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ABSTRACT
Motivation: It is well understood that the successful clus-
tering of expression profiles give beneficial ideas to un-
derstand the functions of uncharacterized genes. In order
to realize such a successful clustering, we investigate a
clustering method based on adaptive resonance theory
(ART) in this report.
Result: We apply Fuzzy ART as a clustering method for
analyzing the time series expression data during sporula-
tion of Saccharomyces cerevisiae. The clustering result by
Fuzzy ART was compared with those by other clustering
methods such as hierarchical clustering, k-means algo-
rithm and self-organizing maps (SOMs). In terms of the
mathematical validations, Fuzzy ART achieved the most
reasonable clustering. We also verified the robustness of
Fuzzy ART using noised data. Furthermore, we defined
the correctness ratio of clustering, which is based on
genes whose temporal expressions are characterized
biologically. Using this definition, it was proved that the
clustering ability of Fuzzy ART was superior to other clus-
tering methods such as hierarchical clustering, k-means
algorithm and SOMs. Finally, we validate the clustering
results by Fuzzy ART in terms of biological functions and
evidence.
Availability: The software is available at http//www.nubio.
nagoya-u.ac.jp/proc/index.html.
Contact: taizo@brs.kyushu-u.ac.jp

INTRODUCTION
The recent advances of genome-scale sequencing and
array technologies have made it possible to monitor si-
multaneously the expression pattern of thousands of genes
(Cho et al., 1998, 2001; DeRisi et al., 1997; Khodursky et
al., 2000; Lashkari et al., 1997; Spellman et al., 1998).
The following step is to discover the useful informa-
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tion from the expression data. Nowadays, one of the
most exciting challenges is a cluster analysis for genome-
wide expression data from DNA microarray hybridization,
since the successful clustering result may give researchers
beneficial ideas to understand the functions of uncharac-
terized genes. Therefore, various clustering methods, e.g.
hierarchical clustering (Eisen et al., 1998), k-means algo-
rithm (Somogyi, 1999) and self-organized maps (SOMs;
Tamayo et al., 1999), have been examined and used to
elucidate the fundamental and/or characteristic expression
pattern. The classification of cell line, especially human
cancers (Alizadeh et al., 2000; Perou et al., 1999; Ross
et al., 2000; Scherf et al., 2000), as well as the analysis
of temporally expressed genes of Saccharomyces cere-
visiae (Chu et al., 1998; Eisen et al., 1998) was examined
using the hierarchical clustering. However, various short-
comings of hierarchical clustering for the study of gene
expression were discussed (Tamayo et al., 1999), e.g. lack
of robustness. Self-organized clustering is a useful and
powerful method in the case of classifying huge sets of
disorderly data into some significant groups. The k-means
algorithm clusters a given set of input patterns into k
groups, where k should be previously defined heuristically.
However, in the case of analyzing the expression data,
there is not a definite answer to decide the optimal number
of k. SOMs were applied to analyze expression data
(Tamayo et al., 1999), and several genes that regulate
transcriptional control were discussed. However, it seemed
difficult to describe explicitly the distinctive feature of
each cluster.

In the present paper, we applied fuzzy adaptive res-
onance theory (Fuzzy ART) to analyze experimental ex-
pression data. Fuzzy ART has been introduced by
Carpenter et al. (1991b), as a member of ART-networks
(Carpenter and Grossberg, 1987a,b; Carpenter et al.,
1991a). ART is a kind of self-organized clustering, which
clusters a given set of input patterns into some groups. One
of the characteristics of Fuzzy ART is the use of a similar-
ity parameter, which is called the vigilance parameter ρ,
and then the resulting number of clustered groups depends
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only on the similarity between all input patterns. Another
one is a weight vector W . A weight vector W j of cluster j
is adjusted through the learning procedure and it shows
the representative pattern of the cluster j . Therefore,
we can easily understand the clustering result by weight
vectors. In the present paper, we describe the application
of Fuzzy ART to the analysis of gene expression data. In
order to compare the clustering results, we also applied
hierarchical clustering, k-means algorithm and SOMs to
analyze the same expression data.

METHODS
Data preprocessing
In this study, we used the expression data from the study
of Chu et al. (1998). In the paper, S. cerevisiae was syn-
chronized by transferring them to the sporulation medium
(SPM) at t = 0 to maximize the synchrony of sporulation.
RNA was harvested at time t = 0, 0.5, 2, 5, 7, 9 and 11.5 h
after transfer to SPM. Polyadenylated RNA was prepared
by purification with oligo (dT ) cellulose column, and its
expression level was measured using microarray analysis.
Each gene’s mRNA expression level just before transfer
to SPM was used as the control. Therefore, the expression
ratio at time t, Rt , of each gene is defined as follows.

