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Cascade ARTMAP: Integrating Neural Computation
and Symbolic Knowledge Processing

Ah-Hwee Tan
Abstract—This paper introduces a hybrid system termed F*
cascade adaptive resonance theory mapping (ARTMAP) ¢ Map Field
that incorporates symbolic knowledge into neural-network ART ART,
learning and recognition. Cascade ARTMAP, a generalizaton ‘== 1 U N £ ’
of fuzzy ARTMAP, represents intermediate attributes and Competition

|
rule cascades of rule-based knowledge explicitly and performs I
multistep inferencing. A rule insertion algorithm translates |
if-then symbolic rules into cascade ARTMAP architecture. }
Besides that initializing networks with prior knowledge can :
|
|
|

F;{oooo'iooo—‘
| Y

improve predictive accuracy and learning efficiency, the inserted

symbolic knowledge can be refined and enhanced by the cascade| ¢’ | ¢ @ @ ® ® ® \.J | j ol
ARTMAP learning algorithm. By preserving symbolic rule form !
during learning, the rules extracted from cascade ARTMAP l———————— L ~~~~~~~~ b P ——————— !
can be compared directly with the originally inserted rules. Input Features Target Prediction

Simulations on an animal identification problem indicate thata

priori symbolic knowledge always improves system performance, Fig. 1. Rules in fuzzy ARTMAP. Each node in thfe} field represents a
especially with a small training set. Benchmark study on a recognition category of ART input patterns. Through the blnFef-ART_ map
DNA promoter recognition problem shows that with the added field, each such node is associated to an ABategory in thef?; field, which
advantage of fast learning, cascade ARTMAP rule insertion and in turn encodes a prediction. Learned weight vectors, one for £gchode,

. . ’ . constitute a set of rules that link antecedents to consequents. The number of
E)efflg?hn(;?nr;;(i%?r:ghln;:rrﬁgogduscyestgr?gc’g:gngﬁ Zﬂg?r'l’;'i‘véo t:l;tc))rslg rules equals the number @i} nodes that become active during learning.
system known as knowledge-based artificial neural network
(KBANN). Also, the rules extracted from cascade ARTMAP the preservation of symbolic knowledge. Under the weight

are more accurate and much cleaner than the NofM rules tuning process of a backpropagation algorithm, symbolic rules
extracted from KBANN. quickly lose their original meanings. In fact, large shifts in the
Index Terms—ARTMAP, hybrid system, promotor recognition, meanings of hidden units can occur as a result of training [19].

rule extraction, rule insertion, rule refinement. Another major limitation of the BP approach is that the
initial rule base has to be roughly complete, or else the
I INTRODUCTION initial network architecture created may not be sufficiently

rich for dealing with the problem domain. As the standard
) . ” thkpropagation algorithm is not able to create additional
network in learning to solve the problem. Specificallyn,qes or connections dynamically during learning, a network
preexisting symb_ohc rules can be uged to initialize a Nelsiialized by a small set of rules may even have a lower
ral network architecture before learning. Not only can rulgy,nce of eventually learning the task. This problem was noted
insertion improve network leaming efficiency, it also serveg,y partially solved by Lachest. al, who used virtual rules
fo provide knowledge t_hat is not captured by training Casgs ¢reate potential connections for learning [10]. However,
or that cannot be easily leamed by a neural network, ajfl yeneral, it is difficult to decide beforehand the virtual

RIOR knowledge of a problem domain can help a neur

X . . : , as their model only represents rules

Rule insertion anq refinement in neural networks there'cc’ﬁl%sociating input attributes to output predictions, the network

automates symbolic knowledge enhancement and repair. g ot general enough to deal with rule-based domain theories
A popular approach to rule insertion and refinement USgs,\ing intermediate attributes and rule chaining.

rules to initialize the architecture of a multilayer neural net- g paper introduces a hybrid system called cascade

work and refines the network using a backpropagation glprap (adaptive resonance theory mapping) that solves

gorithm [9], [10], [20]. One major problem of using baCk't_he above problems [16], [17]. Cascade ARTMAP, a

propagation (BP) networks to refine rule-based knowmdgedﬁneralizaﬂon of fuzzy ARTMAP [3], represents intermediate
Manuscript received May 16, 1994; revised February 13, 1995, Januarya@riables of rule-based knowledge explicitly and performs

1996, and October 8, 1996. _ , __multistep inferencing (rule chaining). In ARTMAP and
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Fig. 2. Cascade ARTMAP for symbolic knowledge refinement and evaluation.
link antecedents to consequents (Fig. 1). Therefore rules map field F*
can be readily inserted into a cascade ARTMAP network W =
that can then be trained by examples. During learning, nesRT, — ] ART,

recognition categories (rules) can be created dynamically tOps
cover the deficiency of the domain theory. This is in contrast >
with the static architecture of the standard slow learning
backpropagation networks. Also, by the self-stabilizing
property, learning in cascade ARTMAP does not wash F
away existing knowledge and the meanings of units do
not shift. This allows preservation of symbolic rules during
neural network learning. Using a generalized ARTMAP rule F;
extraction procedure [6], [7], the final system states can be
converted back to a compact set of rules. This enables direct
comparison of the original knowledge with the refined rules.

Also, each extracted rule is associated with a confidence factor . _
that indicates its importance or usefulness. This allows ranki 'Cg"ss of‘:f;rz’sgfnzg"tgza\%?fggfgfo ;ggl@,ﬂ‘i’gﬁf"f’(‘;"gd)‘”g e
and evaluation of the extracted knowledge. In all, the cascagier, field F¢. A is the input vector to the ARTiield F. Similarly, the input
ARTMAP rule insertion, refinement, and extraction procedures F{ is the 2Mj-vector (b, b). When ART, disconfirms a prediction of

; ; . RT., map field inhibition induces the match tracking process. Match tracking
form a paradlgm for SymbO“C knOW|edge refinement ar@lises the ART vigilance (p.) to just above theF{'-to-F¢ match ratio

evaluation (Fig. 2). |x“|/|A|. This triggers an ART search which leads to activation of either
Cascade ARTMAP has been evaluated on two benchmarkART, category that correctly predicts or to a previously uncommitted

problems. The first animal identification problem is based @iT« category node.

a sample rule-based deductive system [24]. Simulation resylf§ rje refinement, and rule extraction algorithms. The final
show that prior knowledge, even when incomplete, alwayg tion jllustrates cascade ARTMAP performance on the ani-

improves system performance. The effect is most significaty| jgentification and DNA promoter recognition problems.
when few training cases are available. Benchmark study on

the second domain, a DNA promoter recognition problem, Il. Fuzzy ARTMAP

compares cascade ARTMAP theory refinement capability with o )
an alternative approach known as the knowledge-based arfZzy ARTMAP [3], a generalization of binary ARTMAP

tificial neural network (KBANN) that refines knowledge of4]: 1arns to classify inputs by a pattern of fuzzy membership

feedforward networks using a backpropagation algorithm [18f3/U€s between zero and one indicating the extent to which
[20]. Simulation results indicate that with the added advanta§@Ch feature is present. This generalization is accomplished
of fast learning, the cascade ARTMAP rule insertion andy replacing the ART 1 modules [2] of the binary ARTMAP

refinement algorithms produce performance superior to that¥Stem with fuzzy ART modules [5]. Each ARTMAP system

