
test dynamics of ARTMAP.

5. EXPERIMENTAL RESULTS

5.1. Pattern Classification

5.1.1. lris Plant Classification. Fuzzy ARAM is first
evaluated on an iris plant data set (Fisher, 1936) ob-
tained from the UCI machine learning data base direc-
tory (Murphy & Aha, 1992). The iris plant data set
consists of three classes: setosa, versicolour, and vir-
ginica, of 50 instances each, with four numeric attri-
butes: sepal length, sepal width, petal length, and petal
width. This well-known and relatively simple data set
is used to study the behavior of fuzzy ARAM under
different parameter settings.

For each simulation, a 75-case training set and a 75-
case test set are selected randomly. The training set is
presented repeatedly until no reset occurs. The simu-
lation results averaged over 100 runs are summarized
in Table 1. Increasing p~ improves the predictive ac-
curacy at the cost of requiring more training epochs
and category nodes. Increasing ao, on the other hand,
provides better accuracy with only marginal increase
in the number of category nodes. In all simulations,
there is no misclassification for class 1 plant. The last
two rows in Table 1 illustrate the performance of ART-
MAP configurations. With the ARTMAP match track-
ing process, the number of category nodes is signifi-
cantly reduced while the system maintains roughly the
same level of performance. However, as match tracking
introduces a series of search, test, and reset cycles, the
learning time is slightly longer.

Simulations are also conducted to compare the per-
formance of counterpropagation network (H ech t -
Nielsen, 1987, 1988) with that of ARAM. A forward
version of counterpropagation network (CPN) consist-
ing of only layer 1, 2, and 3 (Figure 3) developed in-
house is used. Layer 3 of the CPN is also known as the
Kohonen layer as it performs Kohonen's self-organi-
zation. Layer 2 is the output layer that performs Gross-
berg's outstar learning. The main parameters of CPN
are the number of units in the Kohonen layer and the
learning rates a E [0, 1] and/3 E [0, 1] of the Kohonen
and Grossberg layers, respectively. Whereas/3 is fixed
during learning, a decreases with time, as determined
by the equation

O/0
a - 1 + 0.1~ (12)

where ao E [0, 1] is the initial learning rate and t is the
number of training iterations.

Using 10 Kohonen units, empirical experiments are
first conducted with different learning rates a0 and/3.
The best test accuracy is obtained with c~0 = 1.0 and fl
= 0.1. The parameter values are then used in the sub-
sequent simulations in which the number of Kohonen
units varies from 10 to 50. As CPN does not guarantee
convergence on the training data, learning in all sim-
ulations is stopped after 300 iterations at which no or
very little weight changes occur.

Comparing performance, the best accuracy obtained
by CPN is still slightly inferior to that of ARAM (Table
2). The optimal number of Kohonen units of CPN for
the iris plant problem seems to be around 10-20. It is
about the same as that of ARAM without match track-
ing, but is more than that of ARAM with ARTMAP
configuration. Increasing the number of Kohonen units
beyond 20 results in degradation of test set generali-
zation. This could be due to the overfitting effect on
the training set.

5.1.2. Sonar Return Recognition. The sonar return data
set (Gorman & Sejnowski, 1988) contains 208 in-

TABLE 1
Performance of Fuzzy ARAM in Classifying Iris Plants

Parameters Resource Util ized Predictive Accuracy

(xa fla 3' p% MT No. Epochs No. Nodes Correct (%) SD

0.01 0.9 0.5 0.0 No 1-2 3 93.5 2.1
0.01 0.9 0.5 0.7 No 3 - 5 11-34 94.2 2.3
0.01 0.9 0.5 0.9 No 2 -5 31 -53 94.7 2.3
0.1 0.9 0.5 0.7 No 2 - 5 10-29 94.5 2.3
0.2 0.9 0.5 0.7 No 2 - 5 9-31 94.9 1.9
0.1 0.9 1.0 0.0 Yes 2 - 6 3 -10 94.3 2.3
0.2 0.9 1.0 0.0 Yes 2 -7 3-11 94.7 2.1

MT indicates whether match tracking is employed. SD stands for standard deviation. The ARTb parameter values are ab = 0.01, fib
= 1, andpb= 1.

