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Cascade ARTMAP: Integrating Neural Computation
and Symbolic Knowledge Processing

Ah-Hwee Tan

Abstract— This paper introduces a hybrid system termed
cascade adaptive resonance theory mapping (ARTMAP)
that incorporates symbolic knowledge into neural-network
learning and recognition. Cascade ARTMAP, a generalization
of fuzzy ARTMAP, represents intermediate attributes and
rule cascades of rule-based knowledge explicitly and performs
multistep inferencing. A rule insertion algorithm translates
if–then symbolic rules into cascade ARTMAP architecture.
Besides that initializing networks with prior knowledge can
improve predictive accuracy and learning efficiency, the inserted
symbolic knowledge can be refined and enhanced by the cascade
ARTMAP learning algorithm. By preserving symbolic rule form
during learning, the rules extracted from cascade ARTMAP
can be compared directly with the originally inserted rules.
Simulations on an animal identification problem indicate that a
priori symbolic knowledge always improves system performance,
especially with a small training set. Benchmark study on a
DNA promoter recognition problem shows that with the added
advantage of fast learning, cascade ARTMAP rule insertion and
refinement algorithms produce performance superior to those
of other machine learning systems and an alternative hybrid
system known as knowledge-based artificial neural network
(KBANN). Also, the rules extracted from cascade ARTMAP
are more accurate and much cleaner than the NofM rules
extracted from KBANN.

Index Terms—ARTMAP, hybrid system, promotor recognition,
rule extraction, rule insertion, rule refinement.

I. INTRODUCTION

PRIOR knowledge of a problem domain can help a neural
network in learning to solve the problem. Specifically,

preexisting symbolic rules can be used to initialize a neu-
ral network architecture before learning. Not only can rule
insertion improve network learning efficiency, it also serves
to provide knowledge that is not captured by training cases
or that cannot be easily learned by a neural network, and
thus improves the system predictive performance. In addition,
incomplete or partially correct symbolic knowledge can be re-
fined or enhanced through neural network learning algorithms.
Rule insertion and refinement in neural networks therefore
automates symbolic knowledge enhancement and repair.

A popular approach to rule insertion and refinement uses
rules to initialize the architecture of a multilayer neural net-
work and refines the network using a backpropagation al-
gorithm [9], [10], [20]. One major problem of using back-
propagation (BP) networks to refine rule-based knowledge is
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Fig. 1. Rules in fuzzy ARTMAP. Each node in theF a

2
field represents a

recognition category of ARTa input patterns. Through the inter-ART map
field, each such node is associated to an ARTb category in theF b

2
field, which

in turn encodes a prediction. Learned weight vectors, one for eachF
a
2

node,
constitute a set of rules that link antecedents to consequents. The number of
rules equals the number ofF a

2
nodes that become active during learning.

the preservation of symbolic knowledge. Under the weight
tuning process of a backpropagation algorithm, symbolic rules
quickly lose their original meanings. In fact, large shifts in the
meanings of hidden units can occur as a result of training [19].

Another major limitation of the BP approach is that the
initial rule base has to be roughly complete, or else the
initial network architecture created may not be sufficiently
rich for dealing with the problem domain. As the standard
backpropagation algorithm is not able to create additional
nodes or connections dynamically during learning, a network
initialized by a small set of rules may even have a lower
chance of eventually learning the task. This problem was noted
and partially solved by Lacheret. al., who used virtual rules
to create potential connections for learning [10]. However,
in general, it is difficult to decide beforehand the virtual
rules or connections desired. Trespet al. [21] employed a
learning algorithm that allowed creation of basis functions
during learning. However, as their model only represents rules
associating input attributes to output predictions, the network
is not general enough to deal with rule-based domain theories
involving intermediate attributes and rule chaining.

This paper introduces a hybrid system called cascade
ARTMAP (adaptive resonance theory mapping) that solves
the above problems [16], [17]. Cascade ARTMAP, a
generalization of fuzzy ARTMAP [3], represents intermediate
variables of rule-based knowledge explicitly and performs
multistep inferencing (rule chaining). In ARTMAP and
cascade ARTMAP systems, the recognition categories learned
by the category nodes are compatible with rules that
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Fig. 2. Cascade ARTMAP for symbolic knowledge refinement and evaluation.

link antecedents to consequents (Fig. 1). Therefore rules
can be readily inserted into a cascade ARTMAP network
that can then be trained by examples. During learning, new
recognition categories (rules) can be created dynamically to
cover the deficiency of the domain theory. This is in contrast
with the static architecture of the standard slow learning
backpropagation networks. Also, by the self-stabilizing
property, learning in cascade ARTMAP does not wash
away existing knowledge and the meanings of units do
not shift. This allows preservation of symbolic rules during
neural network learning. Using a generalized ARTMAP rule
extraction procedure [6], [7], the final system states can be
converted back to a compact set of rules. This enables direct
comparison of the original knowledge with the refined rules.
Also, each extracted rule is associated with a confidence factor
that indicates its importance or usefulness. This allows ranking
and evaluation of the extracted knowledge. In all, the cascade
ARTMAP rule insertion, refinement, and extraction procedures
form a paradigm for symbolic knowledge refinement and
evaluation (Fig. 2).

