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[57] ABSTRACT

A neural network for processing sensory information.
The network comprise one or more layers including
interconnecting cells having individual states. Each cell
is connected to one or more neighboring cells. Sensory
signals and signals from interconnected neighboring
cells control a current or a conductance within a cell to
influence the cell’s state. In some embodiments, the
current -or conductance of a cell can be controlled by a
signal arising externally of the layer. Each cell can
comprise an electrical circuit which receives an input
signal and causes a current corresponding to the signal
to pass through a variable conductance. The conduc-
tance is a function of the states of the one or more inter-
connecting neighboring cells. Proper interconnection
of the cells on a layer can produce a neural network
which is sensitive to predetermined patterns or the pas-
sage of such patterns across a sensor array whose sig-
nals are input into the network. The layers in the net-
work can be made sensitive to distinct sensory parame-
ters, so that networks which are sensitive to different
wavelengths or polarizations of light energy can be
produced.

31 Claims, 20 Drawing Sheets
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OPTOELECTRONIC SENSORY NEURAL
NETWORK

GOVERNMENT RIGHTS

This invention was made with government support
under grant number MIP-8822121 awarded by the Na-
tional Science Foundation. The government has certain
rights in the invention.

This application is a continuation application based
on prior copending application Ser. No. 07/444,638
filed Nov. 30, 1989 abandoned.

1. Technical Field

10

This invention relates to neural networks, and more 5

particularly, to massively parallel analog shunting neu-
ral networks.

2. Background Art

There has long been interest in implementing models
of biological processes in electronic forms: Prominent
among these models are models of sensory processing
by biological systems, for example, processing of visual
information. From this perspective, then, biological
systems can not only be simulated by the electronic
implementations, but they may also be studied on the
basis of the underlying mathematics upon which the
models are based.

Presently, neural network models are finding signifi-
cant value in the study of biological systems, especially
of sensory systems. Models of biological neural net-
works can take the form of multi-layer networks. How-
ever, the inventors have focused primarily on one-layer
networks, with the realization that multi-layer networks
can be developed from the one-layer networks. Accord-
ingly, the following specification is primarily centered
on one-layer neural networks, which can be described
by the equations of short term memories.

Shunting neura! networks are networks in which
multiplicative, or shunting, terms of the form x;Zf{(x))
or x;21; appear in the short term memory equations,
where x; is activity of a cell or a cell population or an
iso-potential portion of a cell and I; are external inputs
arriving at each site. I; may be a sensory, or any, vari-
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able. The first form shows recurrent activity, while the

second form is non-recurrent or feed forward. The
polarity of these terms signify excitatory or inhibitory
interactions.

Shunting network equations can be derived from
various sources, such as the passive membrane equation
with synaptic interaction. Derivations are given by
Poggio et al., in A new approach to synaptic interac-
tions, THEORETICAL APPROACHES TO COM-
PLEX SYSTEMS, LECTURE NOTES IN BIO-
MATHEMATICS, vol. 21, R. Heim and G. Palm, eds.,
New York:Springer-Verlog, and The electrophysiolog-
ical bases for linear and nonlinear product term lateral
inhibition and the consequences for wide-field textured
stimuli, J. THEOR. BIOL., 105, pp. 233-243, 1983.
Examples of these equations are given in Contour en-
hancement, Short term memory and constancies in re-
verberating neural networks, STUDIES IN APPLIED
MATHEMATICS, 52, pp. 217-257 by Grossberg
(1973). Models of dendritic interaction are given by Rall
in Core conductor theory and cable properties of neu-
rons, HANDBOOK OF PHYSIOLOGY: THE NER-
VOUS SYSTEM, vol. I, part I, pp. 39-97, American
Physiological Society, 1977 and METHODS IN NEU-
RONAL MODELING, Koch et al., Cambridge:MIT
Press, 1989, and experiments on motoneurons are de-
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scribed by Ellias and Grossberg in Pattern formation,
contrast control, and oscillations in the short term mem-
ory of shunting on-center off-surround networks, BIO-
LOGICAL CYBERNETICS, 20, pp. 69-98, 1975.

While the exact mechanisms of synaptic interactions
are not known in every individual case, neurobiological
evidence of shunting interactions appear in several areas
such as sensory systems, cerebellum, neocortex, and
hippocampus. This was described by Grossberg in the
paper cited above, and by Pinter in Visual system neural
networks: Feedback and feedforward lateral inhibition,
SYSTEMS AND CONTROL ENCYCLOPEDIA,
(ed. M. G. Singh) Oxford:Pergamon Press, pp.
5060-5065, 1987. In addition to neurobiology, these
networks have been used to successfully explain data
from disciplines ranging from population biology, for
example, by Lotka in ELEMENTS OF MATHEMAT-
ICAL BIOLOGY, New York:Dover, 1956, to psycho-
physics and behavioral psychology, as described by
Grossberg in The quantized theory of visual space: The
coherent computation of depth, form, and lightness,
THE BEHAVIORAL AND BRAIN SCIENCES 6,
pp- 625-692, 1983.

Shunting nets have important advantages over addi-
tive models which lack the extra nonlinearity intro-
duced by the multiplicative terms. For example, the
total activity of the network, shown by Z;x;, approaches
a constant even as the input strength grows without
bound. This normalization, in addition to being compu-
tationally desirable, has interesting ramifications in vi-
sual psychophysics as described by Grossberg in his
1983 paper, cited above. Introduction of multiplicative
terms also provides a negative feedback loop which
automatically controls the gain of each cell, contributes
to the stability of the network, and allows for large
dynamic range of the input to be processed by the net-
work. The automatic gain control property, in conjunc-
tion with properly chosen nonlinearities in the feedback
loop, makes the network sensitive to small input values
by suppressing noise while not saturating at high input
values. This was noted by Grossberg in 1973. Finally,
shunting nets have been shown to account for short
term adaptation to input properties, such as adaptation
level tuning and the shift of sensitivity with background
strength (by Grossberg, in 1983), dependence of visual
size preference and latency of response on contrast and
mean luminance, and dependence of temporal and spa-
tial frequency tuning on contrast and mean luminance
(by Pinter, in Adaptation of spatial modulation transfer
functions via nonlinear lateral inhibition, BIOLOGI-
CAL CYBERNETICS, 51, pp. 285-291, 1985).

Disclosure of the Invention

It is an object of the present invention to provide a
neural cell.

It is another object of the present invention to pro-
vide a neural network composed of neural cells inter-
connected to neighboring cells.

It is an additional object of the present invention to
provide a neural network composed of neural cells
interconnected to closely-neighboring cells.

Also, an object of the present invention is to provide
a neural network composed of neural cells intercon-
nected over short-range distances.

It is a further object of the present invention to pro-
vide a neural network which is adapted to process vi-
sual sensory signals.
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It is still a further object of the present invention to
provide a neural network which is adapted to filter
sensory signals.

It is yet another object of the present invention to
provide a neural network having a directional selectiv-
ity with respect to sensory signals.

A still further object of the present invention is to
provide a neural network having a programmable inter-
connect scheme.

