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Abstract

This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based or
ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used
as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network opés#tion cons
of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while tt
analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solwing comple
problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and tt
stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed
seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared
the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ysis. An alternative proceeding consists of obtaining the analysis

without solving the differential equations. In this way, there

This work aims to presenta methodology to transient stabilitys the Lyapunov direct method (LDMR], which results are

analysis of electric energy system by artificial neural networkseonsidered satisfactory, principally when it employed the clas-
The stability analysis consists of evaluating the effects proceedsical method2-4]. Taking into account the great quantity of the
ing of perturbations that cause great and undesirable oscillatefects to be analyzed, the complexity and the great dimension
tions on the angles of synchronous machines. This analysis caj the modern electric systems, the simulation, as well as the
be realized by solving non-linear differential equations, thal yapunov direct method, are alternatives that, not yet, offer no
describe the movement of the system — synchronous machirgnditions to applications in real time. New approaches of analy-
oscillation equation — and, after by the analysis of the evolutiorsis, based on artificial intelligence, in special the neural networks
of the angular position of each synchronous machine duringg], are presented in the literature aiming to overcome these dif-
time (simulation)[1]. The techniques used for the simulation ficulties, principally concerning to velocity. Therefore, this work
are precise and present no restrictions to the type of the modgivestigates the application of artificial neural networks (ANN)
employed. However, it is necessary to effectuate complex cabn the diagnosis of transient stability analysis of electric energy
culus that consists of solving a set of algebraic and non-lineagystems. The transient stability analysis by neural networks, is in
differential equations and examining the oscillation curves thageneral effectuated employing the feedforward networks, with
are obtained, increasing the time dispensed to conclude the ange training based on the backpropagatiéh This technique

is efficient, being considered in the literature, as a benchmark

in terms of precision. However, the processing time is relatively
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network is an architecture based on the supervised training fawhere M; = 2H;/ws; ws A synchronous velocity (320); H; =
multi-dimensional mappings (multi-input/multi-output), being inertial constant (s)fo is the nominal frequency of the sys-
composed of three ART modulé8], and an inter-ART mod- tem (Hz);6; A rotor angle of tha-th synchronous machine in
ule. The ART neural network family has the characteristic ofrelation to the center of angles (electrical radians) {=5o);
stability (capacity of learning without adjusting the weights) §; is the rotor angle of thé-th synchronous machine in rela-
and plasticity (capacity of continue learning with the inclusiontion to a machine that rotates in synchronous velocity (electri-
of new patterns without loosing the memory in relation to thecal radians)éozzjeNMij/MT; 0=1[61, Oo,....6nd"; =

previous patterns). Considering these characteristics, the expgey;, @, ..., wnd'; Pmy is the input mechanical power (pu);
tation is that the network presents a superior performance whepg s the output mechanical power (pu); P@faccelerating
compared to the traditional backpropagafiéh The ARTMAP  power of the center of the angles X < v (PM; — Pey));
neural networks, as well as the ART networks, are capable T — " jenMj; N Aindex set of the synchronous machines

to include innovations that can produce better req@ltisThe  =({1,2,. . ng}); ns is the quantity of synchronous machines.
ART module is used to classify the input vectors (analog data),

corresponding to the active and reactive nodal power in dif3  Tyapsient stability analysis
ferent categories and to convert them in binary information

{P°™, 0°"}, by a proces_sing module gctive c_ode/binary code The transient stability analysis of electric power systems,
[7]. The fuzzy ARTMAP input module is constituted by the set consjdering a contingency of indexcan be realized using the
{P°", @}, added to the binary information referred to fault secyrity margin criteriofil7]:

conditions and the electric network topology. Thus, the neural

ARTMAP network receives only binary data that represent ag, — Ecrit, — Ee, 3)
favorable situation for applications in large systems. This repre- Ecrit,

sents areduction on the computational effort necessary to reali
the training and an improvement on the quality of the analysi