Cascade ARTMAP has been evaluated on two benchmark
problems. The first animal identification problem is based on
a sample rule-based deductive system [24]. Simulation results
show that prior knowledge, even when incomplete, always
improves system performance. The effect is most significant
when few training cases are available. Benchmark study on
the second domain, a DNA promoter recognition problem,
compares cascade ARTMAP theory refinement capability with
an alternative approach known as the knowledge-based ar-
tificial neural network (KBANN) that refines knowledge of
feedforward networks using a backpropagation algorithm [18],
[20]. Simulation results indicate that with the added advantage
of fast learning, the cascade ARTMAP rule insertion and
refinement algorithms produce performance superior to that of
KBANN. More importantly, the refined rules extracted from
cascade ARTMAP are much simpler than the NofM rules
extracted from KBANN and can be compared directly with
the original symbolic rules.

The remaining sections of this paper are organized as fol-
lows. To make this article self-contained, Section II provides
a summary of fuzzy ART and fuzzy ARTMAP systems.
Section III motivates the generalization of fuzzy ARTMAP
and presents the cascade ARTMAP rule insertion, rule chain-

Fig. 3. Fuzzy ARTMAP architecture. The ARTa complement coding pre-
processor transforms theMa-vectora into the2Ma-vectorA = (a; ac) at the
ARTa fieldF a

0
. A is the input vector to the ARTafieldF a

1
. Similarly, the input

to F b
1

is the 2Mb-vector (b;bc). When ARTb disconfirms a prediction of
ARTa, map field inhibition induces the match tracking process. Match tracking
raises the ARTa vigilance (�a) to just above theF a

1
-to-Fa

0
match ratio

jxaj=jAj. This triggers an ARTa search which leads to activation of either
an ARTa category that correctly predictsb or to a previously uncommitted
ARTa category node.

ing, rule refinement, and rule extraction algorithms. The final
section illustrates cascade ARTMAP performance on the ani-
mal identification and DNA promoter recognition problems.

II. FUZZY ARTMAP

Fuzzy ARTMAP [3], a generalization of binary ARTMAP
[4], learns to classify inputs by a pattern of fuzzy membership
values between zero and one indicating the extent to which
each feature is present. This generalization is accomplished
by replacing the ART 1 modules [2] of the binary ARTMAP
system with fuzzy ART modules [5]. Each ARTMAP system
includes a pair of ART modules (ARTand ART ) that create
stable recognition categories in response to arbitrary sequences
of input patterns (Fig. 3). An associative learning network and
an internal controller link these modules to make the ARTMAP
system operate in real time.

A. Fuzzy ART

Fuzzy ART [5] incorporates computations from fuzzy set
theory into ART systems. By replacing the crisp (nonfuzzy)
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intersection operator () that describes ART 1 dynamics [2]
by the fuzzy AND operator () of fuzzy set theory, fuzzy
ART can learn stable categories in response to either analog
or binary patterns.

ART Field Activity Vectors: Each ART system includes a
field of nodes that represent a current input vector; a
field that receives both bottom-up input from and top-
down input from a field that represents the active code, or
category. VectorI denotes activity; vector denotes
activity; and vector denotes activity.

Weight Vector:Associated with each category node is
a vector of adaptive weights, or long-term memory (LTM)
traces. Initially

(1)

then each category isuncommitted. After a category codes its
first input, it becomescommitted.

Parameters:A choice parameter , a learning rate
parameter , and a vigilance parameter
determine fuzzy ART dynamics.

Category choice:For each inputI and node , thechoice
function is defined by

(2)

where the fuzzy intersection [25] is defined by

(3)

and where the norm is defined by

(4)

The system makes acategory choicewhen at most one
node can become active at a given time. The indexdenotes
the chosen category, where

(5)

When the category is chosen, ; and for
.

Resonance or Reset: Resonanceoccurs if thematch function
of the chosen category meets the vigilance

criterion

(6)

Learning then ensues, as defined below. OtherwiseMis-
match resetoccurs, where the value of the choice function

is set to 0 for the duration of the input presentation . The
search process continues until a chosen categorysatisfies
the matching criterion (6).

Learning: Once search ends, the weight vector learns
according to the equation

(7)

Fast learningcorresponds to setting . Using the fast
learning and slow recoding option, we set when is

an uncommitted node and take after the category is
committed.

Normalization by complement coding:Normalization of
fuzzy ART inputs prevents category proliferation. The
complement coded input is the 2 -dimensional
vector

(8)

where

(9)

A complement coded input is automatically normalized, be-
cause

(10)

With complement coding, the initial condition

(11)

replaces the fuzzy ART initial condition (1).

B. ARTMAP Prediction and Search

Fuzzy ARTMAP incorporates two fuzzy ART modules
ART and ART that are linked together via an inter-ART
map field . The map field forms predictive associations
between categories and realizes the ARTMAPmatch tracking
rule.

ART and ART: Inputs to ART and ART are complement
coded. For ART ; and for ART

(Fig. 3). For ART , denotes the output vector;
denotes the output vector; and denotes the ART

weight vector. For ART denotes the output vector;
denotes the output vector; and denotes the ART
weight vector. For the map field, denotes the output
vector, and denotes the weight vector from the
node to .