Rt = mRNA measured at time t

mRNA measured just before transfer to SPM

About 6100 genes of expression profiles are included in
the data, which is available at http://cmgm.stanford.edu/
pbrown/sporulation. We followed the same criteria as Chu
et al. (1998) to select the genes that showed 2.2-fold
changes of mRNA levels during sporulation.

Fuzzy ART algorithm
Figure 1 shows the concept of a Fuzzy ART. In Carpenter
et al. (1991b), they refer to a clustered group by Fuzzy
ART as a ‘category’. We call it a ‘cluster’ as a normal
clustering way, in this paper. Fuzzy ART includes the
following; an input vector Igene, a weight vector W j of
cluster j , a choice parameter α > 0, a learning rate
parameter 0 � β � 1, a vigilance parameter 0 � ρ � 1,
a choice function Tj and a match function M j . An input
vector Igene corresponds to seven dimensional vectors of
each gene. For example, in the case of SGA1 gene in
Table 1, an input vector Igene of SGA1 is defined as
follows.

ISG A1 = | 0.06, 0.19, 0.05, 0.36, 0.65, 0.65, 0.86 |
Competitive learning of Fuzzy ART is illustrated step by

step as follows.
At first, the winner cluster is chosen by the choice

function. For each input Igene, the choice function Tj

…

winner
Clusters

Input
vectors

w

ρ
Vigilance
parameter

Fig. 1. Concept of Fuzzy ART.

of each cluster j is defined as follows to indicate the
similarity between Igene and W j based on W j .

Tj = |Igene ∧ W j |
α + |W j | (1)

Where the minimum operator that is called ‘and’ operator
in fuzzy theory, ∧, is defined by

(x ∧ y)i ≡ min(xi, yi), (2)

and where the operator | x | is the sum of its components,
| x | = ∑

xi. By a choice parameter α, the calculation
error was prevented, if W j becomes zero (Frank et al.,
1998). In the present study, α was set to 0.01. For
example, when a weight vector Wexample is defined as
Wexample = |0.80, 0.75, 0.85, 0.70, 0.65, 0.50, 0.30|,
choice function Texample to ISG A1 is calculated as follows.

|Wexample| = |0.80 + 0.75 + 0.85 + 0.70 + 0.65 + 0.50 + 0.30 |
= 4.55

|ISG A1 ∧ Wexample|
= |0.06 ∧ 0.80 + 0.19 ∧ 0.75 + 0.05 ∧ 0.85

+0.36 ∧ 0.70 + 0.65 ∧ 0.65 + 0.65 ∧ 0.50 + 0.86 ∧ 0.30|
= |0.06 + 0.19 + 0.05 + 0.36 + 0.65 + 0.50 + 0.30 |
= 2.11

Texample = 2.11

0.01 + 4.55
= 0.46

The cluster j that has the maximal Tj is defined as the
‘winner’ cluster for input Igene.

In the next step, the cluster selected above is judged
to follow ‘resonance’ procedure or ‘mismatch reset’
procedure by the match function M j defined by the
following equation.

M j = |Igene ∧ W j |
|Igene| (3)

‘Resonance’ procedure is carried out if the match
function of the winner cluster for input Igene is bigger than
the vigilance criterionρ; that is expressed as

M j � ρ (4)
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This means that the degree of similarity between the
winner cluster and the current input Igene is at least as high
as vigilance. The match function indicates the similarity
between Igene and W j based on Igene. When ‘resonance’
procedure should be done, learning of the weight vector of
winner cluster is performed. Learning of the weight vector
W j is updated according to the following equation.

W new
j = β(Igene ∧ W old

j ) + (1 − β)W old
j (5)

Where β is a learning rate parameter. In this study, β =
0.01 was used in order to preserve the weight vector from
being corrupted by noisy input patterns (Carpenter et al.,
1991b).

Otherwise, ‘mismatch reset’ procedure is carried out.
That is expressed as

M j < ρ (6)

This means that the degree of similarity between the
winner cluster and the current input Igene is lower than
the vigilance. When ‘mismatch reset’ procedure should be
done, a new cluster that has the next maximal Tj is chosen
by Equation (1) again.

