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Abstract

This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on
ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used
as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists
of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the
analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex
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roblems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plaste
tability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is
eeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when c
he neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area.

2005 Elsevier B.V. All rights reserved.
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. Introduction

This work aims to present a methodology to transient stability
nalysis of electric energy system by artificial neural networks.
he stability analysis consists of evaluating the effects proceed-

ng of perturbations that cause great and undesirable oscilla-
ions on the angles of synchronous machines. This analysis can
e realized by solving non-linear differential equations, that
escribe the movement of the system – synchronous machine
scillation equation – and, after by the analysis of the evolution
f the angular position of each synchronous machine during

ime (simulation)[1]. The techniques used for the simulation
re precise and present no restrictions to the type of the model
mployed. However, it is necessary to effectuate complex cal-
ulus that consists of solving a set of algebraic and non-linear
ifferential equations and examining the oscillation curves that
re obtained, increasing the time dispensed to conclude the anal-
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ysis. An alternative proceeding consists of obtaining the ana
without solving the differential equations. In this way, th
is the Lyapunov direct method (LDM)[2], which results ar
considered satisfactory, principally when it employed the c
sical method[2–4]. Taking into account the great quantity of
defects to be analyzed, the complexity and the great dime
of the modern electric systems, the simulation, as well a
Lyapunov direct method, are alternatives that, not yet, offe
conditions to applications in real time. New approaches of a
sis, based on artificial intelligence, in special the neural netw
[5], are presented in the literature aiming to overcome thes
ficulties, principally concerning to velocity. Therefore, this w
investigates the application of artificial neural networks (AN
on the diagnosis of transient stability analysis of electric en
systems. The transient stability analysis by neural networks
general effectuated employing the feedforward networks,
the training based on the backpropagation[6]. This techniqu
is efficient, being considered in the literature, as a bench
in terms of precision. However, the processing time is relat
high.

This way, in this work it is investigated the use of

A.P. Lotufo), minussi@dee.feis.unesp.br (Carlos.R. Minussi). fuzzy neural ART-ARTMAP network[7]. The ART-ARTMAP
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network is an architecture based on the supervised training for
multi-dimensional mappings (multi-input/multi-output), being
composed of three ART modules[8], and an inter-ART mod-
ule. The ART neural network family has the characteristic of
stability (capacity of learning without adjusting the weights)
and plasticity (capacity of continue learning with the inclusion
of new patterns without loosing the memory in relation to the
previous patterns). Considering these characteristics, the expec-
tation is that the network presents a superior performance when
compared to the traditional backpropagation[6]. The ARTMAP
neural networks, as well as the ART networks, are capable
to include innovations that can produce better results[9]. The
ART module is used to classify the input vectors (analog data),
corresponding to the active and reactive nodal power in dif-
ferent categories and to convert them in binary information
{Pbin, Qbin}, by a processing module active code/binary code
[7]. The fuzzy ARTMAP input module is constituted by the set
{Pbin, Qbin}, added to the binary information referred to fault
conditions and the electric network topology. Thus, the neural
ARTMAP network receives only binary data that represent a
favorable situation for applications in large systems. This repre-
sents a reduction on the computational effort necessary to realize
the training and an improvement on the quality of the analysis,
when compared to other neural networks.

It is emphasized that, in the specialized literature, there are
few references that deal with the stability analysis problem
u the
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whereMi = 2Hi/ωs; ωs� synchronous velocity (=2πf0); Hi =
inertial constant (s);f0 is the nominal frequency of the sys-
tem (Hz);θi� rotor angle of thei-th synchronous machine in
relation to the center of angles (electrical radians) (=δi − δ0);
δi is the rotor angle of thei-th synchronous machine in rela-
tion to a machine that rotates in synchronous velocity (electri-
cal radians);δ0 =

∑
j ∈NMjδj/MT; θ = [θ1, θ2, . . . , θns]T;� =

[�1, �2, . . . ,�ns]T; Pmi is the input mechanical power (pu);
Pei is the output mechanical power (pu); PCA�accelerating
power of the center of the angles (=

∑
j ∈N (Pmj − Pej));

MT =∑j ∈NMj; N� index set of the synchronous machines
=({1,2, . . . ,ns}); ns is the quantity of synchronous machines.