Wheq comparec_J to ather T‘e“ra' netvv_or_ks. _ The critical energy Kcit) and the critical time (crit) can be

Itis emphasized that, in t_he speC|aI|z_e_d I|teratur§, there arfetermined using a series of solutions available on the spe-
fev_v referenclzes thatkdeoal W'thl the str;tb;}lﬂy anaftIyS|s pmblhen}:ialized literature, as an example, the method potential energy
using neura qgtwor Bl ],' In almost 0 these re erences, the boundary surface (PEB§)8,19] Itis observed that for the clas-
transient stability analysis problem is formulated aiming theSical method, the PEBS method gives the same results as the
determination of the critical times for short circuit faults. Ref-

: ks with th inina by th simulation[19]. The total energy, referred to the system defined
erenceq10-12] use neural networks with the training by the by Egs.(1) and(2), is given by2]:

backpropagation algorithm. In refererjé@], it is used the back-

propagation algorithm with a fuzzy controller, which adjusts theE(#, w) = Ec¢(w) + Ep(6) 4)
training rate, to reduce the number of cycles and the execution

time in the training phase. There are other references, in sp&.€"€

%ﬁqereEcmr is the total critical energy of the systetfi, is the
Stotal energy of the system referred to the fault elimination time.

cial, that deal with problems associated to the electric powe 1 2

systems by neural networks using the ART concept. In refer—%C(w) = EZM’wi (kinetic energy) ®)

ences[14-16] the transient stability analysis problem solved fenN .

by neural networks is proposed using a fuzzy ARTMAP neural _ - _ :

network, considering the variation of the load and generation bf p(0) = ;v 0P P(6) doi: (potential energy) ©)
1 i

proportionality, being this the majority of the solutions adopted

in the available references. To illustrate the proposed methodol- In this work, itis used the iterative PEBS metH@]. Never-

ogy results are presented considering a multi-machine systeniheless, the developed methodology (by fuzzy ART-ARTMAP
network) is not dependent of the PEBS method, and another
method can be used, since some stability index be provided.

2. System model Then, the transient stability of theth contingency can be
inferred by the security margin on the following wglyr]:

Considering an electric energy system composed of ns syn-
chronous machines, the dynamic behavior of tHe syn- o it A( >0, then, the system is considered stable;

chronous machine, related to the center of an@eis described 4 M, <0, then, the system is considered unstable.
by the following differential and non-linear algebraic Egs. -

(2-4): 4. Transient stability analysis: solution proposed by
5 neural networks
d-o;
M,-—Z—P,-(e)zo (1) . . L . .
dr In this section, it is established the input and the output of
the neural network. The information are provided by a compu-
Pi(0) = Pm — Pe — (M; PCA), 2) tational program of transient stability analys§&{u!l) [17] that,

MT from electrical network data, considering a list of contingencies
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(three phase short circuit), come the associated security margin < ISM P>
values. TheSimul program is a computational implementation
L . : ) . 1 (NI-2) NI
based on numeric integration of differential equations (&}). S .
. X - et of the more importtant
and on the PEBS method, microcomputer version. ISM’s

—o0 M) M(NI- 1)
4.1. Input stimulus
Fig. 1. Representation of the ISMs on the intervabg, 1].
The proposed neural structure aims to analyze the electric
energy system transient stability, that corresponds to the secwhereg A 1/(1 +desp); h=1— g; Pespis the value of specified
rity margin determination, considering faults from a three phas@ccording to the established criterion.
short circuit with outage of a transmission line. The input pattern  Eq. (9) is obtained from Eq(8) substitutingM” and M5

vectors of the neural network are defined 53,20} by M(k) and M(k + 1), respectively. Effectuating the discrete
variation on timek, between 0 ando, it is obtained a discrete
X, =[P QTAI]T (7)  curve comprehended between the initial security margin value
. , M(0) (start value) and the final security margir(co) = 1.
whereX, is the pattern vector referred to theh contingency; Therefore, the interval, in function of the concept of the secu-