442 A.-H. Tan

TABLE 2
Performance of CounterpropagaUon Network

in Classifying Iris Plants

Predictive
Resource Utilized Accuracy

Parameters
No. No. Correct

c~0 fl Epochs Nodes (%) SD

0.6 0.1 300 10 93.1 2.8
0.8 0.1 300 10 93.5 2.7
1.0 0.1 300 10 94.2 2.4
1.0 0.1 300 20 94.3 2.9
1.0 0.1 300 30 93.5 2.4
1.0 0.1 300 50 93.5 2.5

stances with 60 real-valued features, of which 97 in-
stances are returns from roughly cylindrical rocks and
111 instances are returns from metal cylinders. This is
a relatively difficult domain as the number of training
examples is small and the data contain noises. In Gor-
man and Sejnowski 's aspect angle-dependent experi-
ments, the data set was divided into a 104-element
training set and a 104-element test set, with balanced
representation in each aspect angle. After learning the
training set, perceptron classifies only 73% of the test
set patterns correctly (Table 3). Back-propagation net-
work with 12 hidden units obtains a test set accuracy
of 90.4%. Increasing the number of hidden units to 24,
however, degrades the performance.

For comparison of performance, the same training
and test sets are used here. The K-nearest neighbor
(KNN) system that stores all training patterns, is also
evaluated on the sonar return data set. KNN performs
best with K = 1, producing a test set performance of
91.6%, that is, slightly better than that of back-propa-
gation network. Each ARAM simulation is repeated for
20 runs. In each run, the training patterns are presented
in a random order. Fuzzy ARAM with ARTMAP con-
figuration (y = 1 and match tracking) performs best
with slow learning (/3 = 0.1). The same level of ac-
curacy as KNN is obtained with only 2 2 - 4 2 category
nodes. The number of learning iterations ranges from
8 to 34, about 10 times less than that of back-propa-

PLANE

I~! TANK

:}~ COPTER
FIGURE 6. The three pattern pairs devised by Wang el al.
(1990). The dimensions of A-space that represents pictures
and B-space that represents written names are 16 x 18 and
35 x 8, respectively.

gation networks. By raising ART, vigilance p, to 0.9,
fuzzy ARAM with fast learning (/3,, = 1.0) converges
in merely two iterations. Also, a better prediction rate
is obtained at 92.9%. The number of category nodes,
however, increases to around 70, but is still smaller
than that of KNN. Using the voting strategy (as used
in fuzzy ARTMAP) , an ARAM is trained in several
simulation runs using different orderings of the training
set. For each test case, predictions made in multiple
runs are averaged to produce a final prediction. Voting
across five simulations improves the accuracy to
94.2%.

5.2. Associative Recall

5.2.1. Three-Pattern Storage Experiment. Zhuang,
Huang, and Chen (1993) used a sample pattern set
originally devised by Wang, Cruz, and Mulligan
(1990) to evaluate two new learning rules for BAM,
known as the Bidirectional Perceptron Stability Learn-
ing (BPSL) rule and the Bidirectional Perceptron Ham-
ming-Stability Learning (BPHSL) rule. The sample
pattern set contains a picture and a written name, each
of a plane, a tank, and a helicopter (Figure 6). The
pictures are each represented using a space of 288 (16
× 18) binary bits, hereafter called A-space. The words
are each represented using a space of 280 (35 × 8)
binary bits, hereafter called B-space. Based on this pat-
tern set, Zhuang et al. compared their BPSL and
BPHSL rules with the Kosko's formula of computing

TABLE 3
Performance of Perceptron, Back-Propagation Network, KNN, and Fuzzy ARAM (a,,/~a, % pa, Match-Track)

in Classifying Sonar Returns (Aspect Angle-Dependent Case)

No. No. Hidden Accuracy
Model Epochs Nodes (%) SD

Perceptron 300 0
Back-propagation network 300 12
Back-propagation network 300 24
KNN (K = 1) 1 104
Fuzzy ARAM (12, 0.1, 1.0, 0.0, y) 8 -34 22-42
Fuzzy ARAM (12, 1.0, 0.5, 0.9, y) 2 68-72
Fuzzy ARAM (12, 1.0, 0.5, 0.9, y) (voting across five simulations)

73.1 4.8
90.4 1.8
89.2 1.4
91.6 0.0
91.6 2.7
92.9 0.9
94.2 0.9

The ARAM ARTb parameter values are c~b = 0.01, fib = 1, and pb = 1.