3. Transient stability analysis

The transient stability analysis of electric power systems,
considering a contingency of indexr, can be realized using the
security margin criterion[17]:

Mr = Ecritr − Eer

Ecritr
(3)

whereEcritr is the total critical energy of the system;Eer is the
total energy of the system referred to the fault elimination time.

The critical energy (Ecrit) and the critical time (crit) can be
determined using a series of solutions available on the spe-
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sing neural networks[10]. In almost of these references,
ransient stability analysis problem is formulated aiming
etermination of the critical times for short circuit faults. R
rences[10–12] use neural networks with the training by
ackpropagation algorithm. In reference[13], it is used the back
ropagation algorithm with a fuzzy controller, which adjusts

raining rate, to reduce the number of cycles and the exec
ime in the training phase. There are other references, in
ial, that deal with problems associated to the electric p
ystems by neural networks using the ART concept. In r
nces[14–16], the transient stability analysis problem sol
y neural networks is proposed using a fuzzy ARTMAP ne
etwork, considering the variation of the load and generatio
roportionality, being this the majority of the solutions adop

n the available references. To illustrate the proposed meth
gy results are presented considering a multi-machine sys

. System model

Considering an electric energy system composed of ns
hronous machines, the dynamic behavior of thei-th syn-
hronous machine, related to the center of angles[2] is described
y the following differential and non-linear algebraic E
2)–(4):

i

d2θi

dt2
− Pi(θ) = 0 (1)

Pi(θ) = Pmi − Pei − (Mi PCA)

MT
, i∈N. (2)
n
-

r

l-
.

-

ialized literature, as an example, the method potential en
oundary surface (PEBS)[18,19]. It is observed that for the cla
ical method, the PEBS method gives the same results a
imulation[19]. The total energy, referred to the system defi
y Eqs.(1) and(2), is given by[2]:

(θ,ω) = Ec(ω) + Ep(θ) (4)

here

c(ω) = 1

2

∑
i∈N

Miω
2
i (kinetic energy) (5

p(θ) = −
∑
i∈N

∫ θi

θ
p

i

Pi(θ) dθi (potential energy) (6

In this work, it is used the iterative PEBS method[19]. Never-
heless, the developed methodology (by fuzzy ART-ARTM
etwork) is not dependent of the PEBS method, and an
ethod can be used, since some stability index be provide
Then, the transient stability of ther-th contingency can b

nferred by the security margin on the following way[17]:

if Mr ≥ 0, then, the system is considered stable;
if Mr ≤ 0, then, the system is considered unstable.

. Transient stability analysis: solution proposed by
eural networks

In this section, it is established the input and the outpu
he neural network. The information are provided by a com
ational program of transient stability analysis (Simul) [17] that,
rom electrical network data, considering a list of contingen
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(three phase short circuit), come the associated security margin
values. TheSimul program is a computational implementation
based on numeric integration of differential equations (Eq.(1))
and on the PEBS method, microcomputer version.

4.1. Input stimulus

The proposed neural structure aims to analyze the electric
energy system transient stability, that corresponds to the secu-
rity margin determination, considering faults from a three phase
short circuit with outage of a transmission line. The input pattern
vectors of the neural network are defined as[12,20]:

Xr = [PTQTΛT
r ]

T
(7)

whereXr is the pattern vector referred to ther-th contingency;
P = [P1P2 . . . Pρ]T; Q = [Q1Q2 . . .Qρ]T; Pi is the active power
of thei-th bus of the system;Qi is the reactive power of thei-th
bus of the system;Λν is the vector that contains the information
about theν-th contingency represented in binary code.

In this case, considering the classical model for the first oscil-
lation transient stability analysis[3], it is supposed that only the
active and reactive power vectors are necessary. The topology
of the network and the other parameters (inertia constant, tran-
sient reactance, etc.) are maintained constant, consequently only
the causal variables (active and reactive power) and the param-
e ion of
t ate of
t con-
s ower
( f the
f

4

RT-
A ond-
i Eq
( ls of
s rmits
t ce th
q ay o
w n-
i ante
o rgin
d

ϑ

w
v
v

ur-
r

M

Fig. 1. Representation of the ISMs on the interval (−∞, 1].

whereg�1/(1 +ϑesp); h = 1− g; ϑespis the value ofϑ specified
according to the established criterion.