P=[PLP;... P)]";0=[01Q2... Q,]"; Piisthe active power it margin interval, can be defined as:

of thei-th bus of the systeng); is the reactive power of theth

bus of the systemy, is the vector that contains the information ISM(k) A(Minferior(k), Msuperiokk)), fork =1,2,3,...,NI

about thev-th contingency represented in binary code. (10)
Inthis case, considering the classical model for the first oscil-

lation transient stability analysf8], it is supposed that only the \where 1ISM() is thek-th interval of the security margin and NI
active and reactive power vectors are necessary. The topologythe number of the intervals of the ISMs.

of the network and the other parameters (inertia constant, tran- The functionsMinterior(k) and Msuperiofk) are defined as
sientreactance, etc.) are maintained constant, consequently orpbo];

the causal variables (active and reactive power) and the param-

eters that express alterations on the network (representation dflsuperiofk) = 1 — vsexp k) (11)
the contingencies) are used. It is emphasized that the state of

the system (angles and velocities) are elements that are coflinferior(k) =1 — v; expip k) 12)

sequences of this process, i.e. they are function of the POW&Fherevs = (1 — M(0)} /(L + Desp); @ = —In(1+Desp; In is the
(active and reactive) and of the type and circumstance of thRIeperian logarithm. ’ ’

fault. The number of interval NI determines the number of bits
necessary to the representation of the output values of the neural

4.2. Output stimulus network. For example, if it is desired NI between 8 and 15, it is
necessary 4 bits.

The stimulus to be applied to the ARTb module of the ART- |t is assigned-oo to Minterior(1), Only to be evident, due to
ARTMAP neural network are the security margins correspondpractical situations where the operative conditions with security
ing to the input pattern vectors (ARTa module) described by Edmargin inferior to—10 are rare. Contingencies with security
(7). The strategy proposed in this work, is to use intervals oimargins inferior to—3 and superior to 0.9 can be considered
security margin where the contingencies are. This form permitsery unstable andvery stable, respectively. IrFig. 1, it is illus-
to represent the contingencies by a binary code and reduce theted the distribution of the intervals of the security margin.
quantity of classes on ARTb module, that is an adequate way af is observed that the central set composed by~2) ISMs
working with ART-ARTMAP network, providing a faster train- corresponds to the more plausible occurrence situation. ISM(1)

ing and the analysis more reliable (there is always a guaranteghd ISM(NI) show contingencies very unstable and very stable,
of obtaining a solution). It used the concept of security marginrespectively.

displacement efforftL 7] to establish these intervals: The relation with the number of the intervabf the security
A margin ISM and the parametér(security margin displacement
9 = (1 -M ) 1 ) effort) can be expressed piQ]:
1-MB
9= {(r@)® -1 (13)
whered is the security margin displacement effatf” is the h
value of the initial security margin of the interval® is the where
value of the final security margin of the interval. A { (1 — Msuperiokk) } (14)
Thus, from Eq(8), it can be established the following recur- = 1— M(0)
rence equation (difference equation): 1
Mk +1) = gM(®K) + h @ VWA (15)
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For determining the parametér consideringk correspond- M
ing to the last but one ISM, i.é&c=NI—1, it is enough to EIRER : TR L o
substitute this value on Egél3)15), that define the associ- 205 P o v
ated parameters: - _
g o : - - : e .
— _pv(NI-1) _ < 23 4.5.61 9 101112 13 1415
> JI .|
where | .
(1 — Msuperiol(Nl — 1) o
(NI — 1)A 17
(i - ) { A teerelt an
-1 2
NIl —1)A——, fork=1,2,3, ...,NIL 18
4 )*NI -2 (18) 25k
It is observed that the relation with the number of intervals By R
NI and the number dbits can be expressed by: .
23,504
NI = 200its) _ g (19)

wheren bits is the number of bits used to the representation of
the output variable (ISM).