According to one aspect, the invention is a cell for
use in a layer of a neural network for processing a plu-
rality of input signals, where the network consists of a
plurality of such cells and each cell has one or more
neighbor cells. The cell comprises an electrical circuit
into which a predetermined input current is imposed.
The electrical circuit is a series combination of means
for receiving one of the plurality of input signals and
producing a corresponding electrical current and paral-
lel circuit means for receiving the electrical current and
presenting a variable conductance to the electrical cur-
rent. A voltage is developed across the variable conduc-
tance characterizing the state of the cell. The parallel
circuit means comprises the parallel combination of a
capacitor and means for presenting a conductance
which is a function of the voltages characterizing the
states of the one or more neighbor cells.

According to another aspect, the invention is a neural
network consisting of a plurality of cells connected in a
neighboring relationship wherein each cell has one or
more neighbor cells. Each cell is characterized by a
state voltage and comprises means for receiving a signal
representing a sensory input on a peripheral level and
means for transforming the sensory input signal to a
corresponding conductance. The cell also comprises

20

25

30

means for sensing voltages characterizing the states of 35

the neighbor cells and means for producing a conduc-
tance corresponding to each of the states in a feedfor-
ward subset of the states of the neighbor cells. The cell
further comprises means for producing a conductance
corresponding to each of the states in a feedback subset
of the states of the neighbor cells, the feedback subset
being disjoint from the feedforward subset. In addition,
the cell comprises means for producing a positive state
current corresponding to the integral of the state volt-
age of the cell, where the current is transmitted through
a capacitive element and produces a resulting change in
a voltage across the capacitive element. Further, the
cell comprises means for producing a positive feedback
current through a conductance depending on the volt-

40

45

ages characterizing the states in the feedback subset of 50

the states of the adjacent cells, where the current pro-
duces a resulting feedback change in the voltage across
the capacitive element. In addition, the cell comprises
means for producing a negative feedforward current
through a conductance depending on the voltages char-
acterizing the states in the feedforward subset of the
states of the adjacent cells. The current produces a
resulting feedforward change in the voltage across the
capacitive element.

In a further aspect, the invention is a neural network
consisting of a plurality of cells connected in a neigh-
boring relationship wherein each cell has one or more
neighbor cells. In the network, each cell is character-
ized by a state voltage and comprises selective means
for receiving a signal representing a sensory input on a
peripheral level, means for transforming the selected
sensory input signal to a corresponding conductance,
and programmable means for sensing the states of the

55

60

65
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neighbor cells. Further each cell comprises means for
producing a conductance corresponding to each of the
states in a feedforward subset of the states of the neigh-
bor cells, means for producing a conductance corre-
sponding to each of the states in a feedback subset of the
states of the neighbor cells. The feedback subset is dis-
joint from the feedforward subset. Also, each cell com-
prises means for producing a positive state current cor-
responding to the integral of the state voltage of the
cell, where the current is transmitted through a capaci-
tive element and produces a resulting change in a volt-
age across the capacitive element. In addition, the cell
comprises means for producing a positive feedback
current through a conductance depending on the voit-
ages characterizing the states in the feedback subset of
the states of the adjacent cells. The current is transmit-
ted through the capacitive element and produces a re-
sulting feedback change in the voltage across the capac-
itive element. Each cell also comprises means for pro-
ducing a negative feedforward current through a con-
ductance depending on the voltages characterizing the
states in the feedforward subset of the states of the adja-
cent cells. The current produces a resulting feedfor-
ward change in the voltage across the capacitive ele-
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a design framework for implementation of
one cell in a shunting network.

FIG. 2 is a schematic drawing of a circuit model of a
neural network used for lateral inhibition.

FIG. 3 is a graph of the response of the neural net-
work to uniform input. The output is proportional to
the square root of the input, a nonlinear property of this
network incorporating MLI. '

FIG. 4 is a graph of the response of the neural net-
work to spatial edge patterns with the same contrast but
increasing mean input level, a nonlinear property of this
network incorporating MLI.

FIG. 5 is a graph of the response of the neural net-
work to a point source input, with and without inter-
connects. ~

FIG. 5A shows the light-adapted receptive field of
fly’s lamina monopolar cells (LMC of Lucilia sericata).
The horizontal axis is visual angle, vertical axis relative
voltage units of hyperpolarization.

FIG. 6 is a graph of the current-voltage (I-V) charac-
teristics of a typical FET.

FIG. 7 is a schematic diagram of a basic design,
where for the sake of consistency, inputs are taken to be
currents rather than voltages.

FIG. 8 is a schematic diagram of a design that can
accommodate excitatory or inhibitory non-recurrent
connections, where an analog inverter may be used to
provide correct polarity and a depletion-mode transis-
tor is chosen to simplify the design.

FIG. 9 is a schematic diagram of a circuit using one
transistor per input source to gate currents.

FIG. 10 is a diagram of a crossbar network of resis-
tive elements providing a fully connected interconnec-
tion matrix for an array of input voltages.

FIG. 11 is a schematic categorization of the effect of
the feedback nonlinearity on processing of the input
data.

FIGS. 12z and 12b are schematic diagrams of designs
which use a saturating nonlinearity wherein both the
slope and the saturation point are easily controllable by
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the gate-to-source voltage, this natural property per-
forming a desired transformation.

FIG. 13 is a schematic diagram of the simplest shunt-
ing recurrent network that can be implemented using
d-mode FETs and within the design framework of FIG.
1 and demonstrates the desired properties of shunting
networks.

FIG. 14 is a graph of the response of a cell with self-
inhibition, comparing experimental and theoretical re-
sults, and showing the accuracy of the implementation.

FIG. 15 is a graph of experimental results of a level-
shifting stage with three diodes.

FIG. 16 is a graph of the response of a network to a
uniform input, showing that the variation across the
array is mainly due to component variation.

FIG. 17 is a graph of the theoretical steady state
response of a network consisting of three fully intercon-
nected cells, where the coefficients are chosen to dem-
onstrate the dynamic range compression property,
showing the square root compression of the input range.

FIG. 18 is a graph of the input-output relationship in
the absence of neural network interconnection.

FIG. 19 is a graph of the adaptation of a neural net-
work to mean intensity level, at a lower mean intensity
than for FIG. §.

FIG. 19A is a graph of the receptive field of the LMC
cell of Lucilia sericata, at lower luminance levels than
for FIG. 5A.

FIG. 20 is a graph demonstrating the fact that a circu-
lar boundary condition reduces the boundary effects
and adds to the symmetry of the response of the neural
network.

FIG. 21 is a graph of the tunability of the sensitivity,
demonstrating that the same input pattern produces
different behavior when the network is externally tuned
to be more sensitive.

FIG. 22 is a graph of the response of the network to
a spatial edge pattern, showing that edges are expanded
and Mach bands are observed. ‘

FIG. 23 is a graph of the response of the neural net-
work without network interaction.

FIG. 24 is a graph of the response of the eccentric
cell of the lateral eye of Limulus to a spatial edge pat-
tern, showing the response of one ommatidium only and
the effect of network interaction.

FIG. 25 is a graph of the spatial input pattern for
FIG. 24.

FIG. 26 is a graph demonstrating the contrast en-
hancement property.

FIG. 27 is a graph of the response of the neural net-
work to a spatial edge pattern with low mean intensity.

FIG. 28 is a graph of the response of the eccentric
cell of the lateral eye of Limulus to a limited extent
ramped edge input.

FIG. 29 is a graph of the intensity dependence of the
response of each cell in the neural network.

FIG. 30 is a graph of the intensity dependence of each
cell in the neural network, showing the reflectance-
intensity interdependence.