Map Field Activation: The map field receives input
from either or both of the ART or ART category fields. A
chosen node sends input to the map field via the
weightsw . An active node sends input to via one-
to-one pathways between and . If both ART and ART
are active, then remains active only if ART predicts the
same category as ART. The output vector obeys

if the node is active and
is active

if the node is active and
is inactive

if is inactive and is active
if is inactive and is inactive .

(12)
By (12), if y fails to confirm the map field prediction
made by . Such a mismatch event triggers an ARTsearch
for a better category, as follows.

Match Tracking: At the start of each input presentation
ART vigilance equals a baseline vigilance parameter.
When a predictive error occurs, match tracking raises ART
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vigilance just enough to trigger a search for a newcoding
node. ARTMAP detects a predictive error when

(13)

where is the map field vigilance parameter. A signal from
the map field to the ART orienting subsystem causes to
“track the match.” That is, increases until it is slightly
higher than the match value . Then, since
ART fails to meet the matching criterion, the search for
another node begins.

Map Field Learning: Weights in paths
initially satisfy

(14)

During resonance with the ARTcategory active,
approaches the map field vector as in (7). With fast
learning, once learns to predict the ARTcategory , that
association is permanent; i.e., for all time.

III. CASCADE ARTMAP

A. Rule Cascade Representation

ARTMAP handles a class of if–then rules that map a set of
input attributes directly to a disjoint set of output attributes.
Symbolic rule-based knowledge, on the other hand, often
involves rule cascadesand intermediate attributes. A set of
rules is said to form arule cascadewhen a consequent of a rule
also serves as an antecedent of another rule. Such attributes
that have dual roles are usually calledintermediate attributes
in contrast toinput attributesthat only serve as antecedents
andoutput attributesthat only serve as consequents. Through
intermediate attributes, firing of a rule may lead to the firing
of another rule at a later stage of an inferencing process.
Intermediate attributes and rule cascades are useful for feature
abstraction and task decomposition so that only a small set of
simple rules is needed at each level of the cascade.

In this paper, the proposed solution to representing rule
cascades is cascade ARTMAP that uses ARTMAP architecture
but generalizes the ARTMAP one-step prediction process
to multistep inferencing. Cascade ARTMAP unifies the
ARTMAP input attribute field and output attribute field
in the sense that both and contain the input, output, and
intermediate attributes. This allows representation of arbitrary
mappings from attributes to attributes. Consider the two rules
below that form a simple two-level rule cascade

Rule 1: IF A and B THEN C

Rule 2: IF C and D THEN E

where A, B, and D are input attributes, C is an intermediate
attribute, and E is an output attribute. All attributes (A, B,
C, D, and E) are represented in both and (Fig. 4). For
Rule 1, an category node is used to encode A and B, and is
associated to an node that predicts C. Likewise for Rule 2,
an node is used to encode C and D, and is associated
to an node predicting E. By unifying the input field
( ) and the output field ( ) of ARTMAP, several desired
features of symbolic processing are obtained. Besides that

Fig. 4. Cascade ARTMAP representation of the sample rule cascade.

rule insertion can be readily performed in cascade ARTMAP,
rule chaining and inferencing can also be performed as in
production systems.

B. Rule Insertion

As the knowledge structure of cascade ARTMAP is com-
patible with rule-based knowledge representation, if–then rules
can be readily translated into the recognition categories of a
cascade ARTMAP system. Initializing a cascade ARTMAP
network with preexisting rules before learning serves to set
up the global solution structure. This helps to improve learn-
ing efficiency and predictive accuracy. Without rule inser-
tion, cascade ARTMAP performance reduces to that of fuzzy
ARTMAP.

Rule insertion proceeds in two phases. The first phase parses
all rules for attribute names to set up asymbol tablein which
each attribute in the rules has a unique entry. Based on the
symbol table, the second phase translates each rule into two
2 -dimensional vectors and , where is the total
number of attributes in the symbol table, as inputs to the
cascade ARTMAP ART and ART modules. Given a rule
of the following format:

IF

THEN (15)

where and are positive attributes, and
and preceded by the logical NOT

operator are negative attributes, the algorithm derives the
pair of vectors

and (16)

such that for each index

if for some
if for some
otherwise

(17)
and

if for some
if for some
otherwise

(18)
where is the th attribute in the symbol table. Note that
complement coding is employed above for encoding both
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Fig. 5. Cascade ARTMAP rule chaining and inferencing:x
arepresents the

system’s memory state and accumulates attribute values during multistep
inferencing.

the positive and negative attributes. If the rules contain no
negative attribute, the complement vectorsand may be
eliminated.

The vector pairs derived from the rules are then used as
training patterns to initialize a cascade ARTMAP network.
The network learning and inferencing algorithms will be
described in subsequent sections. It suffices to note at this
point that each distinct vector is translated into a recognition
category in ART and likewise each distinct vector is
translated into a recognition category in ART. Given a pair
of vectors and derived from a rule, their respective
recognition categories are associated through the map field.
During network initialization, the vigilance parameters
and are each set to one to ensure that only identical
attribute vectors are grouped into one recognition category.
Contradictory symbolic rules are detected during rule insertion
when identical input attribute vectors are associated with
distinct output attribute vectors. The detection is achieved
through aperfect mismatchphenomenon, in which the system
tries to raise ART vigilance above one in response to a
mismatch in ART (Section III-E).