When any cluster cannot satisfy Equation (4), a new
cluster is generated according to the input vector Igene.
In the present study, we followed the Fast-commit slow-
recode option (Carpenter et al., 1991b). In this option, the
learning rate parameter in Equation (5) is set to 1.0; β =
1.0. Initially, all of the elements of W initial

j are set to

1.0; (W initial
j )i = 1.0. Therefore, the weight vector of a

new cluster is

W newcluster
j = β(Igene ∧ W initial

j )

= Igene (7)

These steps mentioned above are continued until every
input vector Igene belongs to any cluster.

In order to avoid a proliferation of categories, some
methods have been proposed, see Carpenter et al. (1991b).
In the present study, we used the complement coding to
make stable clustering and to restrict the total number of
the clusters. Briefly, the complement coding intends to
recode the dimension of the input data. The complement
of input Igene, I c

gene, are defined as follows.

(I c
gene)i = 1 − (Igene)i (8)

In the case that the original input data are m-dimensional
data, I org

gene = (I1, I2, . . . , Im), complement coded input
Igene is the 2m-dimensional data as follows.

Igene = (Igene, I c
gene)

= (I1, I2, . . . , Im, 1 − I1, 1 − I2, . . . , 1 − Im)(9)

Therefore, inputs preprocessed into the complement cod-
ing are automatically normalized.

Table 1. List of 45 genes

Name ORF Time of expression

CDC14 YFR028C
CDC16 YKL022C
CDC20 YGL116W
CDC23 YHR166C
CDC5 YMR001C
DIT1 YDR403W Mid–Late
DIT2 YDR402C Mid–Late

DMC1 YER179w Early
HOP1 YIL072W Early
IME2 YJL106W Early
IME4 YGL192W Early
ISC10 YER180c
MEI4 YER044c-a Early
MEI5 YPL121C
MEK1 YOR351C Early
MPS1 YDL028C
MSH4 YFL003C
MSH5 YDL154W
MSI1 YBR195C

NDT80 YHR124W
POL30 YBR088C
RAD51 YER095w
RAD54 YGL163C
RAP1 YNL216W

REC102 YLR329W Early
REC104 YHR157W Early
REC114 YMR133W Early
RED1 YLR263W Early
RFA1 YAR007C
SAE3 YHR079C-B
SGA1 YIL099W Late
SPO11 YHL022C Early
SPO12 YHR152W Middle
SPO13 YHR014W Early
SPO16 YHR153C Early
SPO20 YMR017W
SPR1 YOR190W Late
SPR3 YGR059W Late
SPR6 YER115c
SPS1 YDR523C Middle
SPS18 YNL204C
SPS19 YNL202W
YPT1 YFL038C
ZIP1 YDR285W Early
ZIP2 YGL249W

The blank in ‘time of expression’ column means that no description for the
induction period is mentioned in the Mitchell paper (1994).

RESULTS AND DISCUSSION
Result of data preprocessing
We extracted 522 genes as induced genes from the
database. Among these 522 genes, we selected 45 genes
that have some roles in meiosis and sporulation by Kupiec
et al. (1997). Table 1 shows the 45 genes used for the
following analysis. The column of ‘time of expression’
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Fig. 2. Expression profiles of 45 genes used for this analysis.

shows the temporal phase, in which expression of each
gene is induced, defined by Mitchell (1994). The blank
in ‘time of expression’ column of Table 1 means that
no description for the induction period is mentioned in
Mitchell (1994).

Since expression ratios of each gene were measured at
time t = 0, 0.5, 2, 5, 7, 9 and 11.5 h after transfer to
SPM, each gene has seven dimensional data. The ranges of
log2 Rt of the selected 45 genes were from −0.78 to 6.65,
and they were normalized from 0.0 to 1.0 to be used as the
input data for the fuzzy operator in the following analysis.
Figure 2 shows the expression profiles of 45 genes used
for this analysis.

Identification of the optimal number of clusters for
Fuzzy ART
At first, we investigated the effect of vigilance parame-
ter on Fuzzy ART. The number of generated clusters in-
creased when relatively higher vigilance parameter was
applied. That is explained as follows. If the vigilance is rel-
atively high, the ‘mismatch reset’ procedure is done easily
and a new cluster is also generated more often. Figure 3
shows the number of clusters generated under various vig-
ilance parameters. When the vigilance parameter was less
than 0.86, the number of generated clusters was not so
much affected by the vigilance parameter. With the range
over 0.86, the number of clusters increased sharply. We
examined four cases of the number of clusters such as 4,
5, 6 and 7, which corresponded to 0.83, 0.86, 0.867 and
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Fig. 3. Effect of vigilance parameter on the number of clusters
generated by Fuzzy ART. Condition is a choice parameter α = 0.01,
a learning rate parameter β = 0.01.