Eq. (9) is obtained from Eq.(8) substitutingMA andMB

byM(k) andM(k + 1), respectively. Effectuating the discrete
variation on timek, between 0 and∞, it is obtained a discrete
curve comprehended between the initial security margin value
M(0) (start value) and the final security marginM(∞) = 1.

Therefore, the interval, in function of the concept of the secu-
rity margin interval, can be defined as:

ISM(k)�(Minferior(k),Msuperior(k)), for k = 1,2,3, . . . ,NI

(10)

where ISM(k) is thek-th interval of the security margin and NI
is the number of the intervals of the ISMs.

The functionsMinferior(k) andMsuperior(k) are defined as
[20]:

Msuperior(k) = 1 − νs exp(φ k) (11)

Minferior(k) = 1 − νi exp(φ k) (12)

whereνs = {1 −M(0)}/(1 + ϑesp); φ =−ln(1 +ϑesp); ln is the
Neperian logarithm.

The number of interval NI determines the number of bits
necessary to the representation of the output values of the neural
network. For example, if it is desired NI between 8 and 15, it is
n
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ters that express alterations on the network (representat
he contingencies) are used. It is emphasized that the st
he system (angles and velocities) are elements that are
equences of this process, i.e. they are function of the p
active and reactive) and of the type and circumstance o
ault.

.2. Output stimulus

The stimulus to be applied to the ARTb module of the A
RTMAP neural network are the security margins corresp

ng to the input pattern vectors (ARTa module) described by
7). The strategy proposed in this work, is to use interva
ecurity margin where the contingencies are. This form pe
o represent the contingencies by a binary code and redu
uantity of classes on ARTb module, that is an adequate w
orking with ART-ARTMAP network, providing a faster trai

ng and the analysis more reliable (there is always a guar
f obtaining a solution). It used the concept of security ma
isplacement effort[17] to establish these intervals:

=
(

1 −MA

1 −MB

)
− 1 (8)

hereϑ is the security margin displacement effort;MA is the
alue of the initial security margin of the interval;MB is the
alue of the final security margin of the interval.

Thus, from Eq.(8), it can be established the following rec
ence equation (difference equation):

(k + 1) = gM(k) + h (9)
.

e
f

e

ecessary 4 bits.
It is assigned−∞ toMinferior(1), only to be evident, due

ractical situations where the operative conditions with sec
argin inferior to−10 are rare. Contingencies with secu
argins inferior to−3 and superior to 0.9 can be conside

ery unstable andvery stable, respectively. InFig. 1, it is illus-
rated the distribution of the intervals of the security mar
t is observed that the central set composed by (NI− 2) ISMs
orresponds to the more plausible occurrence situation. IS
nd ISM(NI) show contingencies very unstable and very st
espectively.

The relation with the number of the intervalk of the security
argin ISM and the parameterϑ (security margin displaceme
ffort) can be expressed by[19]:

= {Γ (k)}ψ(k) − 1 (13)

here

(k)�

{
(1 −Msuperior(k)

1 −M(0)

}
(14)

(k)�
−1

k − 1
. (15)
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For determining the parameterϑ, consideringk correspond-
ing to the last but one ISM, i.e.k = NI − 1, it is enough to
substitute this value on Eqs.(13)–(15), that define the associ-
ated parameters:

ϑesp= {Γ (NI − 1)}ψ(NI−1) − 1 (16)

where

Γ (NI − 1)�

{
(1 −Msuperior(NI − 1)

1 −M(0)

}
(17)

ψ(NI − 1)�
−1

NI − 2
, for k = 1,2,3, . . . ,NI. (18)

It is observed that the relation with the number of intervals
NI and the number ofbits can be expressed by:

NI = 2(nbits) − 1 (19)

wheren bits is the number of bits used to the representation of
the output variable (ISM).

The intervals ISMs keep great correlation with the vigilance
parameter (ρ) of the neural network ART architecture. This pro-
priety, therefore, is characterized as a very important result in
treating ARTMAP neural networks, principally if it is adopted
the binary representation on the output as a way of representing
an analog quantity. The solution quality control is established
by the parameterϑesp, and it is also implicit the control of the
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Fig. 2. Graphic of ISM and ofM∈ (−∞, 1], ϑesp= 0.35 andM(0) =−3.