C. Rule Chaining and Inferencing

A symbolic production rule system consists of three main
components: aworking memorycomponent, arule or pro-
ductioncomponent, and an external inference engine orinter-
preter. The interpreter repeatedly performs a three-phase cycle,
consisting of amatch phase, aselectphase, and anexecute
phase. In the match phase, the interpreter compares the an-
tecedent set of each rule against the working memory content.
Rules with completely matched antecedents are included into
a conflict set. In the select phase, a single rule is selected
from the conflict set using some strategies. If the conflict set
is empty, the system halts. Otherwise, in the execute phase,
the interpreter adds the consequent(s) of the selected rule to
the working memory.

In cascade ARTMAP, the attribute fields and can
be identified as the working memory component (Fig. 5).

maintains the current memory state and provides the
antecedents for condition matching and rule firing. stores

the next memory state derived through a rule firing. The rule
component is implemented by the two category fieldsand

, the map field , and their interconnections. The match,
select, and execute three-phase cycle is performed without an
external interpreter. In the match phase, a choice function
is computed for each category node (rule) based on the
memory state . With parallel implementation, the match
phase can be performed in a single activation process. The
select phase is realized by a winner-take-all interaction among
all nodes in which the node with the largest choice
function is identified. If the selected node (rule) does not
satisfy the ART vigilance constraint, the system goes through
another round of memory search to select anothernode
that satisfies the ART vigilance criterion. If no such node
exists, the system halts. Otherwise, in the execute phase, the
consequent(s) of the selected rule is(are) read out into.
Note that exact match is not required for a rule to be fired as
long as it satisfies the ARTvigilance criterion. At the end of
the cycle, the new memory state is used to update in
to prepare for the next inferencing cycle. For the sample rule
cascade (Fig. 4), the input attribute set {A,B,D} activates
node that infers C. Through the memory update process,
C is fed back from to . The memory state which
contains {A,B,C,D} then activates in the next inferencing
cycle that derives E.

D. Learning and Rule Refinement

Learning in cascade ARTMAP is more complicated than
that in fuzzy ARTMAP as a chain of rule firing is involved in
making a prediction. The proposed solution is a backtracking
algorithm that identifies all rules ( nodes) responsible
for making a prediction by tracing from the last rule fired.
Specifically, if is the last node selected which makes
the prediction, the algorithm identifies aprecursorset
that contains node and all nodes that result in the
firing of node . The backtracking occurs in the direction
of . For example in
Fig. 4, the backtracking algorithm traces from in to its
antecedents {C,D} in . It then checks that C in is an
intermediate attribute activated by in , and finally traces
to in . The backtracking stops at as its antecedents are
all input attributes. The precursor set of the node
is thus evaluated to be .

If the prediction made by node is correct, for each
node (rule) in the precursor set , the weight vector
(antecedent set) is reduced toward its fuzzy intersection
with the activity vector . In the binary pattern and fast
learning case, a fired rule learns to ignore those features that
are absent in the current input. This results in a generalization
by reducing the number of features the rule attends to.

A more complicated situation occurs when a prediction
error is encountered. With a long chain of rule firing, blame
assignment can be difficult as it is unclear which rule in
the inferencing path causes the error. To handle prediction
mismatch, amini-match trackingprocess raises the ARTvig-
ilance by slightly more than theminimummatch achieved
by the fired rules. Mini-match tracking is equivalent to the
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Fig. 6. Cascade ARTMAP algorithm stages 1, 2, and 3. The shaded subfields ofF
b
1

represent output attributes.

parallel match tracking mechanism used in fusion ARTMAP
[1]. This method inhibits the node with the minimum match
from firing again for the current input. The assumption is
that the rule with the worst match is most likely to be the
one which causes the prediction error. The system then goes
through another round of memory search and inferencing with
a higher vigilance until a resonance is achieved.

E. Cascade ARTMAP Algorithm

As an on-line real-time system, cascade ARTMAP needs
not separate learning and performance phases, i.e., the system
functions in response to the current input environment. Given
an input vector, cascade ARTMAP undergoes a series
of prediction loops until either an uncommitted node is
selected (which means no prediction), or a correct prediction is
made by a committed node (as in fuzzy ARTMAP). In each
prediction loop, cascade ARTMAP accumulates intermediate
attribute values through a series of inferencing cycles until one
or more output attributes are derived. The cascade ARTMAP
dynamics, as illustrated in Figs. 6 and 7, are formalized below.
An A then Bparadigm is used in which the ARTinput vector

is processed before the ARTinput vector .
Activity Vectors:Let A andB denote the and input

vectors, respectively. Let and
denote the 2 -dimensional

and activity vectors, respectively, where and
denote the -dimensional input attribute vectors; and
denote the -dimensional intermediate attribute vectors;

and denote the -dimensional output attribute vectors;
and , , and denote the respective
complement attribute vectors. and are also known as
memory state vectors. Let and denote the and
activity vectors, respectively. Let denote the map field

activity vector.
Weight Vectors:Let and denote the 2 -dimensional

weight vectors of the category node in and ,
respectively. Let denote the weight vector from theth

node to . Initially, the weight vectors contain all “1’s”.
This implies that all category nodes are uncommitted and all

nodes are not associated with any prediction.
Scope Vectors:Let denote the 2 -dimensional scope

vector of the category node in . A scope vector
identifies the attributes relevant to an node and allows
a more accurate computation of its match function. For an
uncommitted node , the scope vector is
defined by

if indexes an input attribute
otherwise

(19)

For an node created by an inserted rule, the scope vector
is defined by

if indexes an attribute at a level previous to
the rule’s consequent(s) in the rule cascade
otherwise

(20)
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Fig. 7. Cascade ARTMAP algorithm stages 4 and 5. The shaded subfields ofF
b
1

represent output attributes.