FIG. 31is a graph of the directional selectivity (in the
preferred direction) of the neural network, in which
each cell receives input from its left-hand neighbor.

FIG. 32 is a graph of the directional selectivity (in the
null direction) of the neural network, showing that
direction of the input produces difference in response.

FIG. 33 is a graph of the receptive field of a unidirec-
tional network wired for preferential directional and
motion selectivity.

10

15

20

25

30

35

40

45

50

55

65

6

BEST MODES FOR CARRYING OUT THE
INVENTION

The advantages, generality, and  applicability of
shunting nets as cited previously make their implemen-
tation very desirable, but digital implementation of
these networks is very inefficient due to the need for
analog to digital conversion, multiplication and addition
instructions, and implementation of iterative algo-
rithms. On the other hand, a non-linear feedback class
of these networks (x;Zf(x)=x;ZKjx;) can be imple-
mented very efficiently with simple, completely paral-
lel, and all analog circuits.

FIG. 1 shows the design framework for analog imple-
mentation of one cell 39;in a class of shunting nets. The
voltage outputs of the other cells are connected to the
gates 40, and 42;of transistors 44, and 46;, respectively.

In this design, addition (subtraction) is achieved via
Kirchoff’s current law by placing transistors 44, (46)) in
upper (lower) rails 50 (§2). Either depletion or enhance-
ment mode transistors may be chosen. The choice is
dictated by voltage level translation between stages. A
multiplicative, or shunting, interconnection is made
with a single transistor 44, (46;) per interconnect, using
a field-effect transistor (FET) in the voltage-variable
conductance region. Temporal properties are charac-
terized by cell membrane capacitance 54 (C farads),
which can be removed or effectively replaced by the
parasitic device capacitances (as in FIG. 1), if higher
speed is desired. The capacitor 54 is in parallel with the
resistor 56 (R ohms). This parallel circuit experiences a
voltage drop 57; as a result of the current imposed by
the current source 58;. The current source 58; can be
different for each of the cells. A buffer stage (not
shown) can be necessary for correct polarity of inter-
connections and the large fan-out associated with high
connectivity of neural networks.

The performance of a one-layer network is funda-
mentally based on the modulation of the electrical con-
ductance of the single cells which make up the network.
Specifically, the conductance of each cell in the net-
work can be modulated by other cells in the network.
The simplest shunting network that can be implemented
for the general framework of FIG. 1 is that shown in
FIG. 2, with only lateral inhibitory connections (lower
rail transistors). The network 60 comprises a number of
cells 621, 625, and 623 (only three cells are illustrated for
purposes of simplicity). Each cell 62; cansists of a cur-
rent source 64;, and a parallel circuit 66;. The circuits
66; each include a parallel combination of a capacitor
68;, a fixed resistance (expressed as a conductance) 70;,
and two variable, or modulated, conductances 72; and
74;. The voltage 76; across the ith cell is, accordingly,
determined by the values of the capacitors 68; and the
fixed conductances 70;. It is also determined by the
modulated conductances 72; and 74;. The modulated
conductances, in turn, are functions of voltages 76;,
where j is not equal to i.

In the case of multiplicative lateral inhibition (as dis-
cussed by Pinter in Adaptation of receptive field spatial
organization by multiplicative lateral inhibition, J.
THEOR. BIOL., 110, pp. 435-444, 1983), the values of
the conductances 72; and 74; are determined by the
voltages x;—j and X;; 1, across the adjoining cells..

Such a circuit is capable of implementing the general
network equation:
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dx; )
i = i axi x xdKxi) = Xijif Kix; = f Kixp,

Excitatory and inhibitory input current sources can
also be shunted, with extra circuitry, to implement non-
recurrent shunting networks.

The simplicity of the implementation is notable; a
linear array with nearest neighbor interconnects con-
sists of a cell including only five transistors, one to three
diodes, and, if required, one capacitor per cell.

A discrete element version of this implementation has
been constructed and has properties that are in good
agreement with those expected. FIG. 3 is a graph of the
response of the discrete element neural network 50 to
uniform input. The steady state output is proportional
to the square root of the input. Therefore, the network
compresses the input data. Further, as will be demon-
strated subsequently, the network also shows adapta-
tion to mean input intensity. FIG. 4 is a graph of the
response of the neural network to spatial edge patterns
with the same contrast but increasing mean input level.
The network 60 exhibits contrast enhancement of spa-
tial edges which increases with higher mean input
strength, as will be discussed subsequently.

A point source input elicits an on-center off-surround
response, similar to the difference-of-Gaussians recep-
tive field of many excitable cells. FIG. 5 is a graph of
the response of the neural network 60 to a point source
input. It, too, will be discussed subsequently. The “re-
ceptive field” of the network 60 becomes more pro-
nounced as the input intensity increases, showing the
dependence of spatial frequency tuning on mean input
level. The temporal response of the network 60 is also
input dependent since the time constant of the exponen-
tial decay of the impulse response decreases with input
intensity. Finally, the dependence of the above proper-
ties on mean input strength can be tuned by varying the
conductance of the transistor 42 (see FIG. 1) in the
central cell (see FIG. 2). FIG. 5A shows the receptive
field of fly’s lamina monopolar cells (LMC of Lucilia
sericata). The horizontal axis is visual angle, and the

vertical axis is hyperpolarization measured in relative’

voltage units. It is apparent that the response of the
neural network of the present invention responds simi-
larly to the LMC of Lucilia sericata.

CONTENT ADDRESSABILITY AND RELATION
TO THE PRESENT INVENTION

Using a theorem by Cohen and Grossberg, described
in Absolute stability of global pattern formation and
parallel memory storage by competitive neural net-
works, IJEEE TRANS. SYSTEMS MAN CYBER.
SMC-13, pp. 815-826, 1983, it can be shown that the
network equation (1) admits the global Liapunov func-
tions

v = —(Iin(xi/A) — axi + Kxi) + Kipper/2, @
where A is a constant, under the constraints K;j=K;and
x;>0. This shows that in response to an arbitrary input
the network always approaches an equilibrium point
representing a stored pattern. This property is known as
the Content Addressable Memory (CAM) property.

In addition, Eq. (1) is a special case of the feature
representation field of an analog adaptive resonance
theory ART-2 circuit, and hence this design can operate
as a module in learning multilayer ART architecture.
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See ART 2: Self organization of stable category recog-
nition codes for analog input patterns, by Carpenter and
Grossberg, in COMPUTER, 21, pp. 77-88, 1987.

Cell Body And Temporal Characteristics

As mentioned previously, the cell 39; (in FIG. 1),
which has also been called a “neuron” or a “processing
unit,” simply consists of a capacitor 54 in parallel with
a resistor 56. This is in direct analogy with the cell
membrane capacitance and conductance of an iso-
potential portion of a biological neuron. The capacitor
54 in this simple circuit characterizes the temporal inte-
gration property of neurons. Spatial integration, or
summation, is achieved by placing conductance inputs
dependent on the state voltages 57; of other cells in
parallel with the cell resistance.