The intervals ISMs keep great correlation with the vigilance
parameter/) of the neural network ART architecture. This pro-

pl’iety, therefore, is characterized as a very important result ||[9] In the same way, several proposa|s are presented onthe spe-
treating ARTMAP neural networks, principally if it is adopted cijalized literature aiming to solve the problem of imprecision.
the binary representation on the output as a way of representinggrt of the imprecision is a consequence, principally of the mech-
an analog quantity. The solution quality control is establishechnism of the choice of the categories and of the vigilance test.
by the parametefesp and it is also implicit the control of the  Therefore, in this work it is proposed a neural system, which
vigilance parametes, i.e. the classes will be formed with more gpjective is to solve, or at least, to reduce the imprecision of the
quality. Itis observed that a representation with 6 bits (until 63analysis results, by a mechanism that seeks using the analog and
intervals), taking the first interval defined asdo, —10], the  the binary data disconnectedly. This used schema is based on a
curve ISM between-10 and 1 (or close to 1) presents a behav-fuzzy ART module, that receives the analog data, producing on
ior that approaches an analog curve: the output, the information characteristic of the ART networks,
ISM(k) = Meuperiofk) = Minferior(k) (20) that are_the active codes (discrimination ofth.e ce_ltegor.ies). Thgse
categories are processed and transformed in binary information
Considering the results that were explained, it must be givethat are added to the other information associated to the problem
priority to the values ofM comprehended betweer8 and 0.9.  (binary data), forming the input vector of the ARTMAP module.
A good practical alternative is to adopt 15 intervals (NI=15),The ARTMAP neural network output is also binary. The formu-
i.e. the output is represented by 4 bits. ConsideAr{D) =—3,  lation based on binary input and output gives to the ARTMAP
Msuperiof14) =0.9191 and using Eqél6)—(18) it is obtained  neural network more precision, and the use of a modular (ART-

Fig. 2. Graphic of ISM and oM € (—o0, 1], 9esp=0.35 andM(0) =-3.

Yesp= 0.35. This representation is illustrated ig. 2 ARTMAP) architecturg[7] provides velocity when compared
to the use of a single ARTMAP network (in this case the input
5. Neural network proposed data are binary and analog). Itis emphasized that this conception

preserves the characteristic of plasticity that with no doubt, is
The ARTMAP neural network is an architecture where theone of the principal characteristics of the ART networks.

training is realized in a supervised and auto-organized way. The This allows the implementation of the continuous training,
purpose is to approximate non-linear multi-dimensional func-constituting an important resource on the electrical power sys-
tions. This schema is adequate to solve a series of compléem operation context. It is also emphasized that these two
problems, emphasizing the electric power system transient staaodules (ART and ARTMAP) correspond to the fuzzy alter-
bility analysis, that is the problem approached in this work. Thenative formulatior{8].
importance of employing this system is referred to the char- In Fig. 3 it is shown the fuzzy ART-ARTMAP neural net-
acteristics of stability and plasticity, besides offering very fastwork. It is observed that the input of ART module corresponds
answers (faster training), as already mentioned. However, th® the vector®" (analog). This is a non-supervised network, i.e.
neural networks of the ART family present some operational difthe training is effectuated using only the input data. The output
ficulties: great sensibility to the network parameters (vigilances provided containing the classes (active codes) associated to
parameter, etc.) and the precision of the analysis. The parameti¥e input patterns. Through a processing module, these classes
sensibility is solved, or the effects attenuated, by using a set afre converted in a set of binary d&2". The other analog data
training data constituted in a balance way, and by employing neA2") are converted in binary data P'"). This vector is added to
conceptions of training and architecture of ART neural networkghe ZP" vector, composing the input of the ARTMAP module.
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Unsupervised

. Processor
Training

3 3 oin Supervised Training
Fuzzy N3 3
o :> ART Neural | % ’ ~ Fuzzy ARTa
Network — 2 g Abin | ¥ Neural
N & o : Network
Input/ Training and Analysis \
An EJ_1> A/B Fuzzy &
ARTMAP Neural <
Q
Conversion Network k|
OutPut / Training .
b Fuzzy ARTb ‘Output
pin ::> A/B > Neural :>
Network Analysis
Processor
Fig. 3. Fuzzy ART-ARTMAP neural network.
The output, for tests and training, according to Sectid) is This complementary codification is a normalization rule that
processed and transformed in binary data. preserves the amplitude of the informati@:

Following, it is presented the basic formulation of the fuzzy m "
ART neural network and the principal details of the fuzzy |y — Zzi +(m— Zzi —m.
ARTMAPN neural network. i1 )

6. Fuzzy algorithm Step 4. Choice of the categories

The T; function is calculated for each neurgrusing the

The fuzzy ART network algorithm consists, basically of on choice function (on activity §):

the following step$8,14J:

Step 1. Initialization of the weights and choice of the param- 7; = M (22)
eters o+ [w)
Initially, the weights and the other parameters of the fuzzyVheren |§thefuzzyopeLratorANDdeﬂned B5]: (> A g)i Amin
ART neural network are arbitrated on the following way: (pi, g1), with p andg € 9™,
=1 Vi L
tus s T p1AS Ipil (23)
i=1

p€l0,1],a > 0andB [0, 1];

The choice of the category is considered when, at least one
neuron in KB become active. The chosen category is, then,
indexed by the index on the following way:

Step 2. Normalization process Ty =maxT;, j=1,...,NA} (24)

The proliferation category is avoided on the fuzzy ART neural
network if the input are normalized:

wherep is the vigilance parametes;is the choice parametes;
is the training parameter.

Step 5. Vigilance test

(a) The resonance occurs when the function:
= al IAnw
|a| - J (25)
wherea is the input vectorZ=[Z1 Z> ... Z,] (normalized);
|-| = norma function. referred to the chosen category satisfies the vigilance cri-
Step 3. Complementar codification terion:
A new patterrZ, where each componegtis a positive real I Awy| = pl]. (26)

number pertaining to the interval [0, 1], has a complementary Then, the training is realized according to the instructions
codification. This provides an input vectowith MA elements,  shown inStep 6 Otherwise, it is said that the vigilance crite-
on the following way: rion failed to the chosen category. In this case, the value of the
IA[Z 2% =[Z1Zs...Zwm Z525...Z75] (21) chosep functiorf; is set equal to zero. This represents a total
exclusion of the neurod on the competition process for the
whereZf = 1 — Z;; MA A quantity of neurons in F(=2m). current pattern vector (that one where is being processed the
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associated training). Thus, a new indeis chosen using Eq. 7. Application
(24). The seeking process continues until the indesatisfies

Eq. (26).

Step 6. Adaptation of the weights

Finalizing the seeking process, the weight vector is

adapted according to the following equati@:

new __

W = B(I A w9 + (1 — B)wod

(27)

In this section, it is presented the results obtained by the
proposed method (fuzzy ART-ARTMAP neural network), con-
sidering a system composed of 10 synchronous machines,
45 busses and 72 transmission lines, as showirign 2
This system corresponds to a possible configuration of south
Brazil system. Then, the results are presented, comparing
the results obtained by neural networks and those produced
by simulation (hybrid methodology: PEBS iterative method
[19], that is a reference in precision, considering the classical

Itis observed that the fast training corresponds to the adoptiogyggel).

of =1. With 8 <1 the training is slow. The pattern vectors must
be presented to the ART neural network in a random [8ay

In these studies, the faults are considered three phase faults
with elimination time (ck) equal to nine cycles (0.15 s) with out-