Parameters:Cascade ARTMAP dynamics are determined
by the choice parameters and ; the learning
rates and ; and the vigilance parameters

and . During network initialization, the
network learns the patterns derived from rules (Section III-B)
using such that each distinct attribute vector
creates a category. During network refinement, the system
learns example patterns using for output classification
and to allow input generalization.

Stage 1 (Input Presentation):At the beginning of an input
presentation, the ARTvigilance equals a baseline vigilance
value contains the input vector

(21)

Stage 2 (Rule Selection):Given the memory state vector ,
for each node , the choice function is defined by

(22)

where the fuzzy AND operator is defined by

(23)

and the norm is defined by

(24)

for vectors and . The system is said to make acategory
choice when at most one node can become active at a

given time. The category choice is indexed at, where

for all node (25)

If more than one is maximal, the category node
with the smallest index is chosen. In particular, nodes become
committed in order . When the category is
chosen, ; and for .

Resonance occurs if the match function of the selected
node meets the vigilance criterion

(26)

where the generalized fuzzy AND operationis defined by

(27)

for vectors , and the norm is defined as in
(24). Otherwise mismatch reset occurs in which the value of
the choice function is set to zero for the duration of the
input presentation to prevent persistent selection of the same
category during search. Stage 2 then repeats to select another
new index .

Stage 3a (No Prediction):If the selected node has no
prediction, i.e.,

for all node (28)

each node in the precursor set learns the activity
pattern according to the equation

(new) (old) (old) (29)
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If the input vector is present, a category node is selected
in as in stage 2. The selected node learns the
pattern according to the equation

(new) (old) (old) (30)

The category node is then associated to the node
through the inter-ART map field

if
otherwise.

(31)

After that, the system halts.
Stage 3b (Inferencing):If the selected node has

learned to make a prediction, i.e., (28) does not hold, its
weight vector activates . The activity vector
is defined by

(32)

Once the map field is active, is activated through the one-
to-one pathway between and . For each node ,
the choice function is defined by

(33)

The system again makes a category choice indexed atwhere

: for all node (34)

When the category is chosen, , and for
. The activated node then performs a top–down

priming on

(35)

When is activated by a category choice in , the ter-
mination condition is checked by computing a goal signal

(36)

A conclusion is reached whenever any output attribute is made
known, i.e., .

Stage 4a (Update Memory State):If a conclusion is not
reached, i.e., , the memory state vector is updated
with by the equation

(new) (old) (old) (37)

where the fuzzy OR operation is defined by

(38)

for vectors and . The inferencing cycle then repeats from
stage 2.

Stage 4b (Prediction Matching):If a conclusion is reached,
i.e., , the match function of the prediction and
the input vector is computed by

(39)

Stage 5a (Resonance):If the prediction match satisfies the
ART vigilance criterion ( ), resonance occurs. The

activated and nodes learn the template patterns in their
respective modules as in (29) and (30), respectively. After
learning, the system halts.

Stage 5b (Match Tracking):A prediction mismatch triggers
a match tracking process. Using mini-match tracking, a node

is identified which has the minimum match function value
among all nodes in . The choice function of the node
is set to zero during the input presentation. The ARTvigilance

is raised to slightly greater than the match achieved by the
node

(new) (old) (40)

Perfect mismatchoccurs when the system attempts to increase
above one. A perfect match in ART( ) with a ART

mismatch indicates the existence of contradictory knowledge
where identical antecedent sets are associated with different
consequents. After match tracking, a new prediction loop then
repeats from stage 2.

F. Rule Extraction

As a direct generalization of fuzzy ARTMAP, cascade
ARTMAP architecture can be readily translated into a set of
symbolic rules using a generalized ARTMAP rule extraction
procedure [6], [7]. A rule pruning procedure selects a small
set of rules from cascade ARTMAP networks based on their
confidence factors. To derive concise rules, an antecedent
pruning procedure aims to remove antecedents from rules
while preserving accuracy.

1) Rule Pruning: The rule pruning algorithm derives a con-
fidence factor for each category node in terms of its usage
frequency in atraining set and its predictive accuracy on a
predicting set. As cascade ARTMAP generalizes ARTMAP
one-step prediction process to multistep inferencing, an input
pattern makes use of a set of category nodes in cascade
ARTMAP in contrast to a single node in fuzzy ARTMAP.
For evaluatingusageandaccuracy, each category node
maintains three counters: an encoding counter, that records
the number of training patterns encoded by node, a predicting
counter that records the number of predicting set patterns
predicted by node , and a success counter, that records
the number of predicting set patterns predicted correctly by
node .