For practical applications, if characterization of tem-
poral properties is not of importance, the capacitor 54
can be removed. Alternatively, the capacitor 54 can be
effectively replaced with the parasitic capacitances that
are present in any implementation. This allows for very
high speed operation, possibly in the gigaHertz range
for GaAs MESFETs. The parallel nature of the imple-
mentation means that the total speed of operation is on
the same order of magnitude as N times the operating
speed of each cell 39;, where N is the number of cells in
the network. On the other hand, if accurate time depen-
dencies need be studied, the capacitor 54 can be re-
placed by a circuit which compares the present output
with its delayed version. When this comparison is per-
formed by subtraction, the circuit performs a crude
differentiation operation. A circuit that performs such a
differentiation has been employed as described in the
Proceedings of the Stanford Conference on Advanced
Research in VLSI, by Sivilotti et al. in 1987, and by
Mead and Mahowald in A silicon model of early visual
processing, NEURAL NETWORKS, vol. 1 pp. 91-97,
1988.

The output or state 57;0f such a neuron 39;is a contin-
uous valued, or analog, function which is analogous to
the slow potential of biological neurons. However, it is
not similar to the action potential stream (CELLULAR
BASIS OF BEHAVIOR, Freeman and Company: San
Francisco, by E. R. Kandel, 1976) which is the primary
method of communication in the nervous system. For
modelling purposes an action potential stream could be
regarded as the average firing rate of a neuron. In this
case, it is implicitly assumed that the absolute timing
and amplitude of action potentials do not have process-
ing significance.

A more abstract view of the “cell potential” state
variable is as the number of cells in a cell population
which are active or “on” at a given time. This has been
described by Grossberg, in STUDIES OF MIND
AND BRAIN: NEURAL PRINCIPLES OF
LEARNING, PERCEPTION, DEVELOPMENT,
COGNITION, AND MOTOR CONTROL, Boston:-
Reidel Press, 1982. This interpretation thus assumes
neurons of an all-or-none character. It has the advan-
tage of describing the statistics of a population rather
than the behavior of one neuron and thus uses stochastic
analysis rather than deterministic techniques.

Shunting Recurrent Circuitry

The basic cell of FIG. 1 is very similar to a standard
logic gate inverter, but with the transistors sized by gate
width-to-length ratio to operate in the nonsaturated
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current region. Accordingly, it is applicable to a variety
of FET technologies including NMOS, CMOS, and
gallium arsenide (GaAs).

A circuit, such as that of FIG. 1, made of all deple-
tion-mode devices, such as GaAs MESFET buffered
FET logic, can implement all the terms of Eq. (1) ex-
cept shunting excitatory terms. In addition, it requires a
level shifter in the buffer stage (if any). A design with all
enhancement mode devices such as silicon NMOS can
do the same but without a level shifter. With the addi-
tion of p-channel devices, e.g. Si CMOS, all polarities
and all terms of Eq. (1) can be realized. As mentioned
previously, a buffer stage is necessary for correct polar-
ity of interconnections and fan out/fan in capacity.

The basis of the present design is the efficient imple-
mentation of shunting circuitry which is achieved by
using the voltage-controlled conductance property of
field-effect transistors when operated in the linear
(below saturation) region. FIG. 6 shows the current-
voltage (I-V) characteristics of a typical FET.

Operation of a FET in the linear (below saturation)
region is described in PHYSICS OF SEMICONDUC-
TOR DEVICES, 2nd edition, John Wiley, 1985, by
Sze, by the equation:

Ips=KW(VGs— V) Vps— Vps?/2), for

Vps<VGs—Vin 3)
where Ips and Vps are drain-to-source current and
voltages, respectively, Vs is gate-to-source voltage,
Vi is the threshold voltage beyond which the transistor
does not conduct, and K is a transconductance parame-
ter dependent on doping density, active layer thickness,
and gate width to length ratio. This region of operation
is also known to circuit designers as the variable-volt-
age resistance (VVR) range.

As seen in Eq. 3 the input current is proportional to
the product of Vps and Vgs. It is this basic property
that is used in the circuit of FIG. 1 to implement shunt-
ing networks. The reason is that it allows a “multiplica-
tion” to be performed with one transistor only. A more
compact implementation would be difficult to achieve.

The quadratic term Vps? in Eq. 3 can be ignored if
Vps is small, or can be approximately cancelled by
using other FETs of opposite type, such as p-type, in
the upper rail 50 of FIG. 1. However, its presence is
advantageous since it implements a shunting “self-exci-
tation” term which contributes to the desired on-center
off-surround anatomy of the network.

In the current saturation region, the transistor oper-

ates as a voltage controlled current source, and is mod-
eled by ’
Ips=K(VGs— Viny/2, for Vps>Ves—Vin @

The basic principle described above is used by Petrie,
in Practical implementation of nonlinear lateral inhibi-
tion using junction field-effect transistors, MSEE thesis,
University of Washington, 1984, to implement multipli-
cative inhibitory networks. Designs for analog circuits
using operational amplifiers of multi-transistor design,
which perform multiplication but are based on a differ-
ential input signal, are known. They have been ex-
plained by Mead in A sensitive electronic photorecep-
tor, CHAPEL HILL CONFERENCE ON VLSI, pp.
463-471, 1985. Related circuits for the implementation
of variable weights for possible inclusion in additive
networks are described by Tsividis and Satyanarayana,
in Analogue circuits for variable-synapse electronic
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neural networks, ELECTRONIC LETTERS vol. 23,
No. 24, 1313-1314, 1989. Circuits for cancellation of the
quadratic nonlinearity and extension of the multiplica-
tion range can be found in Czarnul, Design of vol-
tagecontrolled linear transconductance elements with a
matched pair of FET transistors, IEEE TRANS. CIR.
SYS,, vol. 33, no. 10, pp. 1012-1015, 1986.

By using equations (3) and (4) in the circuit diagram
of FIG. 1, it is a straightforward matter to observe that
in such a framework the general network equation (1)
can be realized where x; is a positive definite variable
and K and K;'s can be tailored during the fabrication
process but are unalterable afterwards.

Shunting Non-Recurrent Circuitry

Equation (1) does not include non-recurrent terms of
the form x;ZI; The circuit of FIG. 1 can be revised
easily to accommodate these nonrecurrent, or feedfor-
ward, terms. The basic design is shown schematically in
FIG. 7, where, for the sake of consistency, inputs are
taken to be currents.

In the circuit of FIG. 7, the resistor 100 is unneces-
sary if the circuit is included as part of the framework of
FIG. 1. However, resistor 102 should be included for
current-to-voltage conversion. The transistor 104 is
assumed to be an n-channel enhancement mode FET. A
depletion mode transistor can be used for Q; only if a
level shifting operation is performed at a point prior to
the input to the gate of Q.

Such a circuit implements the network equation

(5)

x? — KiRixi‘ R -’1)
1

Two problems are immediately evident in the design
of the circuit shown in FIG. 7. First, the self excitatory
current 106, which is shown as a current sink, is not
easily implemented if it is the output of a current source
such as a photodetector. Second, the term R;Z1; can
easily exceed the threshold voltage of the transistor 104
and turn it off. The inhibitory current I;is provided by
the current source 107.

A design that can accommodate excitatory non-
recurrent connections, and thus solve the first problem,
is shown in FIG. 8. Here an analog inverter 108 pro-
vides correct polarity and the transistor 104 (which
here is depletion-mode) simplifies the design. This cir-
cuit is described by the network equation

dx;
dr

Vpp K;
— ap + KRl + —-

= Ra

dx;

dt

_ Yoo
i

K 6
- apxi + KiRixfI) + —5= x2. ©

The design of an analog inverter, however, is not trivial.
However, since the inhibitory connections automati-
cally provide a self-excitatory x2;term as shown in Eq.
5, a circuit with only inhibitory terms should suffice for
most applications.