KBANN. More importantly, the refined rules extracted fronincludes a pair of ART modules (ARTand ART,) that create

cascade ARTMAP are much simpler than the NofM ruledable recognition categories in response to arbitrary sequences

extracted from KBANN and can be compared directly witQf input patterns (Fig. 3). An associative learning network and
the original symbolic rules. an internal controller link these modules to make the ARTMAP

The remaining sections of this paper are organized as fgKstem operate in real time.
lows. To make this article self-contained, Section Il provides
a summary of fuzzy ART and fuzzy ARTMAP systems™ Fuzzy ART
Section Il motivates the generalization of fuzzy ARTMAP Fuzzy ART [5] incorporates computations from fuzzy set

and presents the cascade ARTMAP rule insertion, rule chatheory into ART systems. By replacing the crisp (nonfuzzy)

match
tracking
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intersection operatom) that describes ART 1 dynamics [2]an uncommitted node and take < 1 after the category is
by the fuzzy AND operator X) of fuzzy set theory, fuzzy committed.

ART can learn stable categories in response to either analogNormalization by complement codinddormalization of
or binary patterns. fuzzy ART inputs prevents category proliferation. The
ART Field Activity VectorsEach ART system includes acomplement coded — Fj inputI is the 2\/-dimensional
field F, of nodes that represent a current input vector; \&ector

field F; that receives both bottom-up input frofy and top-
down input from a fieldF;, that represents the active code, or
category. Vectoll denotesFy activity; vectorx denotesFi \ynere
activity; and vectory denotesl, activity.

Weight VectorAssociated with eacl#, category nodg is a; =1 - a;. 9)
a vectorw; of adaptive weights, or long-term memory (LTM)
traces. Initially

wjn(0) = -+ = wjm(0) =1 @)

I:(avac)E(alv"'val\fva(iv"'va(]:\l) (8)

A complement coded input is automatically normalized, be-
cause
M

M
I =|(a,a%)|=> ai+ (M=) a)=M. (10)
=1

=1

then each category isncommittedAfter a category codes its
first input, it becomesommitted ] ) o N
Parameters:A choice parametery > 0, a learning rate With complement coding, the initial condition
parame_terﬁ € [0,1], and a \{igilance parametgr € [0, 1] w;1(0) = -+ = w0 (0) =1 (11)
determine fuzzy ART dynamics.
Category choiceFor each input and ¥, nodej, thechoice replaces the fuzzy ART initial condition (1).
function 7; is defined by
B. ARTMAP Prediction and Search

LA w,|
iD= m (2) Fuzzy ARTMAP incorporates two fuzzy ART modules
) ) .J ] ART, and ART, that are linked together via an inter-ART
where the fuzzy intersection [25] is defined by map field 7¢*. The map field forms predictive associations
A between categories and realizes the ARTM#Rtch tracking
(P A Q)i = min(pi, i) ® e
and where the norm- | is defined by ART, and ART: Inputs to ART, and ART, are complement
" coded. For ART, I = A = (a,a°); and for ART,,I=B =
Ip| = Z Ipil. ) (b, b°) (Fig. 3). For ART,, x* denotes th& output vector;
P ! y* denotes thé’y' output vector; anav$ denotes thg** ART,

. weight vector. For ART, x* denotes thé?} output vectory?®
The system makes eategory choicavhen at most oné> Jenotes theF? output vector; andv? denotes the:*" ART,
node can become active at a given time. The indedenotes weight vector. For the map fiel&?® denotes theé™®* output

the chosen category, where vector, andw?’ denotes the weight vector from thé"Fg
Ty=max{T;:j=1---N} (5) node toEab' o . ] ]

Map Field Activation: The map field ** receives input
When the J** category is chosery; = 1; andy; = 0 for from either or both of the ART or ART, category fields. A
J # J. chosenF¢ node.J sends input to the map fiel#*® via the
Resonance or Reset: Resonanceurs if thematch function weightsw4?. An active /¥ nodeX sends input td"** via one-

L A wy|/|T| of the chosen category meets the vigilance®-one pathways betwedr¥ and F. If both ART, and ART,
criterion are active, the*® remains active only if ART predicts the

LA wy| . same category as ARTThe F% output vectorx®® obeys

6
i =7 ©) y' Awe if the J'U Fg node is active and?
Learning then ensues, as defined below. Otherwise b i 'ﬁ ac?}\l/eFa de i , @
match resetoccurs, where the value of the choice functionx® = { W7 ! t e_J i 2 hode Is active and
T; is set to O for the duration of the input presentation . The b IS nactive b - .
if F§ is inactive andFy is active

search process continues until a chosen categosatisfies PR . 5 )

the matching criterion (6). if F§ is inactive andFy is |nact|ve(1.2)
Learning: Once search ends, the weight vectoy learns By (12), x*

according to the equation '

(=

= 0if y® fails to confirm the map field prediction
made byw?’. Such a mismatch event triggers an ARSearch
WSnew) = BIA WSOld)) +(1- /J)WSOId). 7) for a better ca';egf)ry, as follows. _ _
Match Tracking: At the start of each input presentation
Fast learningcorresponds to setting = 1. Using the fast ART, vigilance p, equals a baseline vigilance parametgr
learning and slow recoding option, we set= 1 when.J is When a predictive error occurs, match tracking raises ART
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vigilance just enough to trigger a search for a n&fvcoding F®
node. ARTMAP detects a predictive error when Map Field
rule 1
|x“b| < pab|yb| (13) ART, fule 2 ART,
wherep,, is the map field vigilance parameter. A signal from| g3 o o \ ® ‘4' F

the map field to the ARJ orienting subsystem causes to
“track the £ match.” That is,p, increases until it is slightly
higher than thef’® match valuglA A w%||A|~1. Then, since

ART, fails to meet Fhe matching criterion, the search for, F A B C D EJ |A B C D E|F‘1’
another /¢ node begins. -

Map Field Learning: Weights w¢ in Iy — I paths
initiaIIy satisfy Fig. 4. Cascade ARTMAP representation of the sample rule cascade.

ab
wi(0) = 1. 14 . . . .
iw(0) (14) rule insertion can be readily performed in cascade ARTMAP,