For each training pattern, the encoding counter () of each
node in the precursor set , where is the last

node (rule) fired that makes the prediction, is increased by one.
For each predicting set pattern, the predicting counter () of
each node in the precursor set is increased by one.
If the prediction is correct, the success counter () of each
node in the precursor set is increased by 1. Based on
the encoding, predicting, and success counter values, theusage
( ) and the accuracy ( ) of an node are computed by

: for all node (41)

and

: for all node (42)
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where , the percent of the predicting set pattern predicted
correctly by node , is computed by

(43)

and are then used to compute the confidence factor of
node by the equation

(44)

where is a weighting factor. After confidence factors
are determined, recognition categories can be pruned from the
network using one of following strategies.

Threshold Pruning:This is the simplest type of pruning
where the nodes with confidence factors below a given
threshold are removed from the network. A typical setting for

is . This method is fast and provides a first cut elimination
of unwanted nodes. To avoid over-pruning, it is sometimes
useful to specify a minimum number of recognition categories
to be preserved in the system.

Local Pruning: Local pruning removes recognition cate-
gories one at a time from an ARTMAP network. The baseline
system performance on the training and the predicting sets is
first determined. Then the algorithm deletes the recognition
category with the lowest confidence factor. The category is
replaced, however, if its removal degrades system performance
on the training and predicting sets.

A variant of the local pruning strategy updates baseline
performance each time a category is removed. This option,
called hill-climbing, gives slightly larger rule sets but bet-
ter predictive accuracy. A hybrid strategy first prunes the
ARTMAP systems using threshold pruning and then applies
local pruning on the remaining smaller set of rules.

2) Antecedent Pruning:During rule extraction, a nonzero
weight to an category node translates into an antecedent
in the corresponding rule. The antecedent pruning procedure
calculates an error factor for each antecedent in each rule based
on its performance on the training and predicting sets. When a
rule ( node) makes a prediction error, for each node

in the precursor set , each antecedent of the rulethat
also appears in the current memory state has its error factor
increased in proportion to the smaller of its magnitudes in the
rule and in the memory state vector. After the error factor
for each antecedent is determined, a local pruning strategy,
similar to the one for rules, removes redundant antecedents.

IV. EXPERIMENTAL RESULTS

A. Animal Identification

A sample rule-based deductive problem [24] is used as the
first test bed of cascade ARTMAP. The simple domain pro-
vides a noise-free closed-world environment to understand and
illustrate the system behaviors. The 15-rule knowledge base
(Table I) distinguishes among seven types of animals based
on 21 input attributes. Four intermediate attributes: mammal,
bird, carnivore, and ungulate, are involved in deducing the
output animal type. The rules combine to form a three-level
rule cascade.

In cascade ARTMAP experiments, the deductive knowledge
base serves two functions. Incomplete versions of the rule
set are used to initialize the cascade ARTMAP network. The
rule set is also used to generate examples for training cascade
ARTMAP. 1000 training examples are generated by assigning
random values to the input attributes and deriving the output
attribute values based on the complete set of 15 rules. The
internal reasoning of the rule-based system is thus hidden
from the generated training examples which contain only the
21 input attributes and the seven output attributes. A filtering
process is applied to remove inconsistent cases such as those
in which “does not fly” and “is a good flyer” are both true.

The baseline performance of cascade ARTMAP without rule
insertion is first evaluated. The system is trained on a portion
of the generated 1000 cases and tested on the remaining
patterns. Table II shows that cascade ARTMAP learns the
untold regularities almost perfectly, given sufficient data. On
the average, 16.8 rules, about the size of the original rule set,
are created from 900 training cases.

In the rule insertion simulations, cascade ARTMAP net-
work is initialized with partial rule sets, and then trained
and tested as in the previous experiments. The first set of
experiments initializes cascade ARTMAP with a five-rule
set that recognizes birds. The five-rule set, by itself, only
classifies correctly 56.4% of the 1000 test patterns. Through
rule refinement, the performance improves significantly to
96.8% given only 100 training examples, and to 99.8% with
900 examples. Moreover, the total number of rules formed
in each simulation is fewer than the original 15-rule set that
generates the examples. cascade ARTMAP with the five-
rule set also performs consistently better than its counterpart
without rules. The effect is best observed when the system
is trained with a small data set (from 92.3% to 96.8%). The
performance gap between the two systems closes up as the
number of training pattern increases. This indicates that given
sufficient examples and in a noise free environment, cascade
ARTMAP is able to derive accurate rules by learning from
examples alone.

A similar improvement in performance is observed when
the system is initialized with a ten-rule set. However, the
performance with the ten-rule set is not better than that with
the five-rule set. A careful study reveals that the additional
five rules (Z1,Z2,Z5,Z11,Z12) are all isolated rules that do
not form a complete inferencing chain, and are thus inactive.
In fact, the performance of the ten-rule set alone is exactly the
same as that of the five-rule set alone (56.4%). The inactive
rules also have a negative effect on the rule refinement process.
Given a small set of 100 examples, cascade ARTMAP with
the ten-rule set is worse than that with the five-rule set. As the
system learns sufficient rules from larger sets of examples, the
effect of the inactive rules is eliminated.