In relation to the ARTMAP network, the modules ARTa age of transmission lines. The network training is realized using
and ARTb have the same structure of the ART neural networlgy set of generation and load profiles and respective security mar-

described previously, except when a basic vigilance is used
control the system. The weight matrices associated to the mo

gns associated to a contingency set. Each profile corresponds
a generation dispatch, in relation to the base case, effectu-

ules ARTa @) and ARTb @"), as well as in relation to the ated in a random way to attend the demand, also established in
Inter-ART (") are initiated with values equal to 1, i.. every a random way in each bus. The universe of the generation and
activity is inactive. These activities are activated while occursne |0ad variation is comprehended between 80 and 130% in
the resonance with the input and output patterns. Every timeg|ation to the base case of the system. Therefore, each profile is
that the input pairs«( b), associated to the modules ARTa and generated considering a percentile variation around the nominal
ARTD, are confirmed (the inputsandb referred to the active  state (base case) and a determined seed for the generation of the

categories/ andK, respectively), the weighta®, w” and w®

must be adapted using H@.7) and:

random sequence. Thus, for a same percentile, different seeds
generate different generation dispatches and different load pro-
files. This proceeding generates an adequate set of patterns for

b -new b y-old b r-old - . . . .
w K™= B(I Aw’K”") + (1 - plw’K (28)  the training phase. The comparative analysis with the obtained
results by neural networks and by hybrid simulatid®] is
w? JK"W = 1. (29)  satisfactory.
Maringa Londrina
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230 kV 1) 525 525
o RN Nt gy Ac R
———— i Ir@*‘l @ Ivaipora A
- : (69) H r- reia
b L e 1 525
! 5 |i72)_A_ _____ .l.__-|(6) IS0} 4 @ @a| Curitiba
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oA YU 9 3 ey @0
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Fig. 4. Unifilar diagram of the electrical power system.
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Table 1 Table 3
Set of contingencies Specification of the neural network parameters
Number of Fault Item Value
the fault - — —
Bus under short circuit Outage of circuits Vigilance parameter
Initial bus Final bus ’; . g:gg

1 15 14 15 pab 0.90

2 18 16 18 Training rate 8 1

3 18 18 44 Chosen parametet, 0.1

4 29 29 30

5 39 39 40

6 15 16 16 . ) o

7 16 16 18 It is the comparative analysis with neural networks (proposed

8 17 16 17 method) and the hybrid meth$t9] (considered in this work as

9 17 17 18 correct values). The percentiles and the seeds used are shown in
12 ji ig ii columns 2 and 3 oTable 4 respectively. The intervals ISMs,
12 16 15 16 indicated by the fuzzy ART-ARTMAP neural network, corre-
13 44 41 44 spond to the employment of the voting straté®jyi.e. the neural
14 35 13 35 network is trained many times (for example, five times), with
15 44 43 44 different ordinations (random ordination) for the same set data

of the training. The final prediction is given by the major fre-
quency of the generated solutions. It is observed that the results
Different generation and load profiles are consideredroduced by the two methodologies are very close.
(obtained with different percentile and different seeds), if com- Considering the results that were shown previously, it can be
pared to the data used on the training ph&sg. @). observed the following points:
The contingency set is shownTiable 1 Fifteen contingen-
cies (arbitrarily chosen) are considered to illustrate the proposed) The total load of the system correspondent to the base case
methodology. However, this number can be increased according  (100% of the loading of the system) is 6655 MW.
to the necessities of the user, with no problem in the formulation(z) Thus, the generation and the load correspond to a variation
In Table 2 the intervals of security margin (ISMs) are presented,  interval between 5324 and 8651.5 MW.
adopting a representation of 4 bits, i.e. withyp=0.35 complet-  (3) It is emphasized that the analysis phase is effectuated very
ing 15 intervals. fast. Therefore, there is compatibility for applications in real
The neural network training is realized considering a setcon-  time. The training phase (activity realized off-line) spends
taining about 3000 generation and load profiles (in median 200  much time of the processing time. However, this time is

per contingency), and the corresponding security margins (for inferior, if compared to the other neural network available