The problem of exceeding the threshold voltage of

" the multiplying transistor 104 can be solved either by

65

including a saturating nonlinearity after the summing
circuitry, as will be shown later, or by using one transis-
tor per input source to gate the currents, as shown in the
circuit of FIG. 9. This circuit implements the network
equation



5,130,563

11
dx vV, K, ( o
i DD i
_71_ = T ax; 5 X,‘Z xi ‘ziK‘.'fR'{f)'

It also has the added advantage of selective hard-wiring
of the connection strengths. Since the connection
strengths are defined by K;R;, they can be selectively
hard-wired, i.e., the interconnection profile defined, by
either varying the transconductance parameter or the
resistor values.

A FULLY CONNECTED FEED FORWARD
NETWORK

All of the designs that have been presented are adapt-
able to very high integration densities. This can be veri-
fied by examining the circuit of FIG. 10 where a cross-
bar network of resistive elements 120 provides a fully
connected interconnection matrix 122 for an array of
input voltages 124 (V). Such resistive networks have
been fabricated with a density of four resistors per
square micron, by Graf et al. They described their work
in VLSI implementation of a neural network with sev-
eral hundreds of neurons, PROC. CONF. NEURAL
NETWORKS FOR COMPUTING, American Inst. of
Physics, 1986. Such networks have also been fabricated
with switchable resistances at comparable densities.
These networks are described by Thakoor, et al, in
both Binary synaptic connections based on memory
switching in a-H:Si, PROC. CONF. NEURAL NET-
WORKS FOR COMPUTING, American Institute of
Physics, pp. 426431, and Content-addressable, high
density memories based on neural network models: Jet
Propulsion Lab, Tech Report JPL D-4166, 1987. The
circuit of FIG. 10 adds 2N resistors 120, N transistors
104, and possibly N capacitors 54 to such resistive net-
works. This is accomplished without the need for any
additional interconnect lines. Accordingly, it does not
require much additional area.

The voltage presented to the gate of transistor 104 of
the circuit in FIG. 10 can be found by noting that

VGs,i

Vi — VGs.i
z = R

7 R

where for simplicity it is assumed that all interconnect
resistors 120 have the same value. This lead to

9
iVJ ®
i

R

—sz—+N_l

VGs,i

where N is the number of inputs connected to the cell i.

The total input presented to the cell i is thus divided
by the denominator of Eq. 9 which is at least (N—1),
and can be further controlled by the choice of resistor
ratio R/Rp. (resistor 120 to resistor 102). Proper choice
of this ratio allows a large dynamic range of the input to
be processed by the cell.

If transistor 104 is operating in the linear region,
output of the cell i is.described by

V) K; [
DD i xll — xibi .2 ] V})»
1

10
dx (10)

dt
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12
-continued
where
1
bi = ,
R

oo . N — 1

Rp +
and
9 =R = KiVip,

which is the desired shunting non-recurrent network
equation. The above discussion shows that with existing
technologies this circuit is capable of implementing a
compact and fully interconnected shunting nonrecur-
rent neural network.

Summing Circuitry and Excitatory and Inhibitory
Connections

In the circuit of FIG. 1 summation is performed by
using Kirchoff’s current law, which arises from the
principle of conservation of charge. Accordingly, the
summation is valid with unlimited precision for the
lumped circuit. The distinction between excitatory and
inhibitory connections is then basically determined by
the direction of current flow in that circuit.

As mentioned previously, and discussed in detail for
nonrecurrent networks, implementation of the multipli-
cative excitatory connections requires an analog in-
verter, and for most applications is better provided by
the quadratic self-excitatory terms which are due to
transistor nonlinearities and are provided cost-free by
the shunting inhibitory connections.

Furthermore, often the cell activity x; (state 57)
should accept both positive and negative values, corre-
sponding to the depolarization and hyperpolarization of
biological neurons. When x;changes sign, the excitatory
terms become inhibitory and vice versa. It is for this
reason that the excitatory terms appear in the network
equations and contribute to the stability of the network.
In the implementations discussed, the cell activity is
assumed to be positive and hence the implementation of
excitatory terms is not as important.

Nonetheless it is important that the excitatory shunt-
ing terms can be implemented because in some applica-
tions the profile of the receptive field which is mainly
described by the anatomy of the dendritic arborization,
ie., the ratio of excitatory to inhibitory interactions, is
crucial. Also, it is believed that in learning the excit-
atory connections are modified while the inhibitory
ones remain constant, and hence provision for excit-
atory interaction should be made.

Sigmoidal Nonlinearity

The shape of the nonlinearity in the feedback loop,
Le., the shape of f(x;) in a network such as, but not
limited to,

dx; ayn

dt

—ax; + (B — x); + Ax)} — x; [-’i + jiiﬂﬁtj)]

has special significance. It has been shown, by Gross-
berg, in his 1973 paper, that if f(x;) and f(x;) is sigmoidal,
or S-shaped, it can suppress noise, contrast enhance
suprathreshold activities, and normalize total activity.
A sigmoidal signal implies the existence of a threshold,
a quenching threshold as termed by Grossberg, below
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which activity is identified with storage, which activity
is contrast enhanced. This transformation is identified
with storage in short term memory (STM). FIG. 11
categorizes the effect of the feedback nonlinearity on
processing of the input data.

Sigmoidal nonlinearities occur naturally in electronic
devices. The I-V curves of a single FET as shown in
FIG. 6 provide an excellent example of a saturating
nonlinearity. In this nonlinearity, not only the slope, but
also the saturation point is easily controllable by the
gate-to-source voltage. However, the slope and satura-
tion point are not controllable independently. Reducing
one reduces the other. The hatched region 120 of FIG.
6 is the multiplication region of the characteristic
curves. FIG. 12 shows two designs which use this natu-
ral property to perform the desired transformation.

Since at low values of x;, f(x,) is linear, such a circuit
will amplify both signal and noise for low values of
signal. If a faster-than-linear transformation is needed
for low values of signal, i.e., a true sigmoidal curve,
other circuits such as differential amplifier pair, which is
described by a hyperbolic tangent (tanh) may be em-
ployed. The choice depends on the application and for
the present purposes the simplest implementation seems
the most appropriate.

This design offers a very simple solution to a compli-
cated and important problem; the simplicity of the de-
sign thus should not disguise its elegance.

Interface Circuitry

The large fan-in and fan-out associated with high
connectivity neural networks and the importance of the
polarity of the output necessitates a carefully chosen
buffer stage.

If p-type or depletion mode devices are used in the
basic cell diagram of FIG. 1, a level shifter is necessary
for correct polarity. Implementation of excitatory con-
nections requires an analog inverter.

Since the output of each cell connects to the gate of
the other cells, which is a reverse biased diode, little
current is drawn by fan-out connections (under steady

state) and a design with only enhancement mode de--

vices may be implemented even without a buffer stage.

Since each connection from other cells of the net-
work provides a resistive path in parallel with the cell
membrane resistance, fan-in considerations require
careful determination of the amount of current flow per
cell. The designs discussed are readily applicable for
sensory networks which usually do not require very
high connectivity.

The Choice of Technology

The basic-cell of FIG. 1 is very similar to a standard
logic gate inverter made with transistors sized to oper-
ate in the nonsaturated current region. Appropriate
sizing is specified in terms of the gate width-to-length
ratio. Thus, the designs discussed can be implemented in
a variety of field effect transistor technologies including
NMOS, CMOS, and gallium arsenide (GaAs).