During resonance with the ARTcategory.J active, w% rule chaining and inferencing can also be performed as in
approaches the map field vectar® as in (7). With fast production systems.
learning, once/ learns to predict the ARTcategoryk, that

association is permanent; i.ev%;. = 1 for all time. B. Rule Insertion
As the knowledge structure of cascade ARTMAP is com-
lll. CAsCADE ARTMAP patible with rule-based knowledge representation, if~then rules
_ can be readily translated into the recognition categories of a
A. Rule Cascade Representation cascade ARTMAP system. Initializing a cascade ARTMAP

ARTMAP handles a class of if-then rules that map a set Bgtwork with preexisting rules before learning serves to set
input attributes directly to a disjoint set of output attributeg/P the global solution structure. This helps to improve learn-
Symbolic rule-based knowledge, on the other hand, oftditg efficiency and predictive accuracy. Without rule inser-
involves rule cascadesand intermediate attributesA set of tion, cascade ARTMAP performance reduces to that of fuzzy
rules is said to form aule cascadevhen a consequent of a ruleARTMAP.
also serves as an antecedent of another rule. Such attributd3ule insertion proceeds in two phases. The first phase parses
that have dual roles are usually calledermediate attributes all rules for attribute names to set ugsgmbol tablen which
in contrast toinput attributesthat only serve as antecedentgach attribute in the rules has a unique entry. Based on the
andoutput attributesthat only serve as consequents. Througgymbol table, the second phase translates each rule into two
intermediate attributes, firing of a rule may lead to the firing-dimensional vectorsA and B, where M is the total
of another rule at a later stage of an inferencing procegg/mber of attributes in the symbol table, as inputs to the
Intermediate attributes and rule cascades are useful for feat@gcade ARTMAP ARJ and ART, modules. Given a rule
abstraction and task decomposition so that only a small setodfthe following format:
simple rules is needed at each level of the cascade.

In this paper, the proposed solution to representing rule
cascades is cascade ARTMAP that uses ARTMAP architecture THEN w1, 92, Y, 701, 702, -+ W (15)
but gen_eralize_s the ARTMAP one-step predictior_l_procemerexb_”’xm andy,. ...y, are positive attributes, and
to multistep inferencing. Cascade ARTMAP unifies the

s xm and 41, ...,yn preceded by the logical NOT
ARTMAP input attribute field#® and output attribute field? = " Yi---oYn P Y 9

. s ) i operator— are negative attributes, the algorithm derives the
in the sense that both* and #7 contain the input, output, and pair of vectors
intermediate attributes. This allows representation of arbitrary

mappings from attributes to attributes. Consider the two rules A =(a,a% and B = (b,b°) (16)
below that form a simple two-level rule cascade
(1,0) if ¢j =x; for somei € {1,---,m}

Rule 1: IF Aand B THEN C
Rule 2:1F C and D THEN E (aj,aj) =14 (0,1) if ¢; =&; for somei € {1,---,m}

where A, B, and D are input attributes, C is an intermediate (0,0) otherwise

attribute, and E is an output attribute. All attributes (A, B, 17)

C, D, and E) are represented in bdtit and F? (Fig. 4). For and

IF T1,%2, T, €1, L2, 0, Tm

such that for each index=1,---, M

Rule 1, an/y category node is used to encode A and B, and is 1,0) if ¢; =y, for somei € {1,---,n}
associated to ahyy node that predicts C. Likewise for Rule 2, (bj, bj) =1¢(0,1) if ¢; = for somei € {1,---,7}
an Fg node is used to encode C and D, and is associated 0,0) otherwise

to an Y node predicting E. By unifying the input field (18)
(F¢) and the output field {?) of ARTMAP, several desired wheree; is the jth attribute in the symbol table. Note that
features of symbolic processing are obtained. Besides tkamplement coding is employed above for encoding both
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B the next memory state’ derived through a rule firing. The rule
component is implemented by the two category fighgsand
ﬁ gil:lxzi F?, the map fieldFe?, and their interconnections. The match,
select, and execute three-phase cycle is performed without an
Execute 1 external interpreter. In the match phase, a choice fundibn

is computed for eacl#y category node (rule) based on the
memory statex®. With parallel implementation, the match
phase can be performed in a single activation process. The

Match select phase is realized by a winner-take-all interaction among
ate Update all £5 nodes in which thefy node with the largest choice

F, Select I F,

function T°¢ is identified. If the selected node (rule) does not
« F, satisfy the ART, vigilance constraint, the system goes through
another round of memory search to select anothigrnode
x x> that satisfies the ARJT vigilance criterion. If no such node
Fig. 5. Cascade ARTMAP rule chaining and inferencirgrepresents the €xists, the system halts. Otherwise, in the execute phase, the
system’s memory state and accumulates attribute values during multisgﬁmsequent(s) of the selected rule is(are) read out F{‘to
inferencing. Note that exact match is not required for a rule to be fired as
long as it satisfies the ARTvigilance criterion. At the end of
the positive and negative attributes. If the rules contain pRe cycle, the new memory staté is used to updat&® in Fo
negative attribute, the complement vectafsandb® may be to prepare for the next inferencing cycle. For the sample rule
eliminated. cascade (Fig. 4), the input attribute set {A,B,D} activafés
The vector pairs derived from the rules are then used ggde J, that infers C. Through the memory update process,
training patterns to initialize a cascade ARTMAP networkc is fed back fromF? to F. The memory state’ which

The network learning and inferencing algorithms will bgontains {A,B,C,D} then activated, in the next inferencing
described in subsequent sections. It suffices to note at thigle that derives E.

point that each distinct vectaX is translated into a recognition
category in ART, and likewise each distinct vectdB is
translated into a recognition category in ARTGiven a pair D. Learning and Rule Refinement

of vectors A and B derived from a rule, their respective Learning in cascade ARTMAP is more complicated than
recqgnition categ_o_rifes_ are associat_ed_ through the map figjdh; i, fuzzy ARTMAP as a chain of rule firing is involved in
During network initialization, the vigilance parametess maying a prediction. The proposed solution is a backtracking
and p, are each set to one to ensure that only identicglyqihm that identifies all rulesA¢ nodes) responsible
attribute vectors are grouped into one recognition categogy, making a prediction by tracing from the last rule fired.
Contradictory symbolic rules are detected during rule inserti@becifically, if J is the lastFy node selected which makes

when identical input attribute vectors are associated Wiffie pregiction, the algorithm identifies mecursorset ¥(J)
distinct output attribute vectors. The detection is achleV(? at contains node/ and all £ nodes that result in the

through aperfect mismatciphenomenon, in which the systeMjing of node . The backtracking occurs in the direction

tries to raise ART vigilance p, above one in response to &f o _, o _, pb _, b _, [feb _, Fa For example in
mismatch in ART, (Section III-E). 2 ! ! 2 2