A R A M 443

PLANE

~I~ TANK

COPTER

(a)

• .x

PLANE

I~I TANK

COPTER

(b)

i, n @ PLANE

TANK

~(COPTER

(c)

FIGURE 7. ARAM recall from A-space patterns in the three°
pattern set with noise intensities of (a) 10%, (bl 25%, and (c)
40%. The left-hand columns contain the initial noisy patterns.
The right-hand columns contain the final recovered patterns.

BAM weight matrix (Kosko, 1987, 1988, 1992), here-
after called the Kosko 's rule. Whereas both the BPSL
and BPHSL rules store all the three pattern pairs stably,
one of the three pattern pairs could not be stored using
the Kosko 's rule. In noise immunity tests, noisy pat-
terns are generated by negating each bit of the original
patterns with a probability measured by a noise inten-
sity. BAM networks trained using the three different
learning rules were tasked to recall the original patterns
from the A-space and B-space noisy patterns. Simula-
tion results of Zhuang et al. indicate that the BPSL and
BPHSL rules, which perform equally well in this prob-
lem, produce much better recall accuracy than the Kos-
ko 's rule.

In ARAM associative recall experiments, the input
patterns are not complement coded. Fast learning is
used with fla = /3b = 1. 7 is fixed at 0.5. Using pa =
Pb = 1 during encoding, the three pattern pairs are sta-
ble after two pattern presentations, in contrast to the
many learning iterations required by the BPSL and
BPHSL rules. During recall, the vigilance parameters
pa and Pb are each set to 0. Using a fixed noise intensity
of 25%, empirical simulations are conducted with dif-
ferent choice parameter values aa and ab. For each pair
of the choice parameter values, 100 recall simulations
are performed. The simulation results indicate that the
ARAM performance is highly immune to the choice
parameter values. In fact, 100% recall accuracy is con-
sistently obtained with a , and ab ranging from 0.001

~ .~K~ PLANE

~q TANK

COPTER

(a)

U.r~:.~ff

.~..~.-I~

PLANE

~q TANK

COPTER

(b)

PLANE

TANK

COPTER

(c)

FIGURE 8. ARAM recall from B-space patterns in the three-
pattem set with noise intensities of (a) 10%, (b) 25%, and (c)
40%. The left-hand columns contain the initial noisy patterns.
The right-hand columns contain the final recovered patterns.

to 400 due to the simplicity of the problem. The choice
parameters are thus arbitrarily set to 0.001 in the sub-
sequent simulations in which the noise intensity is var-
ied from 0% to 50%.

For each noise intensity, ARAM simulation is re-
peated for 1000 times. Figure 7 illustrates ARAM recall
from A-space patterns with noise intensities of 10%,
25%, and 40%. Figure 8 illustrates ARAM recall from
B-space patterns with noise intensities of 10%, 25%,

Recall (%)]0o

90

8O

70

60

50

40

30

2O

10

0

II I I I I

Kosko's Rule

| I I I
41] 5O I0 20 30

Noise (%)

FIGURE 9. Noise immunity of ARAM in A-space for the three-
pattern set comparing with BAM using the Kosko's, BPSL,
and BPHSL rules.

444 A.-H. Tan

|] I I I I Recall (%) 1~

B I : ~ L & B P H S
8o

70 Kosko's Rule ' 1

60 ',

,, x

41) ' ,~

30 ', I

I 0

0
I I I I I I

10 20 30 40 50

Noise (%)

FIGURE 10. Noise immunity of ARAM in B-space for the
three-pattern set comparing with BAM using the Kosko's,
BPSL, and BPHSL rules.