15 contingencies). on the specialized literature.
In Table 3 it is shown the parameters used for the training(4) The neural network training was effectuated, for 15 con-
phase of the fuzzy ART-ARTMAP neural networkaple 3. tingencies, considering about 3000 pairs of pattern vectors
After effectuating the training phase, the transient stability  (input/output), taking around 60 s (4 s per contingency). Itis
analysis can be realized, and the results are showaldte 4 notincluded the time used for reading and writing the infor-
mation. It is emphasized that the pre-processing of the data,
Table 2 for the neural network training, is effectuated by a module
Intervals of the security margin added to the prograi$imul. Therefore, the execution time
, , — of the Simul program and the pre-processing is not consid-
Number of the interval Security margin interval (IMS) ered.
1 (—00; =3] (5) The processing time for each analysis is about cents of sec-
2 (—3; —1.9630] onds.
i gj:igig;:é:éggg} (6) Table 4contains 138 transient stability analysis, considering
5 (~0.6258:—0.2043] the same contingencies used on the training phase, however,
6 (—0.2043; 0.10790] with different generation and load distribution, executed ina
7 (0.10790; 0.33920] pseudo random way, seeking to simulate possible real opera-
g Eg'gigggf 82;21518} tion cases. If the training is adequately realized, the analysis
10 (0:637 40’; 0731 40] of real cases, is at first reliable. _ _
1 (0.73140; 0.80110] (7) The obtained results can be considered satisfactory, how-
12 (0.80110; 0.85260] ever, some imprecision were observed (about 10%). Such
13 (0.85260; 0.89080] imprecision are not enough to invalidate the analysis. The
ig Eg'gigfp;l;)'glglo] error, is sometimes pessimist, i.e. it is found an ISM infe-

rior to the real interval. This is probably due to the chosen




Table 4

Results of the transient stability analysis obtained by simulation (reference
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results) and by fuzzy ART-ARTMAP neural network

Table 4 Continued)
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Number of Generation/load profile Security margin
the fault interval (IMS)
Percent of Seed Correct Neural
base case network
1 75 123 15 15
2 75 289 7 7
3 75 73 9 9
4 75 190 15 15
5 75 391 13 13
1 80 381 15 14
2 80 73 9 9
3 80 1 12 12
4 80 355 15 15
5 80 999 12 12
1 85 24 12 12
2 85 257 8 7
3 85 191 9 8
4 85 309 15 15
5 85 60 8 8
1 90 71 12 12
2 90 137 5 5
3 90 19 5 5
4 90 244 15 15
5 90 60 8 8
6 90 458 15 15
7 90 711 12 12
8 90 711 13 12
9 90 597 11 12
10 90 597 12 11
11 90 458 13 13
12 90 273 12 12
13 90 597 13 14
14 90 597 15 15
15 90 458 15 15
1 95 200 12 12
2 95 28 6 5
3 95 163 5 5
4 95 131 14 12
5 95 2 6 6
6 95 749 12 13
7 95 391 12 12
8 95 321 12 12
9 95 497 13 13
10 95 749 11 12
11 95 123 14 14
12 95 123 14 14
13 95 321 14 14
14 95 321 15 15
15 95 458 15 15
1 100 - 12 12
2 100 - 5 5
3 100 - 5 5
4 100 - 15 15
5 100 - 7 6
6 100 - 12 12
7 100 - 12 12
8 100 - 12 12
9 100 - 12 13
10 100 - 12 12
11 100 - 13 14
12 100 - 13 14
13 100 - 14 14
14 100 - 12 12
15 100 - 15 14