Fig. 4, the backtracking algorithm traces frafa in £3 to its
antecedents {C,D} inF¢. It then checks that C id7 is an
intermediate attribute activated @y, in F¢, and finally traces
A symbolic production rule system consists of three mato .J; in F§. The backtracking stops df as its antecedents are
components: avorking memorycomponent, arule or pro- all input attributes. The precursor set of thé nodeJs, W(Jz)
ductioncomponent, and an external inference enginetar- is thus evaluated to béJy, J>}.
preter. The interpreter repeatedly performs a three-phase cycle|f the prediction made by nodd is correct, for each¥s
consisting of amatch phase, aselectphase, and aexecute node (rule); in the precursor se@(.J), the weight vector
phase. In the match phase, the interpreter compares the @mtecedent setyv} is reduced toward its fuzzy intersection
tecedent set of each rule against the working memory contentth the £} activity vectorx®. In the binary pattern and fast
Rules with completely matched antecedents are included ifé@arning case, a fired rule learns to ignore those features that
a conflict set. In the select phase, a single rule is selectade absent in the current input. This results in a generalization
from the conflict set using some strategies. If the conflict sby reducing the number of features the rule attends to.
is empty, the system halts. Otherwise, in the execute phaseA more complicated situation occurs when a prediction
the interpreter adds the consequent(s) of the selected rulestmr is encountered. With a long chain of rule firing, blame
the working memory. assignment can be difficult as it is unclear which rule in
In cascade ARTMAP, the attribute fields® and F? can the inferencing path causes the error. To handle prediction
be identified as the working memory component (Fig. Sinismatch, anini-match trackingorocess raises the ARWig-
L maintains the current memory staté and provides the ilance p, by slightly more than theninimummatch achieved
antecedents for condition matching and rule firid§. stores by the fired rules. Mini-match tracking is equivalent to the

C. Rule Chaining and Inferencing
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Stage 3a: No prediction. Stage 3b: Inferencing.
Resonance and Learning.

Fig. 6. Cascade ARTMAP algorithm stages 1, 2, and 3. The shaded subfie!ﬁl% mfpresent output attributes.

parallel match tracking mechanism used in fusion ARTMARBNd x% denote theM,-dimensional output attribute vectors;
[1]. This method inhibits thé’s node with the minimum match and x¢¢, x%¢, x¢¢, x¢¢, x2¢, and x% denote the respective
from firing again for the current input. The assumption isomplement attribute vectors® and x® are also known as
that the rule with the worst match is most likely to be thenemory state vectors. Lat® andy® denote theFs and F%

one which causes the prediction error. The system then geesivity vectors, respectively. Lex®® denote the map field

through another round of memory search and inferencing witff® activity vector.

a higher vigilance until a resonance is achieved. Weight VectorsLet w andwz% denote the 2/-dimensional
weight vectors of thej™* category node inF¢ and F2,
E. Cascade ARTMAP Algorithm respectively. Letvvj" denote the weight vector from thgh

As an on-line real-time system, cascade ARTMAP nee
n rate learning an rforman h i.e., th ; . L
ot sepa gte earning and performa ce phases, 1.€., the SYSi9hodes are not associated with any prediction.
functions in response to the current input environment. Givert . )
n Scope VectorsLet S; denote the 2/-dimensional scope
an F{ input vector, cascade ARTMAP undergoes a series P
vector of the j* category node infy. A scope vector
of prediction loops until either an uncommittddy node is
|dent|f|es the attributes relevant to &% node and allows
selected (which means no prediction), or a correct prediction_is
a more accurate computation of its match function. For an
made by a committed’y’ node (as in fuzzy ARTMAP). In each .
ncommitted /5 node j, the scope vectoB; = (s;,s;) is
prediction loop, cascade ARTMAP accumulates intermediaie
&fined by
attribute values through a series of inferencing cycles until one
or more output attributes are derived. The cascade ARTMAP {1 if ¢ indexes an input attribute
Sis =
N

¢ node toF?®. Initially, the weight vectors contain all “1’s”.
is implies that all category nodes are uncommitted and all

dynamics, as illustrated in Figs. 6 and 7, are formalized below. (19)

An A then Bparadigm is used in which the ARTinput vector

A is processed before the ARThput vectorB. . For anF¢ node; created by an inserted rule, the scope vector
Activity Vectors:Let A and B denote theF® and F? input S, = (s;,s;) is defined by

vectors, respectively. Let* = (x¢,x7,x2,x9¢, x7°, x2°) and

0 otherwise

x! = (x!,x}, x5, %k, x}¢, x8%) denote the 2/-dimensional 1 if ¢ indexes an attribute at a level previous to
F and F} activity vectors, respectively, wheref andx? s, = the rule’s consequent(s) in the rule cascade

denote thel/;-dimensional input attribute vectorsy andx?L 0 otherwise
denote thelM;,-dimensional intermediate attribute vectoxs; (20)



TAN: CASCADE ARTMAP 243

e T
T, Tl

LA
Pt ebadLlt el Ll

1 i

A B
Stage 4a: Update memory state. Stage 4b: Prediction matching.
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Stage 5a: Prediction confirmed. Stage 5b: Prediction mismatched.
Resonance and learning. Reset and repeat stage 2.

Fig. 7. Cascade ARTMAP algorithm stages 4 and 5. The shaded subfielE{% ofpresent output attributes.

Parameters:Cascade ARTMAP dynamics are determinediven time. The category choice is indexedJ/atwhere
by the choice parameters, > 0 and «; > 0; the learning a o " .
ratesf3, € [0,1] and 3, € [0,1]; and the vigilance parameters Ty = mwax{T} : for all F§' nodej } (25)
€ [0,1] and p, € [0, 1]. During network initialization, the  If more than one7}* is maximal, thely category nodej
network learns the patterns derived from rules (Section I1I-Bjith the smallest index is chosen. In particular, nodes become
using p, = p» = 1 such that each distinct attribute vectocommitted in orderj = 1,2,3,--- . When theJ** category is
creates a category. During network refinement, the systemosenyj = 1; andy; = 0 for j # J.
learns example patterns usipg = 1 for output classification =~ Resonance occurs if the match functier} of the selected

and p, < 1 to allow input generalization. node J meets the vigilance criterion

Stage 1 (Input Presentationfit the beginning of an input x® AW A Sy
. .. . .. a __ J J > 26
presentation, the AR]Ivigilancep, equals a baseline vigilance my = TxeAS, T Pa (26)

value g,. I'{* contains the input vectoA ) ’ o .
where the generalized fuzzy AND operationis defined by
x* = A. (21) N

(Aj=1Pj)i = min(pi, -, pyi) @7)

Stage 2 (Rule Selection(given the memory state vectaf,

. . . . . for vectorspy,---,py, and the norm|.| is defined as in
a P a 7 ) 1
for each7 nodej, the choice functiori is defined by (24). Otherwise mismatch reset occurs in which the value of
o IXEAWY the choice functioril’¢ is set to zero for the duration of the

(22) input presentation to prevent persistent selection of the same

category during search. Stage 2 then repeats to select another

where the fuzzy AND operatok is defined by new index.J.