~c

_=..~ t
PL,

TA

HE

SS

, ~ SS
H T

HS

HD

(b)

and 40%. Figures 9 and 10 compare the ARAM noise
immunity performance with BAM using the Kosko's,
BPSL, and BPHSL rules in A-space and B-space, re-
spectively. Clearly, ARAM has a much stronger noise
immunity over all the three learning rules of BAM. In
fact, ARAM recall accuracy is maintained at well
above 90%, even with a noise intensity as high as 40%.

RD

5 T

H B

,iS; c H

(c)

5.2.2. Extended Pattern Storage Experiment. Note that
the first memory task requires storage of only three
pattern pairs but uses huge pattern dimensions. Zhuang
et al. (1993) devised a more challenging problem in
which the number of bits was reduced to 168 (12 x
14) in A-space and 55 (11 × 5) in B-space. Moreover,
seven more pattern pairs were added to compose a total
of 10 desired pattern pairs (Figure 11). The reduction
in the number of bits and the increase in the number of
desired patterns both make it more difficult to distin-
guish among the stored patterns. Zhuang et al. reported
that the Kosko's rule failed to store any one of the
desired pattern pairs as a stable state. The BPSL and
BPHSL rules, on the other hand, stored all the 10 de-

FIGURE 12. ARAM recall of patterns in the extended pattern
set with noise intensities of (a) 10%, (b) 20%, and (c) 25%.
The left-hand columns contain the initial noisy patterns. The
right-hand columns contain the final recovered patterns. In
each table, two recall tasks each are illustrated for A-space
and B-space noisy patterns.

sired pattern pairs. Additionally, the BPHSL rule
showed a stronger noise immunity than the BPSL rule.

In ARAM simulations, the 10 pattern pairs are stable
after two training iterations. Using a fixed noise inten-
sity of 25%, simulations are again conducted using dif-
ferent choice parameter values a~ and ot b . For each pair

PL., ~ TFI 9o ',, "-.
80 ", \ \

k
H C =;=; ,o BPH

R B C R . L o,ko.Rulo '-'-.

0 10 20 30 40 50
FIGURE 11. The extended pattern set that consists of 10 pat-
tern pairs. The dimensions of A-space representing pictures
and B-space representing written codes are 12 x 14 and 11
x 5, respectively.

Noise (%)

FIGURE 13. Noise immunity of ARAM in A-space for the ex-
tended pattern set comparing with BAM using the Kosko's,
BPSL, and BPHSL rules.

ARAM 445

Recall (%) 100

9O

80

70

60

5O

4O

3O

2O

10

0

| I I I

K o s k o ' s R u l e - > _
. - - ~ - ~ - ~ _ =

II I I I I
10 20 30 40 50

Noise (%)

FIGURE 14. Noise immunity of ARAM in B-space for the ex-
tended pattern set comparing with BAM using the Kosko's,
BPSL, and BPHSL rules.

of the choice parameter values, 100 recall simulations
were performed. It is found that with small choice pa-
rameter values, a pattern can be easily confused with
its subset pattern. For example, with a few bits off, a
noisy HS A-space pattern can be misclassified as a ST
A-space pattern. Increasing choice parameter values
gives an advantage to patterns that have larger norms
(number of positive bits) and thus makes the patterns
more distinguishable. The simulations find that ct, =
25 and ab = 15 work best for this problem and are thus
used in the subsequent simulations.

For each noise intensity ranging from 0% to 50%,
1000 ARAM recall experiments are conducted. Figure
12 illustrates ARAM recall from noisy A-space and B-
space patterns. The noise immunity test results of
ARAM compared with BAM trained using the Kos-
ko's , BPSL, and BPHSL rules in A-space and B-space
are summarized in Figures 13 and 14, respectively.
Again, ARAM consistently outperforms all the three
learning rules of BAM across the entire range of noise
intensities.