0.87 of the vigilance parameter, respectively (Table 2).
In order to identify the optimal number of clusters,

we defined the correctness ratio for the clustering result
based on the previously reported biological results. The
calculation for the correctness ratio was executed as
follows. ‘Early’, ‘Middle’, ‘Mid–Late’ and ‘Late’ genes,
which were characterized in Mitchell (1994), were used
as ‘index genes’. The majority of the index gene defined
the character of the cluster. For example, in the case of
the number of clusters 5, the 3rd cluster was defined not
as ‘Middle’ but as ‘Early’ because four ‘Early’ genes
were included in the 3rd cluster as the majority while
one ‘Middle’ gene was included as the minority. The
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Table 2. Comparison of clustering results using Fuzzy ART for 4, 5, 6 and 7 clusters

4 clusters 5 clusters 6 clusters 7 clusters
Cluster Name Time Cluster Name Time Cluster Name Time Cluster Name Time

1

DMC1 Early

1

DMC1 Early

1

DMC1 Early
1

DMC1 Early
IME2 Early IME2 Early IME2 Early IME2 Early
MEI5 MEI5 MEI5 RED1 Early
RED1 Early RED1 Early RED1 Early

2
MEI5

2

HOP1 Early

2

HOP1 Early

2

HOP1 Early ZIP1 Early
MEK1 Early MEK1 Early MEK1 Early

3

HOP1 Early
MSH4 MSH4 MSH4 MEK1 Early
MSH5 MSH5 REC114 Early MSH4

REC114 Early REC114 Early SPO11 Early REC114 Early
SPO11 Early SPO11 Early SPO13 Early SPO11 Early
SPO13 Early SPO13 Early ZIP1 Early SPO13 Early
SPO16 Early SPO16 Early

3

CDC14

4

CDC14
ZIP1 Early ZIP1 Early CDC23 CDC23

3

CDC14

3

CDC14 MEI4 Early ISC10
CDC16 CDC23 MSH5 MEI4 Early
CDC23 IME4 Early SPO16 Early MSH5
IME4 Early MEI4 Early

4

IME4 Early SPO16 Early
MEI4 Early MPS1 MPS1

5

CDC16
MPS1 MSI1 MSI1 IME4 Early
MSI1 POL30 POL30 MPS1

POL30 RAD51 RAD51 MSI1
RAD51 RAD54 RAD54 POL30
RAD54 RAP1 RAP1 RAD51
RAP1 REC102 Early REC102 Early RAD54

REC102 Early REC104 Early REC104 Early RAP1
REC104 Early RFA1 RFA1 REC102 Early

RFA1 SAE3 SAE3 REC104 Early
SAE3 SPO12 Middle SPO12 Middle RFA1

SPO12 Middle SPS19 SPS19 SAE3
SPS19 YPT1 YPT1 SPO12 Middle
YPT1 ZIP2 ZIP2 SPS19
ZIP2

4
CDC16

5
CDC16 YPT1

4

CDC20 DIT1 Mid–Late DIT1 Mid–Late ZIP2
CDC5 DIT2 Mid–Late DIT2 Mid–Late

6
DIT1 Mid–Late

DIT1 Mid–Late

5

CDC20

6

CDC20 DIT2 Mid–Late
DIT2 Mid–Late CDC5 CDC5

7

CDC20
ISC10 ISC10 ISC10 CDC5
NDT80 NDT80 NDT80 NDT80
SGA1 Late SGA1 Late SGA1 Late SGA1 Late

SPO20 SPO20 SPO20 SPO20
SPR1 Late SPR1 Late SPR1 Late SPR1 Late
SPR3 Late SPR3 Late SPR3 Late SPR3 Late
SPR6 SPR6 SPR6 SPR6
SPS1 Middle SPS1 Middle SPS1 Middle SPS1 Middle

SPS18 SPS18 SPS18 SPS18

The blank in ”time” column means that no description for the induction period is mentioned in the Mitchell paper (1994).

majority genes included in each cluster, e.g. IME4, MEI4,
REC102 and REC104 in the 3rd cluster, were defined as
the correctly clustered genes while the minority, SPO12,
was defined as the incorrectly clustered one. According
to this definition, the correctness ratio was calculated as
the ratio of correctly clustered genes among the 21 ‘index
genes’ shown in Table 1.