(23) Stage 3a (No Prediction)f the selectedt’s nodeJ has no
prediction, i.e.,

i g + [Wi

(p A q)i = min(pi, ¢:)

and the norm|.| is defined by w =1 for all F nodek (28)
p| = Z il (24) eachZy nodej in the precursor sek(.J) learns thel'f* activity
* pattern according to the equation
for vectorsp andq. The system is said to makecategory o« (new) _ a (old) e ~ a (Old)
choice when at most ond’g node can become active at a Vs = (1= fa)w; + Ba(x* AW, ). (29)
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If the input vectorB is present, a category node is selecteactivatedFy and F¥ nodes learn the template patterns in their

in F? as in stage 2. The selectdd node K learns theF?
pattern according to the equation
Id
Wz;((new) =(1- ﬁb)wl;((o )
The Fg category node/ is then associated to the} node K
through the inter-ART map field

w (1 k=K
w = .
Ik 0 otherwise.

After that, the system halts.

Stage 3b (Inferencing)if the selectedFs node J has
learned to make a prediction, i.e., (28) does not hold,
weight vectorw?’ activatesF'®*. The F** activity vectorx®
is defined by

+ e awhO). (30)

(31)

ab __ ab
x® =w9.

(32)

Once the map field is activdy} is activated through the one-

to-one pathway betweeR“® and I} . For eachF¥ nodek,
the choice functioril} is defined by

b ab
Tk

The system again makes a category choice indexé&dwahere
1Y = max{T}: for all F} nodek }. (34)

When theK*™" category is chosen/, = 1, andy? = 0 for

k # K. The activatedt¥ node K then performs a top—down

priming on F?

Xb = Wl;(.

(35)

When F} is activated by a category choice i}, the ter-

respective modules as in (29) and (30), respectively. After
learning, the system halts.

Stage 5b (Match Tracking)A prediction mismatch triggers
a match tracking process. Using mini-match tracking, a node
4 is identified which has the minimum match function value
among all nodes if#(/). The choice functiofl’} of the nodej
is set to zero during the input presentation. The ARiGilance
p. is raised to slightly greater than the match achieved by the
node j,,

(new) _

Pa Inax{pa(OId), min{mj|j € ¥(J)} +¢}.  (40)

IEerfect mismatcloccurs when the system attempts to increase
p. above one. A perfect match in ARTp, = 1) with a ART,
mismatch indicates the existence of contradictory knowledge
where identical antecedent sets are associated with different
consequents. After match tracking, a new prediction loop then
repeats from stage 2.

F. Rule Extraction

As a direct generalization of fuzzy ARTMAP, cascade
ARTMAP architecture can be readily translated into a set of
symbolic rules using a generalized ARTMAP rule extraction
procedure [6], [7]. A rule pruning procedure selects a small
set of rules from cascade ARTMAP networks based on their
confidence factors. To derive concise rules, an antecedent
pruning procedure aims to remove antecedents from rules
while preserving accuracy.

1) Rule Pruning: The rule pruning algorithm derives a con-
fidence factor for eacli’y category node in terms of its usage
frequency in atraining set and its predictive accuracy on a

mination condition is checked by computing a goal Sign"fﬂlredicting set. As cascade ARTMAP generalizes ARTMAP

g

M,
g=> (zb +a%). (36)
=1

one-step prediction process to multistep inferencing, an input
pattern makes use of a set A category nodes in cascade
ARTMAP in contrast to a singlé’ node in fuzzy ARTMAP.

For evaluatingusageandaccuracy eachfy category nodg

A conclusion is reached whenever any output attribute is ma@@intains three counters: an encoding countethat records

known, i.e.,g > 0.

Stage 4a (Update Memory Statdj: a conclusion is not

reached, i.e.g = 0, the memory state vectot® is updated
with x* by the equation

x® (neW) — x® (Old) v Xb (Old) (37)
where the fuzzy OR operatiovt is defined by
(pVq)i =maz(p;, q) (38)

for vectorsp and q. The inferencing cycle then repeats fron]f the

stage 2.

Stage 4b (Prediction Matching)f a conclusion is reached

i.e., g > 0, the match functionn, of the predictionx® and
the F? input vectorB is computed by
b IB A x?|
my =
K |B|

(39)

the number of training patterns encoded by ngdepredicting
counterp; that records the number of predicting set patterns
predicted by node/, and a success countey, that records
the number of predicting set patterns predicted correctly by
node j.

For each training pattern, the encoding countg) ¢f each
F¢ nodejy in the precursor seb(.J), whereJ is the lastFy
node (rule) fired that makes the prediction, is increased by one.
For each predicting set pattern, the predicting counigr ¢f
eachFy nodej in the precursor se¥(.J) is increased by one.
prediction is correct, the success countgj 0f eachty
nodej in the precursor se¥(.J) is increased by 1. Based on

' the encoding, predicting, and success counter valuesistge

(U;) and the accuracy4;) of an Iy nodej are computed by
U; = ¢;/ max{c: for all I'§ nodek } (41)

and

Stage 5a (Resonancdf:the prediction match satisfies the

ART, vigilance criterion {%- > p;), resonance occurs. The

A; = Pj/ max{Py: for all F§ nodek } (42)
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where P;, the percent of the predicting set pattern predicted In cascade ARTMAP experiments, the deductive knowledge

correctly by nodej, is computed by base serves two functions. Incomplete versions of the rule
set are used to initialize the cascade ARTMAP network. The
Pj =s;/p;. (43)  rule set is also used to generate examples for training cascade

d h q h i ¢ ARTMAP. 1000 training examples are generated by assigning
Ujdan,, ‘éj ar:e then used to compute the confidence factor plyom values to the input attributes and deriving the output
nodej by the equation attribute values based on the complete set of 15 rules. The

CF: = ~U: + (1 — ) A, 44 internal reasoning of the rule-based system is thus hidden
i =l =4, (44) from the generated training examples which contain only the

Wherery c [07 1] isa We|ght|ng factor. After confidence factorle input attributes and the seven Output attributes. A f|lter|ng

are determined, recognition categories can be pruned from Bf@Cess is applied to remove inconsistent cases such as those

Threshold Pruning:This is the simplest type of pruning The baseline performance of cascade ARTMAP without rule

where theFg nodes with confidence factors below a giveipsertion is first evaluated. The system is trained on a portion
thresholdr are removed from the network. A typical setting foPf the generated 1000 cases and tested on the remaining
7is0.5. This method is fast and provides a first cut eliminatioRatterns. Table Il shows that cascade ARTMAP learns the
of unwanted nodes. To avoid over-pruning, it is sometiméitold regularities almost perfectly, given sufficient data. On

useful to specify a minimum number of recognition categoridge average, 16.8 rules, about the size of the original rule set,
to be preserved in the system. are created from 900 training cases.