[9]. In the same way, several proposals are presented on the spe-
cialized literature aiming to solve the problem of imprecision.
Part of the imprecision is a consequence, principally of the mech-
anism of the choice of the categories and of the vigilance test.

Therefore, in this work it is proposed a neural system, which
objective is to solve, or at least, to reduce the imprecision of the
analysis results, by a mechanism that seeks using the analog and
the binary data disconnectedly. This used schema is based on a
fuzzy ART module, that receives the analog data, producing on
the output, the information characteristic of the ART networks,
that are the active codes (discrimination of the categories). These
categories are processed and transformed in binary information
that are added to the other information associated to the problem
(binary data), forming the input vector of the ARTMAP module.
The ARTMAP neural network output is also binary. The formu-
lation based on binary input and output gives to the ARTMAP
neural network more precision, and the use of a modular (ART-
ARTMAP) architecture[7] provides velocity when compared
to the use of a single ARTMAP network (in this case the input
data are binary and analog). It is emphasized that this conception
preserves the characteristic of plasticity that with no doubt, is
one of the principal characteristics of the ART networks.

This allows the implementation of the continuous training,
constituting an important resource on the electrical power sys-
tem operation context. It is also emphasized that these two
modules (ART and ARTMAP) correspond to the fuzzy alter-
n

t-
w nds
t i.e.
t tput
i ted to
t lasses
a ta
( to
t le.
igilance parameterρ, i.e. the classes will be formed with mo
uality. It is observed that a representation with 6 bits (unt

ntervals), taking the first interval defined as (−∞, −10], the
urve ISM between−10 and 1 (or close to 1) presents a beh

or that approaches an analog curve:

SM(k) ∼=Msuperior(k) ∼=Minferior(k) (20)

Considering the results that were explained, it must be g
riority to the values ofM comprehended between−3 and 0.9
good practical alternative is to adopt 15 intervals (NI = 1

.e. the output is represented by 4 bits. ConsideringM(0) =−3,
superior(14) = 0.9191 and using Eqs.(16)–(18), it is obtained

esp= 0.35. This representation is illustrated onFig. 2.

. Neural network proposed

The ARTMAP neural network is an architecture where
raining is realized in a supervised and auto-organized way
urpose is to approximate non-linear multi-dimensional fu

ions. This schema is adequate to solve a series of com
roblems, emphasizing the electric power system transien
ility analysis, that is the problem approached in this work.

mportance of employing this system is referred to the c
cteristics of stability and plasticity, besides offering very
nswers (faster training), as already mentioned. Howeve
eural networks of the ART family present some operationa
culties: great sensibility to the network parameters (vigila
arameter, etc.) and the precision of the analysis. The para
ensibility is solved, or the effects attenuated, by using a s
raining data constituted in a balance way, and by employing
onceptions of training and architecture of ART neural netw
e

er
f

ative formulation[8].
In Fig. 3, it is shown the fuzzy ART-ARTMAP neural ne

ork. It is observed that the input of ART module correspo
o the vectoraan (analog). This is a non-supervised network,
he training is effectuated using only the input data. The ou
s provided containing the classes (active codes) associa
he input patterns. Through a processing module, these c
re converted in a set of binary dataZbin. The other analog da
�an) are converted in binary data (�bin). This vector is added
heZbin vector, composing the input of the ARTMAP modu
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Fig. 3. Fuzzy ART-ARTMAP neural network.

The output, for tests and training, according to Section4.2, is
processed and transformed in binary data.

Following, it is presented the basic formulation of the fuzzy
ART neural network and the principal details of the fuzzy
ARTMAPN neural network.

6. Fuzzy algorithm

The fuzzy ART network algorithm consists, basically of on
the following steps[8,14]:

Step 1. Initialization of the weights and choice of the param-
eters

Initially, the weights and the other parameters of the fuzzy
ART neural network are arbitrated on the following way:

wij = 1, ∀i, j

ρ∈ [0,1], α > 0 andβ∈ [0,1];

whereρ is the vigilance parameter;α is the choice parameter;β
is the training parameter.