The final set of the experiments is on the insertion and
refinement of a 13-rule set (all rules except Z10 and Z14) that
classifies correctly 76.6% of the test patterns. When initialized
with the 13-rule set, cascade ARTMAP consistently discovers
variants of the missing rules and achieves 100% correct
prediction. Table III shows a sample set of rules discovered.
Rule R1 corresponds exactly to Z14 as “has feathers” implies
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TABLE I
A SAMPLE KNOWLEDGE BASE THAT IDENTIFIES ANIMALS

TABLE II
PERFORMANCE OFCASCADE ARTMAP WITH AND WITHOUT RULE INSERTION ON THE ANIMAL

IDENTIFICATION PROBLEM. THE SIMULATION RESULTS ARE AVERAGED OVER TEN RUNS
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TABLE III
SAMPLE RULES DISCOVERED BY CASCADE ARTMAP

DURING LEARNING. R1 � Z14 AND R2 � Z10

“is a bird” by Z3. Rule R2 is a generalization over the missing
rule Z10, as “black stripes” and “tawny color” are sufficient
to identify “tiger” in this problem.

B. DNA Promoter Recognition

Promoters are short nucleotide sequences that occur be-
fore genes and serve as binding sites for the enzyme RNA
polymerase during gene transcription. Identifying promoters
is thus an important step in locating genes in DNA sequences.
One major approach to DNA matching or sequence com-
parison concerns with the alignment of DNA sequences. Se-
quence alignment is usually performed by computing a match
function that rewards matches and penalizes mismatches,
insertions, and deletions [22], [23]. This can be done by dy-
namic programming which can be computationally expensive
for multiple sequences. Consensus sequence analysis solves
the problem of aligning multiple sequences by identifying
functionally important sequence features that are conserved
in the DNA sequences. For example, consensus patterns of
promoter sequences can be identified at the protein binding
sites. Besides statistical methods reported in the biological lit-
erature, machine learning and information theoretic techniques
are also being used for DNA matching and recognition [8],
[11]. In this paper, the performance of cascade ARTMAP is
compared with anad hocpartial pattern matching algorithm,
based on consensus pattern analysis, of which published result
on promoter recognition is available [14]. We also make
performance comparison to many machine learning systems
including backpropagation neural network, ID-3 symbolic
learning algorithm, and K-nearest neighbor (KNN) system.

The promoter data set [12] used in the cascade ARTMAP
experiments consists of 106 patterns, half of which are positive
instances (promoters). Although larger sets of promoter data
are available, this version of the promoter data set is used
here to allow a direct comparison with the results of the
others. Each DNA pattern represents a 57-position window,
with the leftmost 50 window positions labeled -50 to -1 and
the rightmost seven labeled 1 to 7 (Fig. 8). Each position
is a nominal feature which takes one of the four nucleotide
values {A, G, T, C}. There is no missing feature value. Using
local representation, each 57-position pattern is expanded into
a 228-bit nucleotide-position string.

The promoter data set and an imperfect domain theory were
used to evaluate a hybrid learning system called KBANN [20].
The imperfect domain theory (Table IV), if requires exact
match, only classifies half of the 106 cases correctly. The
KBANN theory refinement procedure translates the imperfect
theory into a feedforward network, adds links to make the

network fully connected between layers, and trains the network
using a backpropagation algorithm. Simulation results showed
that by incorporating the domain theory, KBANN outper-
formed many learning/recognition systems, including consen-
sus sequence analysis [14], KNN, ID-3 symbolic learning
algorithm [15], and backpropagation network trained purely
from examples [20] (Table V).

In cascade ARTMAP experiments, the first two rules of the
domain theory are combined into a single rule:

promoter :- conformation, minus_35, minus_10.
Besides providing a slight improvement in system predictive

accuracy, the elimination of attributecontactreduces cascade
ARTMAP network complexity and produces simpler rule sets.

Cascade ARTMAP simulation is performed with parameter
values and , determined empirically.
The input patterns are not complement coded as they already
have a uniform norm of 57. In each simulation, cascade
ARTMAP is initialized with the domain theory, trained on
96 patterns selected randomly, and tested on the remaining
ten patterns. To use a voting strategy, cascade ARTMAP is
trained in several simulation runs using different orderings of
the training set. For each test case, voting across 20 runs yields
a final prediction. An averaging technique similar to voting
was also used in the KBANN system [20].

Table V compares the performance of fuzzy ARTMAP
and cascade ARTMAP, averaged over 20 simulations, with
other alternative systems. Among the systems that do not
incorporatea priori symbolic knowledge, fuzzy ARTMAP
(cascade ARTMAP without rule insertion) achieves the lowest
error rate. While the KBANN system and cascade ARTMAP
both obtain significant improvement in predictive performance
by incorporating rules, cascade ARTMAP produces a lower
error rate than KBANN. In addition to the 13 inserted rules,
an average of 15. 9 recognition nodes (rules) are created.