Local Pruning: Local pruning removes recognition cate- In the rule insertion simulations, cascade ARTMAP net-

gories one at a time from an ARTMAP network. The baselin&ork is initialized with partial rule sets, and then trained
system performance on the training and the predicting setsaRd tested as in the previous experiments. The first set of
first determined. Then the algorithm deletes the recognitié¥Periments initializes cascade ARTMAP with a five-rule
category with the lowest confidence factor. The category $6t that recognizes birds. The five-rule set, by itself, only
replaced, however, if its removal degrades system performarsd@ssifies correctly 56.4% of the 1000 test patterns. Through
on the training and predicting sets. rule refinement, the performance improves significantly to
A variant of the local pruning strategy updates baselirf6.8% given only 100 training examples, and to 99.8% with
performance each time a category is removed. This optid#)0 examples. Moreover, the total number of rules formed
called hill-climbing, gives slightly larger rule sets but bet-in each simulation is fewer than the original 15-rule set that
ter predictive accuracy. A hybrid strategy first prunes thgenerates the examples. cascade ARTMAP with the five-
ARTMAP systems using threshold pruning and then appligdle set also performs consistently better than its counterpart
local pruning on the remaining smaller set of rules. without rules. The effect is best observed when the system
2) Antecedent PruningDuring rule extraction, a nonzerois trained with a small data set (from 92.3% to 96.8%). The
weight to anFy category node translates into an antecedepgrformance gap between the two systems closes up as the
in the corresponding rule. The antecedent pruning procediémber of training pattern increases. This indicates that given
calculates an error factor for each antecedent in each rule basegicient examples and in a noise free environment, cascade
on its performance on the training and predicting sets. WhefR&RTMAP is able to derive accurate rules by learning from
rule (F§ node).J makes a prediction error, for eadt§ node examples alone.
j in the precursor se¥(J), each antecedent of the rulehat A similar improvement in performance is observed when
also appears in the current memory state has its error fadieg¢ system is initialized with a ten-rule set. However, the
increased in proportion to the smaller of its magnitudes in tfgrformance with the ten-rule set is not better than that with
rule and in the memory state vectef. After the error factor the five-rule set. A careful study reveals that the additional
for each antecedent is determined, a local pruning stratefjye rules (Z21,72,75,711,712) are all isolated rules that do
similar to the one for rules, removes redundant antecedentgot form a complete inferencing chain, and are thus inactive.
In fact, the performance of the ten-rule set alone is exactly the
same as that of the five-rule set alone (56.4%). The inactive
rules also have a negative effect on the rule refinement process.
Given a small set of 100 examples, cascade ARTMAP with
the ten-rule set is worse than that with the five-rule set. As the
A sample rule-based deductive problem [24] is used as thgstem learns sufficient rules from larger sets of examples, the
first test bed of cascade ARTMAP. The simple domain preffect of the inactive rules is eliminated.
vides a noise-free closed-world environment to understand and’he final set of the experiments is on the insertion and
illustrate the system behaviors. The 15-rule knowledge basdinement of a 13-rule set (all rules except Z10 and Z14) that
(Table 1) distinguishes among seven types of animals basgdssifies correctly 76.6% of the test patterns. When initialized
on 21 input attributes. Four intermediate attributes: mammalith the 13-rule set, cascade ARTMAP consistently discovers
bird, carnivore, and ungulate, are involved in deducing thariants of the missing rules and achieves 100% correct
output animal type. The rules combine to form a three-levptediction. Table Il shows a sample set of rules discovered.
rule cascade. Rule R1 corresponds exactly to Z14 as “has feathers” implies

IV. EXPERIMENTAL RESULTS

A. Animal Identification
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TABLE |
A SAMPLE KNOWLEDGE BASE THAT IDENTIFIES ANIMALS

Z1 If ?x has hair Z10 1 ?x is a carnivore
then 7x is a mammal and 7?x has tawny color
and 7x has black stripes
Zz2 1If ?x gives milk then ?xis a tiger
then 7x is a mammal
Z11 If 7x is an ungulate
Z3 If ?x has feathers and  7?x has long legs
then ?xis a bird and  7x has long neck
and 7x has tawny color
Z4 If 7x flies and  7x has dark spots
and 7x lays eggs then 7x is a giraffe
then 7xis a bird
Zi2 7x is an ungulate
Z5 If ?x is a mammal and 7x has white color
and 7x eats meat and 7x has black stripes
then 7x is a carnivore then 7xis a zebra
Z6 If ?x is a mammal Z13 1If 7x is a bird
and 7x has pointed teeth and 7x does not fly
and 7x has claws and  ?x has long legs
and  ?x has forward-pointing eyes and  7x has long neck
then 7x is a carnivore and 7?x is black and white
then ?x is a ostrich
T If 7x is a mammal
and 7x has hoofs Z14 If ?x is a bird
then 7?x is an ungulate and  7x does not fly
and 7x swims
Z8 If ?x is a mammal and 7x is black and white
and 7x chews cud then 7x is a penguin

then ?x is an ungulate
715 If ?x is a bird
79 If 7x is a carnivore and 7xis a good flyer
and  7x has tawny color then 7x is an albatross
and  7x has dark spots
then 7?xis a cheetah

TABLE 1
PERFORMANCE OF CASCADE ARTMAP wiTH AND WITHOUT RULE INSERTION ON THE ANIMAL
IDENTIFICATION PROBLEM. THE SIMULATION RESULTS ARE AVERAGED OVER TEN RuUNs

Train/  Training # Nodes Predictive Accuracy

Systems Test  Iterations /Rules Correct (%) SD
Cascade ARTMAP without rules 100/900 2.2 134 92.3 1.6
(= Fuzzy ARTMAP) 500/500 2.6 16.9 98.9 0.8
900/100 24 16.8 99.6 0.5
5 rules alone 0/1000 - 5 56.4 -
Cascade ARTMAP with 5 rules 100/900 2.2 11.0 96.8 1.7
(23, 74, 713, 7214, Z15) 500/500 2.3 13.0 99.3 0.3
900/100 2.3 13.7 99.8 0.4
10 rules alone 0/1000 - 10 56.4 -
Cascade ARTMAP with 10 rules 100/900 2.2 14.3 95.7 1.9
(Z21-Z5, Z11-Z15) 500/500 2.2 14.6 99.4 0.6
900/100 2.0 15.0 99.8 0.4
13 rules alone 0/1000 - 13 76.6 -
Cascade ARTMAP with 13 rules  100/900 2.0 15.0 99.2 0.4
(less Z10 and Z14) 500,500 2.0 15.0 100.0 0.0

900/100 2.0 15.0 100.0 0.0
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TABLE Il network fully connected between layers, and trains the network
SamPLE RULES DISCOVERED BY CASCADE ARTMAP using a backpropagation algorithm. Simulation results showed
DURING LEARNING. R1 = Z14 AND R2 = Z10 ; - .
that by incorporating the domain theory, KBANN outper-
formed many learning/recognition systems, including consen-

R1 If 7x has feathers R2 If 7x has tawny color . . .
and  7x does not fly and  7x has black stripes  SUS S€duence analysis [14], KNN, ID-3 symbo!lc learning
and  ?x swims then 7x is a tiger algorithm [15], and backpropagation network trained purely
and ?xis black and white from examples [20] (Table V).
then 7x is a penguin In cascade ARTMAP experiments, the first two rules of the

domain theory are combined into a single rule:

promoter :- conformation, minus_35, minus_10.
“is a bird” by Z3. Rule R2 is a generalization over the missing Besjdes providing a slight improvement in system predictive
rule 710, as “black stripes” and “tawny color” are sufficiengccuracy, the elimination of attributentactreduces cascade

to identify “tiger” in this problem. ARTMAP network complexity and produces simpler rule sets.
N Cascade ARTMAP simulation is performed with parameter
B. DNA Promoter Recognition valuese, = oy, = 2andj, = 3, = 1, determined empirically.