A circuit made entirely from depletion-mode devices
such as GaAs MESFET buffered FET logic can imple-
ment most of the terms of Eq. 1. The exception is the
shunting excitatory terms which require a level shifter
in the buffer stage. A design made entirely from en-
hancement-mode devices such as silicon NMOS can do
the same but without a level shifter. With addition of
p-channel devices, e.g. Si CMOS, all polarities and all
terms of equations described can be realized. For this
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case, as mentioned previously, a buffer stage is neces-
sary for sufficient fan-out.

Gallium Arsenide Framework

From the previous discussion it is evident that all the
FET technologies can be used for the implementation
of shunting neural networks. Silicon-based technologies
are highly developed and have accumulated a very
wide library of available designs and uses as well as
highly efficient processing technologies. Gallium arse-
nide, on the other hand, has several long-term advan-
tages relevant to the present application. .

One of the advantages is that gallium arsenide has a
higher transconductance per unit gate width than sili-
con. Thus, it can offer higher frequency/bandwidth
operation. It is also capable of operating at high temper-
atures and is highly radiation tolerant. Since GaAsis a
direct bandgap semiconductor, it is capable of effi-
ciently emitting photons. Examples of efficient photon
emittors are injection lasers and light-emitting diodes.
An example of an efficient photon detector is a photodi-
ode. Both detectors and emitters, in addition to elec-
tronic circuitry, can be monolithically integrated on the
same substrate, constituting optoelectronic integrated
circuits (OEICs). Gallium arsenide also has larger pi-
ezoelectric, electro-optic, and electroabsorptive coeffi-
cients than silicon.

A capability unique to gallium arsenide raises the
possibility of bandgap engineering with other com-
pound semiconductors as demonstrated by fabrication
of heterojunctions, quantum wells and superlattices.
Devices based on such structures offer extraordinary
properties whose relevance to neural network applica-
tions may provide a fertile ground for future research.
A design that uses this unique property by employing
epitaxially grown aluminium gallium arsenide (Al-
GaAs) on a gallium arsenide substrate is presently under
study.

On the negative side, gallium arsenide based devices
suffer from several deficiencies which should be consid-
ered in the choice of the implementation medium. Sili-
con can form a native stable oxide with an atomically
clean interface which is used in making metal-oxide-
semiconductor FETs (MOSFET). The MOSFET gate
can then be biased with either polarity. The metal semi-
conductor gate FET (MESFET), on the other hand, is
the device of choice for gallium arsenide technology.
The reason is that GaAs does not have a stable native
oxide. .

The gate of a MESFET is a Schottky diode which
should not be forward biased. It is for this reason that
enhancement-mode devices are difficult to fabricate in
GaAs technology, and hence the designs should primar-
ily consist of depletion-mode devices. The limited volt-
age range of enhancement-mode devices is probably the
most constraining for the implementation of neural
networks; however, the circuit designs discussed have
countered this problem by suggesting inverter and lev-
el-shifter circuitry.

Also, in gallium arsenide, electrons are much more
mobile than holes and thus p-channel devices require
much greater area compared to n-channel devices of the
same characteristics. Hence, GaAs circuits normally
use only n-channel devices. Even in n-channel devices
the control of the threshold, and hence the pinch-off,
voltage poses a sensitive fabrication problem since it is
defined by
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Nac? a2

2¢

=

where V, is the pinch-off voltage, Ng is the majority
carrier (donor) density, a is the active layer thickness,
and q and e are magnitude of electronic charge and
semiconductor permittivity, respectively.

This relation shows that since high speed operation
and large current drive requirements are met by a high
density of the majority carriers, the product Nga2 which
determines the pinch-off voltage is very sensitive to
active layer thickness which in turn requires strict con-
trol of both the growth and etching of this layer. This
problem is somewhat alleviated by the fact that for
analog neural network implementation, FETs should
operate in the linear region and hence a large pinch-off
voltage is desirable, which reduces the precision re-
quirements of the active layer thickness. Interestingly,
the speed of operation is not sacrificed since the feed-
back mechanism of shunting nets, as described above,
automatically limits the voltage swing and the transistor
operates in a “small-signal” regime rather than having
to turn on and off.

The last consideration in device technology trade-
offs is that the high speed of GaAs circuits requires low
loss conductors and hence interconnections require
larger areas, which in turn increases parasitic nodal
capacitances. Parasitic capacitances should be mini-
mized by reducing the cross-sections of the intercon-
nect lines and the line-to-line capacitances. These are
often contradictory goals.

The choice of technology, like most other engineer-
ing problems, requires a careful study of the trade-offs
as applied to a specific problem. An important feature of
the present designs is that they apply to all of the FET-
based technologies, but based on the above-mentioned
trade-offs, silicon technologies are better suited for
purely electrical applications of neural networks and
offer the short-term advantages of available functionali-
ties and streamlined fabrication facilities. For optoelec-
tronic applications, GaAs and other compound semi-
conductors have very promising long term advantages.
The final verdict can be made when the unique capabili-
ties of each technology is employed and optimized. The
latter goal as an extension of this project is presently
under study.

SPECIFIC IMPLEMENTATION

The simplest shunting recurrent network that can be
implemented within the design framework of FIG. 1
and also demonstrates the desired properties of shunting
networks is shown in FIG. 13. This network imple-
ments the network equation.

dx;
dt

a3y

I — . K: 2 _ b3 ).
i — axi + Kix; xl#if}(xj)

The circuit of FIG. 13 was implemented using deple-
tion-mode junction field-effect tramsistors (JFETS),
such as Motorola MPF102 depletionmode JFETs, due
to their almost identical characteristics with gallium
arsenide MESFETs. This implementation thus serves as
a design precursor to a GaAsbased monolithically inte-
grated circuit implementation of an optically sensitive
network, and as a vehicle for testing the design princi-
ples and circuits presented in this specification.
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The simplicity of the design should be stressed, since
in this realization:

Each “neuron” consists of only one resistor (transis-

tor 150), in parallel with a cell capacitance 152 (C).

Each multiplicative coupling is done by one transis-
tor 154;; (T ).

Transistors 156 and 158 and diode 160 form a level
shifter which is necessary for correct voltage level
interfacing in depletionmode technology but not
required when using enhancementmode devices.

Input can be directly supplied with one metal-semi-
conductormetal (MSM) photodetector 162. In the
discrete circuit implementation one transistor, with
a variable resistor applied to its gate and source
terminals, was used as current input.

A two-dimensional matrix with four nearest neighbor
interconnections will then consist of only seven transis-
tors (150, 156, 158, and four copies of 154;), one to three
diodes 160 (depending on the amount of level shifting
required and the turn-on voltage of the diodes) and, if
desired, one capacitor 152 per cell. The compactness of
the design is notable in comparison with the implemen-
tations described previously.

A circuit consisting of seven cells with nearest neigh-
bor connections has been constructed. The following
describes important design considerations and the ex-
perimental results described subsequently were ob-
tained from this implementation.

Accuracy

The present implementation depends upon the opera-
tion of a FET in the linear region. Accordingly, it is
important to verify the validity and accuracy of the
mathematical model of this operation, as given in Eq. 3,
which is repeated here

Ips = KI(Ves — VidVps — 1Vhsl 14)

for Vps < Vgs — Vin.