Step 2. Normalization process

The proliferation category is avoided on the fuzzy ART neural
network if the input are normalized:

Z

w ;
|
S

l
n tary
c ,
o

I

w

This complementary codification is a normalization rule that
preserves the amplitude of the information[8]:

|I| =
m∑
i=1

Zi +
(
m−

m∑
i=1

Zi

)
= m.

Step 4. Choice of the categories

The Tj function is calculated for each neuronj using the
choice function (on activity F2):

Tj = |I ∧ wj|
α+ |wj| , (22)

where∧ is the fuzzy operator AND defined by[5]: (p ∧ q)i�min
(pi, qi), with p andq ∈ 	L,

|p|�
L∑
i=1

|pi| (23)

The choice of the category is considered when, at least one
neuron in F2 become active. The chosen category is, then,
indexed by the indexJ on the following way:

TJ = max{Tj, j = 1, . . . ,NA} (24)

Step 5. Vigilance test

∣∣∣∣
r cri-
t

|
ions

s te-
r f the
c otal
e he
c d the
= (a)

|a|
herea is the input vector;Z = [Z1 Z2 . . . Zm] (normalized)

·| = norma function.

tep 3. Complementar codification

A new patternZ, where each componentZi is a positive rea
umber pertaining to the interval [0, 1], has a complemen
odification. This provides an input vectorI with MA elements
n the following way:

�[ Z Zc ] = [Z1Z2 . . . Zm Zc
1Z

c
2 . . . Z

c
m ] (21)

hereZc
i = 1 − Zi; MA �quantity of neurons in F1 (=2m).
The resonance occurs when the function:

I ∧ wJ

I

∣∣∣∣ (25)

eferred to the chosen category satisfies the vigilance
erion:

I ∧ wJ | ≥ ρ|I|. (26)

Then, the training is realized according to the instruct
hown inStep 6. Otherwise, it is said that the vigilance cri
ion failed to the chosen category. In this case, the value o
hosen functionTJ is set equal to zero. This represents a t
xclusion of the neuronJ on the competition process for t
urrent pattern vector (that one where is being processe
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associated training). Thus, a new indexJ is chosen using Eq.
(24). The seeking process continues until the indexJ satisfies
Eq.(26).

Step 6. Adaptation of the weights

Finalizing the seeking process, the weight vectorwJ is
adapted according to the following equation[8]:

wnew
J = β(I ∧ wold

J ) + (1 − β)wold
J (27)

It is observed that the fast training corresponds to the adoption
of β = 1. Withβ < 1 the training is slow. The pattern vectors must
be presented to the ART neural network in a random way[8].

In relation to the ARTMAP network, the modules ARTa
and ARTb have the same structure of the ART neural network
described previously, except when a basic vigilance is used to
control the system. The weight matrices associated to the mod-
ules ARTa (wa) and ARTb (wb), as well as in relation to the
Inter-ART (wab) are initiated with values equal to 1, i.e. every
activity is inactive. These activities are activated while occurs
the resonance with the input and output patterns. Every time
that the input pairs (a, b), associated to the modules ARTa and
ARTb, are confirmed (the inputsa andb referred to the active
categoriesJ andK, respectively), the weightswa, wb andwab

must be adapted using Eq.(27)and:

w

w

7. Application

In this section, it is presented the results obtained by the
proposed method (fuzzy ART-ARTMAP neural network), con-
sidering a system composed of 10 synchronous machines,
45 busses and 72 transmission lines, as shown inFig. 2.
This system corresponds to a possible configuration of south
Brazil system. Then, the results are presented, comparing
the results obtained by neural networks and those produced
by simulation (hybrid methodology: PEBS iterative method
[19], that is a reference in precision, considering the classical
model).