Promoters are short nucleotide sequences that occur BBe input patterns are not complement coded as they already
fore genes and serve as binding sites for the enzyme RMAve a uniform norm of 57. In each simulation, cascade
polymerase during gene transcription. Identifying promoteARTMAP is initialized with the domain theory, trained on
is thus an important step in locating genes in DNA sequenc@$. patterns selected randomly, and tested on the remaining
One major approach to DNA matching or sequence corien patterns. To use a voting strategy, cascade ARTMAP is
parison concerns with the alignment of DNA sequences. S&ained in several simulation runs using different orderings of
quence alignment is usually performed by computing a mattite training set. For each test case, voting across 20 runs yields
function that rewards matches and penalizes mismatchasfinal prediction. An averaging technique similar to voting
insertions, and deletions [22], [23]. This can be done by dyas also used in the KBANN system [20].
namic programming which can be computationally expensive Table V. compares the performance of fuzzy ARTMAP
for multiple sequences. Consensus sequence analysis sotb cascade ARTMAP, averaged over 20 simulations, with
the problem of aligning multiple sequences by identifyingther alternative systems. Among the systems that do not
functionally important sequence features that are consenigdorporatea priori symbolic knowledge, fuzzy ARTMAP
in the DNA sequences. For example, consensus patterns(asfscade ARTMAP without rule insertion) achieves the lowest
promoter sequences can be identified at the protein bindiggjor rate. While the KBANN system and cascade ARTMAP
sites. Besides statistical methods reported in the biological liteth obtain significant improvement in predictive performance
erature, machine learning and information theoretic techniqueys incorporating rules, cascade ARTMAP produces a lower
are also being used for DNA matching and recognition [8grror rate than KBANN. In addition to the 13 inserted rules,
[11]. In this paper, the performance of cascade ARTMAP &n average of 15. 9 recognition nodes (rules) are created.
compared with arad hocpartial pattern matching algorithm, In each simulation, rules are also extracted from the trained
based on consensus pattern analysis, of which published resaicade ARTMAP network. Due to the small data set size, con-
on promoter recognition is available [14]. We also mak&édence factors are computed solely basedisage Threshold
performance comparison to many machine learning systeprsining with threshold- = 0.01 is applied, followed by the
including backpropagation neural network, ID-3 symbolicule and antecedent pruning procedures using the local pruning
learning algorithm, and K-nearest neighbor (KNN) system. strategy. Comparing predictive performance, rules extracted

The promoter data set [12] used in the cascade ARTMARPM cascade ARTMAP are still slightly more accurate than
experiments consists of 106 patterns, half of which are posititee NofM rules extracted from KBANN [18], [19]. While the
instances (promoters). Although larger sets of promoter datascade ARTMAP rule sets contain more rules than the NofM
are available, this version of the promoter data set is usede sets, the number of antecedents is almost half of that of
here to allow a direct comparison with the results of thdne NofM rule sets (Table V).
others. Each DNA pattern represents a 57-position window,The promoter rules formulated by cascade ARTMAP are
with the leftmost 50 window positions labeled -50 to -1 andimilar in form to the consensus sequences derived by con-
the rightmost seven labeled 1 to 7 (Fig. 8). Each positiorentional statistical methods. However, whereas consensus
is a nominal feature which takes one of the four nucleotid®quences are used with an exact match condition, cascade
values {A, G, T, C}. There is no missing feature value. UsindRTMAP rules are based on competitive activation and do not
local representation, each 57-position pattern is expanded intguire exact match in antecedents. Through the approximate
a 228-bit nucleotide-position string. matching property, the number of nucleotides used to identify

The promoter data set and an imperfect domain theory wexregpromoter is usually small (at most four in this case). By
used to evaluate a hybrid learning system called KBANN [20¢ontrast, the consensus sequences, obtained by noting the
The imperfect domain theory (Table IV), if requires exagbositions with the same base in greater than 50% of the
match, only classifies half of the 106 cases correctly. Theomoter patterns [13], used a minimum of 12 nucleotides.
KBANN theory refinement procedure translates the imperfect Table VI shows a sample set of refined promoter rules
theory into a feedforward network, adds links to make thextracted from cascade ARTMARConformationhas been
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TABLE IV
A RULE-BASED THEORY FOR CLASSIFYING PROMOTERS.IT CoNsIsTs OF14 RULES AND A TOTAL OF 83
ANTECEDENTS. THEANTECEDENT NOTATION T@-36 INDICATES THE NUCLEOTIDE VALUE T IN POSITION -36

promoter - conformation, contact.

contact :-  minus_35, minus_10.

minus_35 - C@-37, T@-36, T@-35, G@-34, A@-33, CQ-32.

minus_35 - T@-36, T@-35, G@-34, CQ@-32, A@-31.

minus_35 - T@-36, T@-35, G@-34, A@-33, C@-32, A@-31.

minus_35 - T@-36, T@-35, G@-34, A@-33, C@-32.

minus_10 - T@-14, A@-13, T@-12, A@-11, A@-10, T@-9.

minus_10 - T@-13, A@-12, A@-10, T@-8.

minus_10 - T@-13, AQ@-12, T@-11, AG-10, A@.9, T@-8.

minus_10 - T@-12, A@-11, TQ-7.

conformation :- C@-47, A@-46, A@-45, T@-43, T@-42, A@-40, CQ@-39, GQ-22,
T@-18, C@-16, G@-8, C@-7, G@-6, C@-5, CQ-4, C@-2, CA-1.

conformation :- A@-45, AQ@-44, A@-41.

conformation :- A@-49, T@-44, T@-27, A@-22, T@-18, T@-16, G@-15, A@-1.

conformation :- A@-45, A@-41, T@-28, T@-27, T@-23, A@-21, A@-20, T@-17,
T@-15, T@-4.