Number of

Generation/load profile

Security margin

the fault interval (IMS)
Percent of Seed Correct Neural
base case network
1 105 100 11 11
2 105 389 4 4
3 105 275 5 5
4 105 380 15 15
5 105 77 7 7
6 105 109 12 12
7 105 613 11 11
8 105 931 11 12
9 105 371 12 13
10 105 61 11 12
11 105 613 12 11
12 105 371 13 13
13 105 371 14 14
14 105 613 8 8
15 105 371 15 14
1 110 121 11 11
2 110 320 4 4
3 110 11 5 5
4 110 220 14 14
5 110 55 7 7
6 110 206 9 9
7 110 365 11 12
8 110 180 12 12
9 110 439 9 10
10 110 51 11 12
11 110 365 11 11
12 110 365 12 13
13 110 180 14 14
14 110 365 6 6
15 110 439 15 14
6 130 403 5 5
6 125 30 6 5
6 115 412 6 5
6 110 206 9 9
6 90 458 15 15
7 130 403 9 8
7 125 30 9 8
7 120 611 8 8
7 115 350 8 8
7 110 519 11 11
8 130 121 8 9
8 127.5 288 13 13
8 122.5 240 12 11
8 117.5 163 13 13
8 1125 360 12 12
9 130 3 6 7
9 127.5 288 12 12
9 122.5 240 11 11
9 117.5 805 12 12
9 1125 71 10 10
10 130 832 10 11
10 127.5 77 9 9
10 122.5 425 10 11
10 117.5 819 9 9
10 112.5 71 9 9
11 130 220 11 12
11 127.5 190 11 8
11 122.5 867 9 8
11 117.5 515 10 10
11 112.5 500 11 11
12 130 121 9 9
12 127.5 288 10 9
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Table 4 Continued) tion of the voting strategy with five repetitions of the training).
Number of  Generation/load profile Security margin The quality of the solutions is adequate. However, imprecisions
the fault interval (IMS) are observed. These imprecisions are generated in part by the
Percent of Seed Correct Neural conception of the ART family neural network, that needs to be
base case network continuously improved, and the use of a training set not suffi-
12 1225 333 11 11 ciently complete. The precision of the results is dependent of the
12 1175 515 10 9 volume of the data used on the training, and also on the number
12 1125 360 12 13 of the output segments (ISM intervals). A great number of seg-
13 130 121 9 8 ments can be obtained taking values less thaftharameter.
g g;g 3;; E ﬁ However, toincrease the number of intervals itis necessary to use
13 1175 131 12 13 a great set of training pairs (number of examples) to reduce the
13 1125 500 13 13 possibilities of the existence of empty intervals. Empty inter-
14 130 3 1 1 vals (occurrence of no security margin values in determined
14 127.5 349 1 1 intervals, considering the training data) do not offer opportunity
ij ﬁgg igg i i of learning and, consequently, introduce focus of noise on the
14 1125 383 6 6 training. More segmentation requires more number of pattern
15 130 365 15 14 vectors on the training. Concluding, the fuzzy ART-ARTMAP
15 127.5 77 15 13 neural network obtains very fast answers (there is compatibility
15 122.5 603 15 13 with applications on-line) and the precision is dependent of the
15 117.5 251 15 14

implementation of a schema adequate to the training adopting a
volume of input and output well elaborated data (either in quality
or enough quantity). It is emphasized that, the question referred
o ] ) to the quantity of data, can be solved by a faster training realized
criterion of the fuzzy algorithmZ(function of Step 4from 55 proposed in this work, and the incorporation of continuous
Section 4.6): when there is a draw in choosing the winnekaining module. The neural network, with this conception, can
neuron, th_e option is effectuated taking the neuron with th%ive better results with the passing years. The ART-ARTMAP
minimum index. neural network used in this work, is characterized as a viable
tool to analyze electrical power system transient stability. This
8. Conclusion approach can be more optimized (aiming to proportionate veloc-
ity and precision for the solutions) including improvements
It is developed in this work, a proceeding for multi-machineby proposing new architectures. For example, referefides
electrical energy transient stability analysis, by fuzzy ART-(where it was proposed a new architecture of the ART neural
ARTMAP neural network. With this architecture, it can be network called fuzzy ART-ARTMAP neural network) af@l,
idealized a proceeding for electric power system transient stabilvhere were introduced important improvements, profiting of the
ity analysis. The neural network input stimulus is constituted ofcharacteristic of malleability of the ascendant ART neural net-
the active and reactive nodal vectors (analog data) and the contimorks. New propositions can still be implemented, depending
gency data (binary data). The outputs correspond to the securign the ability of the researches.
margins of the system, represented by intervals comprehended
between the minimum and the maximum values. This way, it isReferences
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