Also, often in modeling the operation of a FET in the
linear region, the quadratic term in Eq. 14 is often ig-
nored and the transistor is modeled as a linear voltage-
controlled conductance. Since such an assumption di-
rectly alters the network equations, its validity should
also be experimentally established.

The device-dependent parameters K and Vg in Eq.
14 were extrapolated from experimental data and used
in linear and nonlinear models of a transistor. Compari-
son of the models with experimental data is shown in
Table 1, where R (non-linear) is a theoretically calcu-
lated resistance, using Eq. 14, and R (linear) is calcu-
lated by ignoring the quadratic term.

TABLE 1

Comparison of the linear and nonlinear models of a FET
for operation below saturation.

%
VGS R (measured) R (linear) error R (non-lin) % error
0.0 343 300 12.5 343 0.0
-0.2 468 368 21.3 468 0.0
—04 625 477 23.09 585 6.4
—0.6 1000 678 320 858 14.2
—-0.8 1875 1172 370 1611 14.0

Table 1 shows that ignoring the quadratic term pro-
duces an average error of 25 percent. On the other
hand, including this term results in a much lower aver-
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age error of 7 percent. For this reason, the model of Eq.
(14) will be used throughout this work.

This experiment also implicity shows the accuracy of
the performed multiplication and is better demonstrated
by the following experiment.

The simplest tractable network equation can be found
by applying the output of a cell to itself. This is mathe-
matically equivalent to the application of a uniform
input to an arbitrarily large array of identical neurons
and hence does not constitute a trivial example. Such a
system is described by

dx;
dt

(15)
= I - ax; + Kz — Koxxj,

where x;=x; for all j.

This equation has a straightforward steady-state ana-
lytical solution which can be compared with experi-
mental data to show the accuracy of the model. This
solution provides a signal-to-noise ratio measure of pre-
cision of the “multiplication” as well as the network
equations implemented.

Table 2 shows the result of such a comparison. The
data is also plotted in FIG. 14, which is a graph of the
response of a cell with selfinhibition, comparing experi-
mental and theoretical results, and showing the accu-
racy of the implementation.

TABLE 2

Comparison of the theoretical and experimental response
of one cell with cell-inhibition to establish accuracy
of the implementation.

Input X (Theory) X (Measured) Error % Error
0.54 126.3 130 3.7 2.80
0.70 161.6 165 34 2.06
1.01 227.8 233 5.2 2.23
1.48 323.1 329 5.9 1.79
2.02 426.1 430 39 0.91
243 500.4 510 9.6 1.80
2.95 590.5 601 10.5 1.75

Table 2 shows that the equations implemented are
accurate to within an average error margin of 1.89%.

Another figure of merit that helps put the accuracy of
the implementation in relative perspective is found by
noting that the 1.89% average error can be treated as
quantization error of a corresponding digital system. A
six-bit digital code produces roughly the same average
error if the output falls within the range (1-64) that can
be coded by six bits. However, the range of the output,
and input, far exceeds (1-64) and a digital system which
is capable of addressing even the limited range of Table
2 requires at least 9 bits to represent this range. Based on
these considerations, a digital 8-bit machine would be
needed to perform the computation reported in Table 2
with equal accuracy.

Level-Shifting and the Dynamic Range

Transistors 150 and 156 and the diode 160 in FIG. 13
perform the operation

Vour=Vin—VLs (16)
which shows that the output is a version of the input
shifted by the amount Vrs. Accordingly, this circuit is
called a level-shifter. Experimental results of a level-
shifting stage with three diodes (e.g., Motorola 1N4007
diodes), is shown in FIG. 15, where it is seen that the
output (points 170) is described by
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Vour=Vin—1.90 an
in agreement with Eq. 16 (curve 172).

The amount of level-shifting is only a function of the
turn-on voltage of the diode 160 which can be in-
creased, up to the negative supply rail voltage, by add-
ing more diodes in series, or custom designing diodes
with required turn-on voltages during integrated circuit
design. This amount is a crucial design parameter since
it establishes the dynamic range of operation, as ex-
plained below.

The output of the level-shifter (Vyy) is applied to the
gate of the depletion-mode transistors 154;; (See FIG.
13) of other cells in the network. It also controls the
conductance of these transistors. The level-shift voltage
should thus be smaller than voltages that may cause
excessive current flow by forward-biasing these gates.
On the other hand, V,y (across capacitor 152) is lower-
bounded by the threshold voltage of the transistors
154;;. The reason is, if the output is reduced below the
threshold voltage, the conducting transistor channel
will be completely pinched-off and the transistors 154;;
will act as open circuits. Since the voltage of each cell
is the input current multiplied by the equivalent resis-
tance encountered by the current, the elimination of a
parallel conduction path increases the resistance and
thus the cell voltage disproportionately. This error is
more significant for networks with fewer interconnec-
tions. :

From the above discussion, the level-shifting amount
should be chosen within the range

VihZEVLSE Vip, a8)
where V;is a positive quantity, typically a few tenths
of a volt and V, is the negative valued threshold volt-
age. Furthermore, in this range an operating point
which maximizes the possible conductance swing is
optimal.

In the circuit of FIG. 13, the threshold voltage of the
transistors was determined to be 1.5 volts. Thus one
diode 160 with a turn-on voltage of about 0.6 volts was
chosen to provide the optimal level-shifting amount.

Finally, in addition to providing correct polarity, the
level-shifter stage (180) performs an important interfac-
ing role. Since the input to the level shifter is applied to
the gate of transistor 150, a reverse-biased diode for
MESFETs, this stage does not draw any significant
current. Accordingly, the stage practically isolates the
output of a cell from other cells it is connected to and
allows a large fan-out to be achieved.

The allowed range of the input, on the other hand, is
dependent on the input resistance and is determined by
the pinch-off voltage of the transistors. This can be
demonstrated by an example.

Consider a cell with the typical electrical device
membrane resistance of 400 ohms, connected to four
neighbors. The highest resistance seen by such a cell
occurs when all the interconnect transistors have their
highest resistance value, which occurs for Vgs=Vy.
For the transistors used, this highest resistance equals 2
kiloohms, and hence the equivalent resistance is 500
ohms (=2 kiloohms/4). The cell voltage, which is the
drain-to-source voltage of parallel transistors, is found
from

xi=IiXReq 19)
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and should remain in a below saturation region. For a
long channel resistor this range is a few volts and hence
the input I;in (19) can range up to 10-15 milliamperes.

Even if the input current exceeds this range, the net-
work remains stable. The shunting interaction is re-
placed by an additive interaction for the specific cell.
The interaction is due to its high activity which
strongly inhibits its neighbors and forces them deeper
into below-saturation operation. In practice, power
dissipation requirements determine the upper-bound for
current flow in the network.

As seen from this qualitative treatment, the higher the
degree of interconnection, the larger the dynamic range
within which the input can be processed. The allowable
lower bound of the input is determined by the sensitiv-
ity of the devices and, ultimately, by the noise immunity
of the technology. With present technology it seems
quite feasible to process several orders of magnitude of
the input current (from high nanoamps to low milliam-
peres) with the networks presented. The very wide
dynamic range achieved from a limited dynamic range
of each unit is a good example of the power of the
collective behavior of neural networks.