In the case of the number of clusters 4, 14 ‘Early’
genes and three ‘Late’ genes were correctly clustered.
It resulted that 17 genes among 21 ‘index genes’ were
correctly clustered. Therefore, the correctness ratio was
0.81 (Table 3). In the case of the number of clusters 5,
14 ‘Early’ genes, two ‘Mid–Late’ genes and three ‘Late’
genes were correctly clustered and the assignment of two
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Table 3. Comparison of correctness ratio using four clustering methods for
4, 5, 6 and 7 clusters

Clutsers 4 Clusters 5 Clusters 6 Clusters 7

Fuzzy ART 0.81 0.90 0.90 0.90
Hierarchical clustering 0.81 0.81 0.90 0.90

k-means clustering 0.76 0.86 0.86 0.86
SOMs 0.86 0.86 0.86 0.86

‘Middle’ genes were incorrect. It resulted that 19 genes
were correctly clustered, and the correctness ratio was
0.90. It is clear that the correctness ratio improved from
0.81 to 0.90 when the number of clusters was changed
from 4 to 5, while it remained 0.90 when the number of
clusters was changed from 5 to 7.

As shown in Table 2, the 4th cluster in the number
of clusters 4 contains ‘Middle’, ‘Mid–Late’ and ‘Late’
genes, and this is not good biologically. In the case of
the number of clusters 6, four clusters were generated
for ‘Early’ genes, which seems not so good for a proper
clustering. The 2nd and 6th clusters in the number of
clusters 7 contain only two genes, which means so-called
overclustering. Generating too many clusters makes it dif-
ficult to comprehend the simple features of the expression
patterns. Therefore, in the present study, total 5 clusters
seemed to be reasonable for the Fuzzy ART clustering.

Comparison of clustering results with those using
other clustering methods
In order to compare the optimal number of clusters for
other clustering methods, the correctness ratios were com-
pared with other clustering methods such as hierarchical
clustering, k-means algorithm and SOMs. The basic idea
of hierarchical clustering is to assemble a set of 45 genes
of seven dimensional expression data into a tree, where
genes are joined by very short branches if they are very
similar to each other, and by increasingly longer branches
as their similarities decrease (Hartigan, 1975; Eisen et al.,
1998). We used the Peason correlation coefficient to de-
fine the similarity and the average linkage to assemble
the items. In the analysis using hierarchical clustering, the
number of the cluster can be chosen from one to the num-
ber of the data set. In the present study, we selected the
same number as that of generated clusters using Fuzzy
ART in order to compare the clustering results.

The k-means algorithm clusters a given set of input
patterns into k groups (Frank et al., 1998) and k was
also set to the same number as that of Fuzzy ART. One-
dimensional SOMs (Eisen et al., 1998) were also used
for the analysis, and 45-gene expression data were also
classified into the same number as that of the generated
clusters using Fuzzy ART. These three clustering methods

are downloaded from http://rana.stanford.edu/clustering
(Eisen et al., 1998).

The correctness ratios using hierarchical clustering, k-
means algorithm and SOMs are also shown in Table 3.
It is clear that the correctness ratio of k-means clustering
improved from 0.76 to 0.86 when the number of clusters
was changed from 4 to 5, while it remained 0.86 when the
number of clusters was changed from 5 to 7. In the case
of hierarchical clustering, the correctness ratio improved
from 0.81 to 0.90 when the number of clusters was
changed from 5 to 6. In the case of SOMs, the correctness
ratio remained 0.86 when the number of clusters was
changed from 4 to 7. Therefore, three clustering methods,
such as Fuzzy ART, k-means clustering and SOMs,
achieved the highest correctness ratio at the number of
clusters 5, although hierarchical clustering achieved it at
the number of clusters 6. As mentioned above, generating
too many clusters makes it difficult to comprehend the
simple features of the expression patterns. Therefore,
in the present study, we temporarily set the number of
clusters to five.

Table 4 shows the clustering results using hierarchical
clustering. As shown in Table 4, the 1st and 2nd clusters
contain only one and two genes, respectively, and they
were unchanged even if the number of clusters was
changed from 4 to 7.

Table 5 shows the clustering results at the number
of clusters 5 using k-means clustering and SOMs. As
shown in Tables 2 and 5, each cluster contains several
genes in the cases of Fuzzy ART, k-means clustering and
SOMs. As shown in the above section, there was a cluster
containing ‘Middle’, ‘Mid–late’ and ‘Late’ genes in the
case of small numbers of clusters, while overclustering
was observed in the case of a large number of clusters.
Therefore, the cluster number 5 seemed to be sufficient
and appropriate for clustering in the case of Fuzzy ART.
A similar tendency was observed in the cases of k-means
clustering and SOMs although the clustering results for
the cluster number 5 are only shown in Table 5.