5.2.3. Comparing ARAM With BAM. ARAM adopts an
approach fundamentally different from BAM to learn-
ing heteroassociative mappings. Whereas ARAM au-
tomatically guarantees storage and recall of an arbitrary
number of arbitrary pattern pairs using maximal vigi-
lance settings, BAM utilizes perceptron learning rules
to ensure that the desired patterns are stably stored.

ARAM and BAM are comparable in network size.
Let M and N denote the dimensions of A-space and B-
space respectively, and S denote the number of desired
pattern pairs. The weight matrix of BAM contains
M * N weight values and ARAM uses a total of S * (M
+ N) weights. I f S is small, ARAM is more efficient
than BAM. For the two pattern storage tasks evaluated,
ARAM utilizes a much smaller number of weights than
BAM (Table 4). If S is large, BAM is more econom-
ical. However, as the largest possible S in BAM is typ-
ically smaller than M or N (explained below), ARAM
uses at most twice the number of weights of BAM in
the worst case.

The number of patterns that can be successfully
stored in BAM depends highly on the pattern dimen-
sions M and N. Given a fixed network size, the per-
centage of successful storage in BAM drops dramati-
cally when S becomes greater than M or N. When a
larger number of patterns needs to be stored, one has
to switch to another BAM model with larger space di-
mensions and retrain all the patterns. In ARAM, the
number of patterns stored does not affect the accuracy
of storage and recall. By expanding network architec-
ture dynamically, ARAM ensures perfect storage of an
arbitrary number of patterns and has full memory ca-
pacity. Moreover, as strong contrast enhancement in
the category field always results in a choice, ARAM
does not have the spurious memory problem of BAM.

6. CONCLUSIONS AND EXTENSIONS

A neural network architecture termed ARAM has been
described. As a direct generalization of ART systems,
ARAM inherits ART properties including self-organ-
izing, self-stabilizing, fast yet stable learning, and does
not distinguish between learning and performance
phases. In addition, ARAM performs supervised learn-
ing and bidirectional associative recall.

Whereas BAM model is limited to learning het-
eroassociative mappings between two sets of patterns,
ARAM architecture can be readily generalized to K-
way ARAM that learns pattern associations across mul-
tiple pattern channels (Tan, 1994). Whereas ARAM
consists of two input representation fields sharing a cat-
egory field, K-way ARAM comprises K input repre-
sentation fields and a category field. Two-way ARAM
is essentially ARAM. With K = 1, the system reduces

TABLE 4
Comparison of BAM and ARAM System Size in Terms of the Number of Weights

A-Space B-Space No. Patterns
Dimension Dimension Encoded BAM ARAM

Pattern Set (M) (N) (S) Size Size

3-Pattern set 288 280 3 80640 1704
10-Pattern set 168 55 10 9240 2230

446 A.-H. Tan

to A R T . K - w a y A R A M h a s b e e n u s e d as a b u i l d i n g

b l o c k o f a h i g h e r - l e v e l c o g n i t i v e a r c h i t e c t u r e t e r m e d

C o n c e p t H i e r a r c h y M e m o r y M o d e l (C H M M) tha t is

d e v e l o p e d fo r c o n c e p t u a l k n o w l e d g e r e p r e s e n t a t i o n

a n d c o m m o n s e n s e r e a s o n i n g (S o o n & Tan , 1993a, b;

T a n , 1 9 9 4) . B a s e d o n K - w a y A R A M tha t s u p p o r t s f a s t

a n d s t a b l e a s s o c i a t i v e l e a r n i n g , C H M M p r o v i d e s a sys-

t e m a t i c w a y fo r c r e a t i n g n e w c o n c e p t s a n d o r g a n i z i n g

a c o n c e p t h i e r a r c h y .

REFERENCES

Carpenter, G. A. (1989). Neural network models for pattern recog-
nition and associative memory. Neural Networks, 2(4), 243-
257.

Carpenter, G. A., & Grossberg, S, (1987a). A massively parallel
architecture for a self-organizing neural pattern recognition ma-
chine. Computer Vision, Graphics, and Image Processing, 37,
54-115.