In these studies, the faults are considered three phase faults
with elimination time (tch) equal to nine cycles (0.15 s) with out-
age of transmission lines. The network training is realized using
a set of generation and load profiles and respective security mar-
gins associated to a contingency set. Each profile corresponds
to a generation dispatch, in relation to the base case, effectu-
ated in a random way to attend the demand, also established in
a random way in each bus. The universe of the generation and
the load variation is comprehended between 80 and 130% in
relation to the base case of the system. Therefore, each profile is
generated considering a percentile variation around the nominal
state (base case) and a determined seed for the generation of the
random sequence. Thus, for a same percentile, different seeds
generate different generation dispatches and different load pro-
fi rns for
t ined
r
s

bKnew = β(I ∧ wbKold) + (1 − β)wbKold (28)

abJKnew = 1. (29)
Fig. 4. Unifilar diagram of th
les. This proceeding generates an adequate set of patte
he training phase. The comparative analysis with the obta
esults by neural networks and by hybrid simulation[19] is
atisfactory.
e electrical power system.
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Table 1
Set of contingencies

Number of
the fault

Fault

Bus under short circuit Outage of circuits

Initial bus Final bus

1 15 14 15
2 18 16 18
3 18 18 44
4 29 29 30
5 39 39 40
6 15 16 16
7 16 16 18
8 17 16 17
9 17 17 18

10 33 33 36
11 44 18 44
12 16 15 16
13 44 41 44
14 35 13 35
15 44 43 44

Different generation and load profiles are considered
(obtained with different percentile and different seeds), if com-
pared to the data used on the training phase (Fig. 4).

The contingency set is shown inTable 1. Fifteen contingen-
cies (arbitrarily chosen) are considered to illustrate the proposed
methodology. However, this number can be increased according
to the necessities of the user, with no problem in the formulation.
In Table 2, the intervals of security margin (ISMs) are presented,
adopting a representation of 4 bits, i.e. withϑesp= 0.35 complet-
ing 15 intervals.

The neural network training is realized considering a set con-
taining about 3000 generation and load profiles (in median 200
per contingency), and the corresponding security margins (for
15 contingencies).

In Table 3, it is shown the parameters used for the training
phase of the fuzzy ART-ARTMAP neural network (Table 3).

After effectuating the training phase, the transient stability
analysis can be realized, and the results are shown inTable 4.

Table 2
Intervals of the security margin

Number of the interval Security margin interval (IMS)

1 (−∞; −3]
2 (−3; −1.9630]
3 (−1.9630;−1.1948]

1
1
1
1
1
1

Table 3
Specification of the neural network parameters

Item Value

Vigilance parameter
ρa 0.99
ρb 0.97
ρab 0.90

Training rate,β 1
Chosen parameter,α 0.1

It is the comparative analysis with neural networks (proposed
method) and the hybrid method[19] (considered in this work as
correct values). The percentiles and the seeds used are shown in
columns 2 and 3 ofTable 4, respectively. The intervals ISMs,
indicated by the fuzzy ART-ARTMAP neural network, corre-
spond to the employment of the voting strategy[8], i.e. the neural
network is trained many times (for example, five times), with
different ordinations (random ordination) for the same set data
of the training. The final prediction is given by the major fre-
quency of the generated solutions. It is observed that the results
produced by the two methodologies are very close.

Considering the results that were shown previously, it can be
observed the following points:

(1) The total load of the system correspondent to the base case
(100% of the loading of the system) is 6655 MW.

(2) Thus, the generation and the load correspond to a variation
interval between 5324 and 8651.5 MW.

(3) It is emphasized that the analysis phase is effectuated very
fast. Therefore, there is compatibility for applications in real
time. The training phase (activity realized off-line) spends
much time of the processing time. However, this time is
inferior, if compared to the other neural network available
on the specialized literature.

(4) The neural network training was effectuated, for 15 con-
ctors
It is
for-
data,
ule
e
sid-

( f sec-

( ring
ever,
in a
pera-
lysis

( how-
Such
The

nfe-
sen
4 (−1.1948;−0.6258]
5 (−0.6258;−0.2043]
6 (−0.2043; 0.10790]
7 (0.10790; 0.33920]
8 (0.33920; 0.51050]
9 (0.51050; 0.63740]
0 (0.63740; 0.73140]
1 (0.73140; 0.80110]
2 (0.80110; 0.85260]
3 (0.85260; 0.89080]
4 (0.89080; 0.91910]
5 (0.9191; 1]
tingencies, considering about 3000 pairs of pattern ve
(input/output), taking around 60 s (4 s per contingency).
not included the time used for reading and writing the in
mation. It is emphasized that the pre-processing of the
for the neural network training, is effectuated by a mod
added to the programSimul. Therefore, the execution tim
of theSimul program and the pre-processing is not con
ered.