Therefore, in the present paper, we considered that
Fuzzy ART is more superior to other clustering methods
and we set the number of clusters to 5 in the following
analysis.

Clustering results of Fuzzy ART
Figure 4 shows the weight vectors for each cluster, which
are generated and updated through competitive learning
using the following parameter: choice parameter=0.1,
vigilance parameter=0.86, learning rate parameter=0.01.
These vectors represent the profiles of genes included in
each cluster. The cluster 1 includes the genes that are
induced in the ‘Early’ phase of sporulation and high-
expression level continues throughout sporulation. The
expression levels of genes in the cluster 2 gradually in-
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Table 4. Comparison of clustering results of hierarchical clustering using variable vigilance for 4, 5 and 7 clusters

4 clusters 5 clusters 6 clusters 7 clusters
Cluster Name Time Cluster Name Time Cluster Name Time Cluster Name Time

1 SPS19 1 SPS19 1 SPS19 1 SPS19

2
RFA1

2
RFA1

2
RFA1

2
RFA1

POL30 POL30 POL30 POL30

3

DMC1 Early

3

DMC1 Early

3

DMC1 Early

3

DMC1 Early
HOP1 Early HOP1 Early HOP1 Early HOP1 Early
IME2 Early IME2 Early IME2 Early IME2 Early
MEK1 Early MEK1 Early MEK1 Early MEK1 Early
RAD51 RAD51 RAD51 RAD51
RAD54 RAD54 RAD54 RAD54
IME4 Early

4

IME4 Early

4

IME4 Early

4

IME4 Early
MEI4 Early MEI4 Early MEI4 Early MEI4 Early
MEI5 MEI5 MEI5 MEI5
MSH4 MSH4 MSH4 MSH4
RAP1 RAP1 RAP1 RAP1

REC102 Early REC102 Early REC102 Early REC102 Early
REC104 Early REC104 Early REC104 Early REC104 Early
REC114 Early REC114 Early REC114 Early REC114 Early
RED1 Early RED1 Early RED1 Early RED1 Early
SAE3 SAE3 SAE3 SAE3

SPO11 Early SPO11 Early SPO11 Early SPO11 Early
SPO13 Early SPO13 Early SPO13 Early SPO13 Early
SPO16 Early SPO16 Early SPO16 Early SPO16 Early
ZIP1 Early ZIP1 Early ZIP1 Early ZIP1 Early
ZIP2 ZIP2 ZIP2 ZIP2

4

CDC14

5

CDC14
5

DIT1 Mid–Late
5

DIT1 Mid–Late
CDC16 CDC16 DIT2 Mid–Late DIT2 Mid–Late
CDC20 CDC20 YPT1 YPT1
CDC23 CDC23

6

CDC14

6

CDC14
CDC5 CDC5 CDC16 CDC16
DIT1 Mid–Late DIT1 Mid–Late CDC20 CDC20
DIT2 Mid–Late DIT2 Mid–Late CDC23 CDC23
ISC10 ISC10 CDC5 CDC5
MPS1 MPS1 ISC10 ISC10
MSH5 MSH5 MPS1 MPS1
MSI1 MSI1 MSH5 MSI1

NDT80 NDT80 MSI1 NDT80
SGA1 Late SGA1 Late NDT80 SGA1 Late
SPO12 Middle SPO12 Middle SGA1 Late SPO12 Middle
SPO20 SPO20 SPO12 Middle SPO20
SPR1 Late SPR1 Late SPO20 SPR1 Late
SPR3 Late SPR3 Late SPR1 Late SPR3 Late
SPR6 SPR6 SPR3 Late SPR6
SPS1 Middle SPS1 Middle SPR6 SPS1 Middle
SPS18 SPS18 SPS1 Middle SPS18
YPT1 YPT1 SPS18 7 MSH5

The blank in ‘time’ column means that no description for the induction period is mentioned in the Mitchell paper (1994).

crease untill about 7 h and then decrease. The genes in the
cluster 3 are not induced distinctly independent of tempo-
ral phase. The cluster 4 includes the genes with expression
peak in ‘Late’ phase of sporulation. The genes included
in the cluster 5 express strongly in latter phases and its
expression level increases according to time passed.