57-position DNA sequence

|AGACGTAGACCTGTCTTATTGAGCTTTCCGGCGAGAGTTCAATGGGACAGGTCCAGT |
-50 7

228-bit nucleotide string

Fig. 8. A 57-position DNA sequence. Each position takes one of the four nucleotide values {A, G, T, C}. Using local representation, each DNA
sequence is expanded into a 228-bit nucleotide string. This version of 106-case promoter data set, obtained from the UCI machine learning database
repository, contains no missing value.

TABLE V
PERFORMANCE OFFuzzy ARTMAP, CascAabE ARTMAP, AND CascADE ARTMAP RuULES ON THE PROMOTER DATA SET
COMPARING WITH THE SYMBOLIC LEARNING ALGORITHM ID-3, THE KNN SYSTEM, CONSENSUS SEQUENCE
ANALYSIS, THE BACKPROPAGATION NETWORK, THE KBANN SysTeEM, AND THE NOFM RULES

Systems # Nodes/Rules # Antecedent Error (%)
ID-3 - - 179
KNN (K=3) 105 - 12.3
Consensus Sequences - - 11.3
Backpropagation Network 16 - 7.5
Fuzzy ARTMAP 20.6 - 6.5
KBANN 16 - 2.9
Cascade ARTMAP 13+15.9 - 2.0
NOFM rules 12 100 3.8
Cascade ARTMAP rules 19.5 53.1 3.0

dropped as a condition for promoters, so are the four rulesThe confidence factor attached to each ARTMAP rule
defining it. All the minus_35 and minus_10 rules are prgprovides another dimension for interpreting the rule. By having
served, but have been refined to refer to only two salieatconfidence factor of one, the first promoter rule is very
nucleotide bases. Two new rules for identifying promoters afiequently used and thus important. It is activated by different
created, which contain featuresmafnus_35andconformation combinations of minus_35 and minus_10 rules, each individ-
These two rules are believed to compensate for the eliminatioally does not have a high usage. The two new promoter rules
of conformation Eight nonpromoter rules are created. They a@e roughly of equal importance but are not as heavily used
slightly more irregular due to the randomness of nhonpromotees the first promoter rule. The first three minus_35 rules are
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TABLE VI

A SET oF PROMOTER RULES EXTRACTED FROM CASCADE ARTMAP. THE SET ConsIsTs oF19 RULES AND A TOTAL OF
46 ANTECEDENTS. THE REAL NUMBER ASSOCIATED WITH EACH RULE REPRESENTS THERULE'S CONFIDENCE FACTOR

promoter (1.00)
promoter (0.31)
promoter (0.22)

minus_35 (0.41)
minus_35 (0.34)
minus_35 (0.22)
minus_35 (0.03)

minus_10 (0.44)
minus-10 (0.31)
minus-10 (0.19)
minus_10 (0.06)

non-promoter (0.19)
non-promoter (0.16)
non-promoter (0.16)
non-promoter (0.16)
non-promoter (0.12)
non-promoter (0.12)
non-promoter {0.06)
non-promoter (0.03)

:- minus.35, minus..10.
- A@-45, G@-34.
- G@-34, T@-25, T@-18.

- G@-34, C@-32.
- T@-36, T@-35.
.- A@-33, C@-32.
- T@-36, C@-32.

.- A@-12, T@-8.
:- A@-13, T@-9.
- A@-11, T@-7.
.- A@-9, T@-8.

- A@5.

- A@-49, C@6, G@.7

- A@7.

- T@-23.

- A@-15, T@1.

- C@-46, G@-26.

- T@-34, T@-33, C@-27, TO-26, G@5.

- A@-45, T@-44, G@-42, T@-29, A@-24, T@-7, A@6, GQT.

TABLE VI

A SET oF PROMOTER RULES EXTRACTED BY THE NOFM ALGORITHM FROM KBANN. IT CoNsIsTS OFNINE RULES AND A TOTAL OF 83 ANTECEDENTS.A
CoMPRESSEDNUCLEOTIDE REPRESENTATIONREFERS TOBASES BY STARTING A SEQUENCE LOCATION FOLLOWED BY A SUBSEQUENCE.FOR EXAMPLE, @-37 'CT-
INDICATES C@-37 AND T@-35. THE FUNCTION “NT()" RETURNS THE NUMBER OF ENCLOSED ANTECEDENTS THAT MATCH AN INPUT SEQUENCE.
STANDARD NUCLEOTIDE AMBIGUITY CODES ARE INTERPRETED AsFoLLows: M=a/c, K=G/T, R=A/G, D=A/G/T, W=A/T, B=CIG/T, AND S=C/G

promoter :- minus_35, minus_10.

minus_ 10 :- 10 <
minus_.10 :- 2 of
minus 10 :- 10 <
minus_10 :- 1 <
minus.35 - 10 <
minus 35 - 10 <
minus.35 :- 3 of
minus_35 :-

3.8 * nt (@-14 -TA-A-T-") + 3.0 * nt (@-14 -G-C—) -
3.0 * nt (@-14 -A-T—").

@-14 '~-CA—T’ and not 1 of @-14 '-RB—S".
3.0 * nt (@-14 -TAT-T-") + 1.8 * nt (@-14 '—GA-").

3.5 * nt (@-14 "TAWAAY-') - 1.7 * nt (@-14 -T-TG-) -
2.2 * nt (@-14 "CSSK-A-").

4.0 * nt (@37 -TTGAT-") + 1.5 * nt (@37 —TCC-") -
1.5 * nt (@-37 “RGAGG-").

5.1 * nt (@-37 -T-G-A-") + 3.1 * nt (@-37 -GT—") -
1.9 * nt (@37 -CGW—") - 3.1 * nt (@-37 -A—C-").

@-37 'C-TGAC-.

@-37 -TTG-CA-.

more highly utilized than the last minus_35 rule. A similaconfidences, and could be dropped with little degradation of
pattern is observed for the minus_10 rules. The nonpromotarerall performance.

rules have lower and less contrasting confidence values. Th&able VIl shows a set of promoter rules extracted by the
first four nonpromoter rules nevertheless seem slightly mokofM algorithm from KBANN [19]. The NofM rule set con-
important. The last two nonpromoter rules have the leasists of only nine rules but contains 83 countable antecedents.
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Moreover, the rules make use of several complex construdts,] A. Lapedes, C. Barnes, C. Burks, R. Farber, and K. Sirotkin, *
including NofM, a counting function “nt,” addition, subtrac-

tion, multiplication, and comparison of real numbers. Also, the
NofM rules involve seven nucleotide ambiguity codes, and

have already employed a compressed format for represef#]

ing

complexity, ARTMAP rules are much cleaner and easier (3]

adjacent nucleotide bases to simplify rules. Comparing

interpret. More importantly, by preserving the symbolic rule

form during learning, the extracted rules are identical ifg

form and can be compared directly with the original rules.
Furthermore, the use of confidence factors enables ranki
of rules. This is particularly important to human experts in

analyzing the rules.
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