In each simulation, rules are also extracted from the trained
cascade ARTMAP network. Due to the small data set size, con-
fidence factors are computed solely based onusage. Threshold
pruning with threshold is applied, followed by the
rule and antecedent pruning procedures using the local pruning
strategy. Comparing predictive performance, rules extracted
from cascade ARTMAP are still slightly more accurate than
the NofM rules extracted from KBANN [18], [19]. While the
cascade ARTMAP rule sets contain more rules than the NofM
rule sets, the number of antecedents is almost half of that of
the NofM rule sets (Table V).

The promoter rules formulated by cascade ARTMAP are
similar in form to the consensus sequences derived by con-
ventional statistical methods. However, whereas consensus
sequences are used with an exact match condition, cascade
ARTMAP rules are based on competitive activation and do not
require exact match in antecedents. Through the approximate
matching property, the number of nucleotides used to identify
a promoter is usually small (at most four in this case). By
contrast, the consensus sequences, obtained by noting the
positions with the same base in greater than 50% of the
promoter patterns [13], used a minimum of 12 nucleotides.

Table VI shows a sample set of refined promoter rules
extracted from cascade ARTMAP.Conformation has been
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TABLE IV
A RULE-BASED THEORY FOR CLASSIFYING PROMOTERS. IT CONSISTS OF14 RULES AND A TOTAL OF 83

ANTECEDENTS. THEANTECEDENT NOTATION T@-36 INDICATES THE NUCLEOTIDE VALUE T IN POSITION -36

Fig. 8. A 57-position DNA sequence. Each position takes one of the four nucleotide values {A, G, T, C}. Using local representation, each DNA
sequence is expanded into a 228-bit nucleotide string. This version of 106-case promoter data set, obtained from the UCI machine learning database
repository, contains no missing value.

TABLE V
PERFORMANCE OFFUZZY ARTMAP, CASCADE ARTMAP, AND CASCADE ARTMAP RULES ON THE PROMOTER DATA SET

COMPARING WITH THE SYMBOLIC LEARNING ALGORITHM ID-3, THE KNN SYSTEM, CONSENSUSSEQUENCE

ANALYSIS, THE BACKPROPAGATION NETWORK, THE KBANN SYSTEM, AND THE NOFM RULES

dropped as a condition for promoters, so are the four rules
defining it. All the minus_35 and minus_10 rules are pre-
served, but have been refined to refer to only two salient
nucleotide bases. Two new rules for identifying promoters are
created, which contain features ofminus_35andconformation.
These two rules are believed to compensate for the elimination
of conformation. Eight nonpromoter rules are created. They are
slightly more irregular due to the randomness of nonpromoters.

The confidence factor attached to each ARTMAP rule
provides another dimension for interpreting the rule. By having
a confidence factor of one, the first promoter rule is very
frequently used and thus important. It is activated by different
combinations of minus_35 and minus_10 rules, each individ-
ually does not have a high usage. The two new promoter rules
are roughly of equal importance but are not as heavily used
as the first promoter rule. The first three minus_35 rules are
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TABLE VI
A SET OF PROMOTER RULES EXTRACTED FROM CASCADE ARTMAP. THE SET CONSISTS OF19 RULES AND A TOTAL OF

46 ANTECEDENTS.THE REAL NUMBER ASSOCIATED WITH EACH RULE REPRESENTS THERULE’S CONFIDENCE FACTOR

TABLE VII
A SET OF PROMOTER RULES EXTRACTED BY THE NOFM ALGORITHM FROM KBANN. I T CONSISTS OFNINE RULES AND A TOTAL OF 83 ANTECEDENTS.A

COMPRESSEDNUCLEOTIDE REPRESENTATIONREFERS TOBASES BY STARTING A SEQUENCE LOCATION FOLLOWED BY A SUBSEQUENCE.FOR EXAMPLE, @-37 ’C-T-’

INDICATES C@-37 AND T@-35. THE FUNCTION “NT()” RETURNS THE NUMBER OF ENCLOSED ANTECEDENTSTHAT MATCH AN INPUT SEQUENCE.

STANDARD NUCLEOTIDE AMBIGUITY CODES ARE INTERPRETED ASFOLLOWS: M=A/C, K=G/T, R=A/G, D=A/G/T, W=A/T, B=C/G/T, AND S=C/G

more highly utilized than the last minus_35 rule. A similar
pattern is observed for the minus_10 rules. The nonpromoter
rules have lower and less contrasting confidence values. The
first four nonpromoter rules nevertheless seem slightly more
important. The last two nonpromoter rules have the least

confidences, and could be dropped with little degradation of
overall performance.

Table VII shows a set of promoter rules extracted by the
NofM algorithm from KBANN [19]. The NofM rule set con-
sists of only nine rules but contains 83 countable antecedents.
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Moreover, the rules make use of several complex constructs,
including NofM, a counting function “nt,” addition, subtrac-
tion, multiplication, and comparison of real numbers. Also, the
NofM rules involve seven nucleotide ambiguity codes, and
have already employed a compressed format for represent-
ing adjacent nucleotide bases to simplify rules. Comparing
complexity, ARTMAP rules are much cleaner and easier to
interpret. More importantly, by preserving the symbolic rule
form during learning, the extracted rules are identical in
form and can be compared directly with the original rules.
Furthermore, the use of confidence factors enables ranking
of rules. This is particularly important to human experts in
analyzing the rules.
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