Comparison of gap index
When we analyze a set of time series expression data, it
seems no less necessary than important to consider the
shapes of expression profiles not only as simply several
dimensional inputs but also as the timely continuous data
during a specific biological phase. In this point of view,
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Table 5. Clustering results using k-means algorithm and SOMs for 5 clusters

k-means algorithm SOMS
Cluster Name Time Cluster Name Time

1

DMC1 Early

1

DMC1 Early
HOP1 Early HOP1 Early
IME2 Early IME2 Early
MSI1 MEK1 Early

RAD51 POL30
RAD54 RAD51
RFA1 RAD54
SPS19 REC104 Early

2

IME4 Early RFA1
MEI4 Early SPO13 Early
MEK1 Early SPS19
MSH4

2

IME4 Early
POL30 MEI4 Early
RAP1 MEI5

REC102 Early MSH4
REC104 Early RAP1
REC114 Early REC102 Early
RED1 Early REC114 Early
SAE3 RED1 Early

SPO11 Early SAE3
SPO13 Early SPO11 Early
SPO16 Early SPO16 Early
ZIP1 Early ZIP1 Early
ZIP2 ZIP2

3

CDC14

3

CDC14
CDC23 CDC5
MEI5 MSH5
MPS1 MSI1
YPT1 SPO12 Middle

4

CDC20

4

CDC16
CDC5 CDC20
MSH5 CDC23
SPO12 Middle ISC10

5

CDC16 MPS1
DIT1 Mid–Late SPS18
DIT2 Mid–Late YPT1
ISC10

5

DIT1 Mid–Late
NDT80 DIT2 Mid–Late
SGA1 Late NDT80
SPO20 SGA1 Late
SPR1 Late SPO20
SPR3 Late SPR1 Late
SPR6 SPR3 Late
SPS1 Middle SPR6
SPS18 SPS1 Middle

we propose to analyze the similarity of profiles in terms
of two-dimensional area, here axes of the two-dimensions
are ‘time’ and ‘expression level’. Then, we define the ‘gap
index’ so as to evaluate the similarity of profiles as an area
between each profile and average profile the during the
temporal phase. An average profile for cluster n is defined
as an average of all profiles of cluster n. The concept of
gap is shown as a shaded area in Figure 5.
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Fig. 4. Weight vector W of five clusters generated by Fuzzy ART.
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Fig. 5. Concept of gap index.

Figure 6 shows the gap index for each cluster in the four
clustering methods mentioned above. For each cluster, the
gap index of Fuzzy ART was set to 100 and the other
gap indexes were calculated as a relative value against it.
Since the cluster 1 in hierarchical clustering contains only
one gene, the gap index of the cluster 1 in hierarchical
clustering is void. It is clear that the average gap index of
Fuzzy ART is the lowest.

Comparison of distribution of input profile
For further discussion, we compared the distribution
of profiles clustered in the same cluster based on the
standard deviation (SD). We define the average SD of
each sampling time point t (ASDt ) as follows. At first,
SD of each sampling time point t of cluster n (SDt,n)

is calculated. Then, ASDt is defined as an average of
five SDt,n . Here n means the number of cluster (n =
1, 2, 3, 4, 5). ASDt for each sampling time point t in four
clustering methods were described in Figure 7. In addition,
SD of 45 genes for each sampling time point t are also
shown in Figure 7. This figure shows that ASD2, ASD5,
ASD7 and ASD9 in Fuzzy ART are remarkably smaller
than those in the other clustering methods. Especially,
ASD5 and ASD7 of k-means algorithm and SOMs are
almost the same to that of SD of 45 genes. This proves
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that successful clusterings for t = 2, 5, 7, 9 are achieved
only by Fuzzy ART.

Comparison of clustering robustness against noise
In order to compare the clustering repeatability, we
generated five sets of randomly noised data. Generally,
the fluctuation of microarray data is within about 2-fold
change, and we added a random value from −1.0 to 1.0 to
the log2 Rt value. Table 6 shows the results of clustering
robustness using five sets of noised data in four clustering
methods. In the case of Fuzzy ART, total 178 genes among
225 (45 genes × 5 sets) genes were clustered into the
same clusters as those using un-noised data. That is to say,
79.1% of the genes were preserved in terms of robustness
after adding random noise. We defined the robustness
ratio as the ratio of genes whose clustering result was
coherent. In the cases of hierarchical clustering, k-means
algorithm and SOMs, robustness ratios were 73.3, 55.6
and 57.3%, respectively. It is obvious that the clustering
result by Fuzzy ART is the highest score. The correctness
ratios defined above were also calculated for 5 sets with
the noised data. In the case of Fuzzy ART, total 89
genes among 105 (21 index genes ×5 sets) genes were
clustered correctly, and the correctness ratio was 0.85. In
the cases of the hierarchical clustering, k-means algorithm
and SOMs, the correctness ratios were 0.78, 0.80 and 0.82,
respectively. It is also clear that the Fuzzy ART achieved

the highest correctness ratio. From these results, it was
shown that Fuzzy ART is also more useful than the other
clustering methods in the case of noised data.