5) The processing time for each analysis is about cents o
onds.

6) Table 4contains 138 transient stability analysis, conside
the same contingencies used on the training phase, how
with different generation and load distribution, executed
pseudo random way, seeking to simulate possible real o
tion cases. If the training is adequately realized, the ana
of real cases, is at first reliable.

7) The obtained results can be considered satisfactory,
ever, some imprecision were observed (about 10%).
imprecision are not enough to invalidate the analysis.
error, is sometimes pessimist, i.e. it is found an ISM i
rior to the real interval. This is probably due to the cho
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Table 4
Results of the transient stability analysis obtained by simulation (reference
results) and by fuzzy ART-ARTMAP neural network

Number of
the fault

Generation/load profile Security margin
interval (IMS)

Percent of
base case

Seed Correct Neural
network

1 75 123 15 15
2 75 289 7 7
3 75 73 9 9
4 75 190 15 15
5 75 391 13 13
1 80 381 15 14
2 80 73 9 9
3 80 1 12 12
4 80 355 15 15
5 80 999 12 12
1 85 24 12 12
2 85 257 8 7
3 85 191 9 8
4 85 309 15 15
5 85 60 8 8
1 90 71 12 12
2 90 137 5 5
3 90 19 5 5
4 90 244 15 15
5 90 60 8 8
6 90 458 15 15
7 90 711 12 12
8 90 711 13 12
9 90 597 11 12

10 90 597 12 11
11 90 458 13 13
12 90 273 12 12
13 90 597 13 14
14 90 597 15 15
15 90 458 15 15
1 95 200 12 12
2 95 28 6 5
3 95 163 5 5
4 95 131 14 12
5 95 2 6 6
6 95 749 12 13
7 95 391 12 12
8 95 321 12 12
9 95 497 13 13

10 95 749 11 12
11 95 123 14 14
12 95 123 14 14
13 95 321 14 14
14 95 321 15 15
15 95 458 15 15
1 100 – 12 12
2 100 – 5 5
3 100 – 5 5
4 100 – 15 15
5 100 – 7 6
6 100 – 12 12
7 100 – 12 12
8 100 – 12 12
9 100 – 12 13

10 100 – 12 12
11 100 - 13 14
12 100 – 13 14
13 100 – 14 14
14 100 – 12 12
15 100 – 15 14

Table 4 (Continued )

Number of
the fault

Generation/load profile Security margin
interval (IMS)

Percent of
base case

Seed Correct Neural
network

1 105 100 11 11
2 105 389 4 4
3 105 275 5 5
4 105 380 15 15
5 105 77 7 7
6 105 109 12 12
7 105 613 11 11
8 105 931 11 12
9 105 371 12 13

10 105 61 11 12
11 105 613 12 11
12 105 371 13 13
13 105 371 14 14
14 105 613 8 8
15 105 371 15 14
1 110 121 11 11
2 110 320 4 4
3 110 11 5 5
4 110 220 14 14
5 110 55 7 7
6 110 206 9 9
7 110 365 11 12
8 110 180 12 12
9 110 439 9 10

10 110 51 11 12
11 110 365 11 11
12 110 365 12 13
13 110 180 14 14
14 110 365 6 6
15 110 439 15 14
6 130 403 5 5
6 125 30 6 5
6 115 412 6 5
6 110 206 9 9
6 90 458 15 15
7 130 403 9 8
7 125 30 9 8
7 120 611 8 8
7 115 350 8 8
7 110 519 11 11
8 130 121 8 9
8 127.5 288 13 13
8 122.5 240 12 11
8 117.5 163 13 13
8 112.5 360 12 12
9 130 3 6 7
9 127.5 288 12 12
9 122.5 240 11 11
9 117.5 805 12 12
9 112.5 71 10 10

10 130 832 10 11
10 127.5 77 9 9
10 122.5 425 10 11
10 117.5 819 9 9
10 112.5 71 9 9
11 130 220 11 12
11 127.5 190 11 8
11 122.5 867 9 8
11 117.5 515 10 10
11 112.5 500 11 11
12 130 121 9 9
12 127.5 288 10 9