Carpenter, G. A., & Grossberg, S. (1987b). ART 2: Self-organization
of stable category recognition codes for analog input patterns.
Applied Optics, 26, 4919-4930.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., &
Rosen, D. B. (1992). Fuzzy ARTMAP: A neural network archi-
tecture for incremental supervised learning of analog multidi-
mensional maps. IEEE Transactions on Neural Networks, 3, 698-
713.

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991a). ART 2-A:
Fast stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks, 4, 493-504.

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991b). Fuzzy
ART: Fast stable learning and categorization of analog pat-
terns by an adaptive resonance system. Neural Networks, 4,
759-771.

Fisher, R. A. (1936). The use of multiple measurements in taxo-
nomic problems. Annual Eugenics, 7, 179-188. Also in Contri-
butions to mathematical statistics. John Wiley, NY, 1950.

Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units
in a layered network trained to classify sonar targets. Neural Net-
works, 1, 75-89.

Grossberg, S. (1976a). Adaptive pattern recognition and universal
recoding, I: Parallel development and coding of neural feature
detectors. Biological Cybernetics, 23, 121 - 134.

Grossberg, S. (1976b). Adaptive pattern recognition and universal
recoding, II: Feedback, expectation, olfaction, and illusion. Bio-
logical Cybernetics, 23, 187-202.

Grossberg, S. (1987). Competitive learning: From interactive acti-
vation to adaptive resonance. Cognitive Science, 11, 23-63.

Hecht-Nielsen, R. (1987). Counterpropagation networks. Applied
Optics, 26, 4979-4984.

Hecht-Nielsen, R. (1988). Applications of counterpropagation net-
works. Neural Networks, 1, 131 - 139.

Kosko, B. (1987). Adaptive bidirectional associative memories. Ap-
plied Optics, 26(23), 4947-4960.

Kosko, B. (1988). Bidirectional associative memories. IEEE Trans-
actions on System, Man, and Cybernetics, 18, 49-60.

Kosko, B. (1992). Neural networks and fuzzy systems. Englewood
Cliffs, NJ: Prentice-Hall.

Lin, J. K., & Chang, J. Y. (1993). The perceptron training rule for
bidirectional associative memory. In Proceedings, World con-
gress on neural networks, Portland, OR (Vol. I1, pp. 249-255).
Hillsdale, N J: Lawrence Erlbaum Associates.

Murphy, P. M., & Aha, D. W. (1992). UCI repository of machine
learning databases [machine-readable data repository]. Irvine,
CA: University of California, Department of Information and
Computer Science.

Soon, H. S., & Tan, A. H. (1993a). Concept hierarchy networks for
inheritance systems: Concept formation, property inheritance and
conflict resolution. In Proceedings, 15th Conference of Cognitive
Science Society, Boulder, CO, pp. 941-946.

Soon, H. S., & Tan, A. H. (1993b). A memory model for concept
hierarchy representation and commonsense reasoning. In Proceed-
ings, World Congress on Neural Networks, Portlamt, OR (Vol. 1I,
pp. 206-209). HiUsdale, NJ: Lawrence Erlbaum Associates.

Tan, A. H. (1992). Adaptive resonance associative map: A hierar-
chical ART system for fast stable associative learning. In Pro-
ceedings, IJCNN-92 Baltimore, MD (Vol. 1, pp. 860-865). Pis-
cataway, NJ: IEEE Service Center.

Tan, A. H. (1994). Synthesizing neural network and symbolic knowl-
edge processing. Doctoral dissertation, Department of Cognitive
and Neural Systems, Boston University.

Wang, Y. F., Cruz, J. B. J., & Mulligan, J. H. J. (1990). Two coding
strategies for bidirectional associative memory. IEEE Transac-
tions on Neural Networks, 1, 81-92.

Wang, Y. F., Cruz, J. B. J., & Mulligan, J. H. J. (1991). Guaranteed
recall of all training pairs for bidirectional associative memory.
IEEE Transactions on Neural Networks, 2, 559-567.

Zhuang, X. H., Huang, Y., &Chen, S. S. (1993). Better learning for
bidirectional associative memory. Neural Networks, 6, 1131-1146.