Biological validation of clustering result by Fuzzy
ART
In Chu and Herskowitz (1998), expression levels of
DMC1, NDT80, SPS1 and DIT1 by the northern analysis
were shown. It was shown that DMC1 gene expressed
during relatively early phase of sporulation. This fact
agrees well with the characterization of the cluster 1 by
Fuzzy ART. It was also shown that both NDT80 and SPS1
expressed during 5–9 hours after transfer to SPM. It is
also reasonable that these two genes were clustered in the
same cluster 5 in Fuzzy ART. Furthermore, DIT1 gene
expressed temporally and specifically during 7–9 hours
after transfer to SPM. This gene was correctly clustered
in the distinct ‘Mid–Late’ cluster 4 in Fuzzy ART.

In Sym et al. (1993), the expression level of ZIP1
gene was monitored using β-galactosidase assay. The
activity of β-galactosidase increased gradually, peaked
about 6 hours after sporulation and gradually decreased.
This profile of β-galactosidase assay corresponded to the
weight vector of the cluster 2, and it is reasonable that
ZIP1 gene was grouped in the cluster 2 in Fuzzy ART.
From the comparison of the other clustering results for
DMC1, NDT80, SPS1 and ZIP1 genes, it is said that the
result of hierarchical clustering is different from those
of the k-means algorithm, SOMs and Fuzzy ART. As
discussed above, Fuzzy ART could only classify DIT1
gene as ‘Mid–Late’ cluster among the four methods.

Finally, we discuss SPS100 gene, which is not included
in Table 1. SPS100 gene was not selected through the
data preprocessing in this study, since we followed the
criteria mentioned in the theoretical analysis section of
Chu et al. (1998). They selected genes which show 2.2-
fold change during sporulation. However, SPS100 gene
was used to create an average temporal profile of ‘Late’
induced genes in the biological analysis section of Chu
et al. (1998). Briza et al. (1990) also reported that
SPS100 gene expressed 14 hours after transfer to SPM.
Therefore, we added SPS100 gene profile to 45-gene
profile, and clustered again the 46-gene profile by Fuzzy
ART. Figure 8 shows the clustering result. The SPS100
gene profile was only classed as the newly generated
cluster 6 in the same condition used above. The other 45
genes were clustered in the same way mentioned above.
This result means that Fuzzy ART can cluster a distinctly
different profile, such as SPS100 gene, as another cluster.
Hierarchical clustering method also classified SPS100 as
another cluster, but SOMs could not. In the case of k-
means algorithm, since we need to decide the number of k
previously, it is impossible to discuss the clustering results
in the same manner. However, k-means algorithm could
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Table 6. Comparison of clustering results using noised data

Fuzzy ART Hierarchical clustering k-means algorithm SOMs

Average of clustering robustness 79.1 73.3 55.6 57.3
Average of correctness ratio 0.85 0.78 0.80 0.82
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Fig. 8. Weight vector W of six clusters generated by Fuzzy ART
using 46 genes’ profiles including SPS100 ‘Late’ gene.

not classify SPS100 gene alone as another cluster even if
we set k = 6.

In a future study, we expect to identify the induction
time of other sporulation-specific genes using Fuzzy ART
and elucidate the regulation of genes. For this aim, one of
the investigations we are focusing on is the data prepro-
cessing. IME1, for example, is an essential transcription
factor that fundamentally regulates the initiation of yeast
sporulation. Nevertheless, IME1 was cut off since it did
not show the significant change of expression ratio at any
sampling point (Chu et al., 1998). Therefore, the cut off
preprocessing is also a very important step for the analysis
of expression data. We are also investigating the appli-
cation of Fuzzy ART to cluster other experimental data,
especially of human cancer cells. Successive clustering of
cancer cells may lead to the development of an optimal
medical treatment toward those cancer cells.

CONCLUSION
In this paper, we clustered the 45 sporulation-specific
genes and verified the advantage of using Fuzzy ART as
a clustering method for expression data. It was found that
the clustering result of Fuzzy ART only showed the suc-
cessful classification of ‘Mid–Late’ genes, such as DIT1
and DIT2 at the number of clusters 5. In the mathematical
validation, it is clear that the average gap index of Fuzzy
ART is the lowest. Comparison based on the distribution
of profiles also proved that only Fuzzy ART achieved
successful clustering. We verified the robustness of Fuzzy

ART with noised data. Through verifications for biological
validations, clustering results by Fuzzy ART corresponded
well to existing biological knowledge.
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