474 W.P. Ferreira et al. / Electric Power Systems Research 76 (2006) 466–475

Table 4 (Continued )

Number of
the fault

Generation/load profile Security margin
interval (IMS)

Percent of
base case

Seed Correct Neural
network

12 122.5 333 11 11
12 117.5 515 10 9
12 112.5 360 12 13
13 130 121 9 8
13 127.5 77 13 13
13 122.5 380 12 13
13 117.5 131 12 13
13 112.5 500 13 13
14 130 3 1 1
14 127.5 349 1 1
14 122.5 240 1 1
14 117.5 163 1 1
14 112.5 383 6 6
15 130 365 15 14
15 127.5 77 15 13
15 122.5 603 15 13
15 117.5 251 15 14
15 112.5 385 15 14

criterion of the fuzzy algorithm (T function ofStep 4from
Section 4.6): when there is a draw in choosing the winner
neuron, the option is effectuated taking the neuron with the
minimum index.

8. Conclusion

It is developed in this work, a proceeding for multi-machine
electrical energy transient stability analysis, by fuzzy ART-
ARTMAP neural network. With this architecture, it can be
idealized a proceeding for electric power system transient stabil
ity analysis. The neural network input stimulus is constituted of
the active and reactive nodal vectors (analog data) and the contin
gency data (binary data). The outputs correspond to the securi
margins of the system, represented by intervals comprehende
between the minimum and the maximum values. This way, it is
possible to represent the outputs in binary code (binary output)
As an illustration of the methodology of the transient stability
analysis by fuzzy ART-ARTMAP neural network[7], results are
presented considering an electrical power system correspond
ing to a system (a south Brazil system version) composed of 4
busses, 72 transmission lines/transformers and 10 synchrono
machines. The training is realized considering 15 contingencie
of a solid three phase short circuit with outage of transmission
line. The contingencies are arbitrated as incidents in severa
p vels
a com
p stem
T bje
t atio
o wer
s ork
p ing
P cu-

tion of the voting strategy with five repetitions of the training).
The quality of the solutions is adequate. However, imprecisions
are observed. These imprecisions are generated in part by the
conception of the ART family neural network, that needs to be
continuously improved, and the use of a training set not suffi-
ciently complete. The precision of the results is dependent of the
volume of the data used on the training, and also on the number
of the output segments (ISM intervals). A great number of seg-
ments can be obtained taking values less than theϑ parameter.
However, to increase the number of intervals it is necessary to use
a great set of training pairs (number of examples) to reduce the
possibilities of the existence of empty intervals. Empty inter-
vals (occurrence of no security margin values in determined
intervals, considering the training data) do not offer opportunity
of learning and, consequently, introduce focus of noise on the
training. More segmentation requires more number of pattern
vectors on the training. Concluding, the fuzzy ART-ARTMAP
neural network obtains very fast answers (there is compatibility
with applications on-line) and the precision is dependent of the
implementation of a schema adequate to the training adopting a
volume of input and output well elaborated data (either in quality
or enough quantity). It is emphasized that, the question referred
to the quantity of data, can be solved by a faster training realized
as proposed in this work, and the incorporation of continuous
training module. The neural network, with this conception, can
give better results with the passing years. The ART-ARTMAP
n iable
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oints of the electrical network (15 localization). The load le
re considered arbitrated in a random way in a universe
rehended between 80 and 130% of the total load of the sy
he obtained results are satisfactory, i.e. they attained the o

ives proposed. The objectives are to investigate the applic
f neural network for executing diagnosis of electrical po
ystem transient stability. The ART-ARTMAP neural netw
rovides very fast solutions (about cents of seconds, us
entium III of 500 MHz microcomputer, considering the exe
-
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eural network used in this work, is characterized as a v
ool to analyze electrical power system transient stability.
pproach can be more optimized (aiming to proportionate v

ty and precision for the solutions) including improveme
y proposing new architectures. For example, reference[7],
where it was proposed a new architecture of the ART ne
etwork called fuzzy ART-ARTMAP neural network) and[9],
here were introduced important improvements, profiting o
haracteristic of malleability of the ascendant ART neural
orks. New propositions can still be implemented, depen
n the ability of the researches.
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