Response to Uniform Input

As mentioned previously, the response of a network
of identical cells to a uniform input can be deduced
from the response of one cell to a single input since a
uniform input is only characterized by an intensity level
without any contrast, or pattern. A uniform input re-
sponse is thus significant in demonstrating the intensity-
dependent properties of networks.

FIG. 16 shows the response of a network of nearest
neighbor-connected cells to a uniform input and is seen
to be acceptably uniform across the array, as expected.
The noise that is observed in this experiment can be
explained by the device variations across the array. The
voltage across the simple level-shifter stage, which only
consists of two transistors 156 and 158 and the diode
160, varies by up to 68 millivolts across the array. Table
13 shows this to be the case, while the uniform input

response varies by at most 17 millivolts across the net-,

work. Furthermore, the abrupt boundary at the ends of
the array of cells influences the network response and
produces errors which should be accounted for. In all of
the experiments, a constant load was added to cells one
and seven in each of the experiments to compensate the
abrupt boundary. More sophisticated techniques were
employed for cases where boundary effect cancellation
was crucial and will be shown as they are encountered
in the following description.

TABLE 3
Variation of the level-shifting stage across the array due to device
variations.
Cell Number 1 2 3 4 5 6 7
Level Shifting 596 657 632 616 665 620 651
Amount

Having established that the uniform input response
can be found from the response of one cell to an input,
from equation (15), it is seen that the response of the
network to a uniform input is proportional to the square
root of the input. However, the response is also a func-
tion of the parameters K1 and K; which are dependent
on the membrane resistance and transconductances of
the devices, respectively. FIG. 16 shows the response to
a uniform input. This response is close to a linear func-
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tion. However, the response can be tuned, by a different
choice of Ki, to emphasize the square root dynamic
range compression. The mechanism and uses of this
tuning process will be discussed subsequently.

FIG. 3 shows the behavior of an actual implementa-
tion, when the membrane resistance value is chosen to
better reflect the desired saturating characteristics of
the network. It compares the measured responses
(points 176) to the theoretical response (curve 178),
showing good agreement. This behavior is more pro-
nounced when the neural network equations above are
analyzed independently of the implementation con-
straints. FIG. 17 shows the theoretical steady state re-
sponse curve 180 of a network, as predicted by a theo-
retical analysis to be presented subsequently. The net-
work consists of three fully interconnected cells, where
the coefficients K1 and K are chosen to better demon-
strate the dynamic range compression property.

Range Compression and Data Compression

FIGS. 3 and 17 show the dynamic range compression
beyond the sensor layer which, for many biological
systems, has already performed a logarithmic transfor-
mation of the input. The significance of the range com-
pression property is seen by noting that the human
retina, for example, is sensitive to an input range of
1-1013 luminance units (as described by Levine, in VI-
SION IN MAN AND MACHINE, McGraw-Hill,
1985). The firing range of the ganglion cells, whose
axons form the optic nerve, is 1-200 spikes per second.
The firing range is further reduced by the presence of
intrinsic noise. Compressing the dynamic range of the
signal beyond the photoreceptor layer may be essential
in achieving such a wide dynamic range of sensitivity
without saturating the processing power of each cell.

This property has immediate technological applica-
bility. For example, available photodetector imaging
technologies such as charge coupled devices (CCD)
arrays cannot compare with the sensitivity range of the
biological systems without the attendant degradation
caused by blooming, ghosting, or minimum charge
transfer sensitivity.

Range compression, however, is of little value if it is
not concomitant with other processing capabilities, and
especially if “important features” of the data are not
preserved. The following observations lead to the con-
jecture that the network performs data compression in
the information theoretic sense of the reduction of re-
dundancy and not simply range compression.

Spatial edges, or. areas of contrast, contain the most
information. On the other hand, uniform areas contain
little information because they are predictable. The
inventors have a great deal of experimental data to
support the conclusion that the network contrast-
enhances the input while attenuating uniform areas. In
general, an excitatory center-inhibiting surround recep-
tive field configuration automatically decreases redun-
dancy via transduction of the spatial differences. How-
ever, this configuration may also introduce unaccept-
able distortion.

The auto-correlation function of the output of the
excitatory center-inhibiting surround reception field
tends to be narrower than that of the input; i.e., the
output is less correlated than the input. That is, the
output is less correlated than the input. Accordingly,
the output contains more independent data points and
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more information than the input. This is a crucial test
but needs to be verified by a larger pool of neurons.

The experimental data of the discrete implementation
is very similar to the measurements of insect visual cells
which gave rise to the hypothesis that the peripheral
visual system performs a predictive coding of the input
data resulting in the removal of redundancy. The mea-
surements of insect visual cells were described by
Srinivasan et al., in Predictive coding: a fresh view of
inhibition in the retina, PROC. R. SOC. LOND., 216,
pp. 427-459, 1982, Shunting networks can mediate the
same process, which is derived from predictive coding.
They are also capable of providing many other proper-
ties that cannot be explained by a predictive coding
hypothesis. This should be verified by using a larger
number of neurons. Such verification is a goal of the
integrated circuit implementation.

Data compression, if rigorously established, is only
one feature of a shunting network, rather than its main
purpose. Maximum entropy coding techniques, cost
functions, and error criteria, as well as other conven-
tional processing techniques can act as comparative
measures of performance for specific tasks. However,
neural network theory is distinct from and more general
than any single conventional hypothesis.

Point Source Response

As suggested previously, the response of a neural
network to a point source input is important in charac-
terizing the behavior of the network, similar to the
manner in which the impulse response characterizes the
behavior of a linear system. There are, however, dis-
tinct differences. The temporal impulse response, or the
spatial point-source response, completely specifies the
reflective temporal or spatial properties of a linear sys-
tem and its Fourier transform provides the temporal
frequency transfer function, or the spatial frequency
modulation transfer function .of the system. This func-
tion completely specifies the system’s frequency domain
properties; the same principles do not apply to nonlin-
ear systems such as the shunting networks. At a mini-
mum, linearization of the system about a parameter
(such as mean input level) is required.

The point-source response can be assumed to specify
the “receptive field” of a stimulus. This assumption
requires some clarification , especially since the results
will be compared to the receptive field of biological
cells.

The phrase “receptive field” was coined by Hartline
in 1940, in The receptive field of optic nerve fibers,
AMERICAN JOURNAL OF PHYSIOLOGY, 130,
pp. 690-699. Hartline solved the problem of dissecting a
nerve bundle in the retina of the frog and noted that no
description of optic responses in single fibers would be
complete without a description of the region of the
retina that must be illuminated in order to obtain a re-
sponse in any given fiber. Hartline called this region a
“receptive field.” A receptive field is thus a map of the
spatial sensitivity of a cell to stimulus. Classic works by
Kuffler (Discharge pattern and functional organization
of the retina, J. NEUROPHYSIOL, 16, pp. 37-68,
1953), Hubel and Wiesel (Receptive fields of single
neurons in the cat’s triate cortex, J. PHYSIOL. 148, pp.
574-591, 1959), and Barlow et al. (Retinal ganglion cells
responding selectively to direction and speed of image
motion in the rabbit, J. PHYSIOL. 173, pp.477-504,
1964) carefully described the shape of the receptive
field of the cat ganglion cells, the cells in the lateral
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geniculate nucleus of that cat, and rabbit ganglion cells,
respectively, which helped explain the response of these
cells to different stimuli.

On the other hand, a stimulus such as a narrow spot of
light invokes a pattern of activity across the cells; it
excites cells on whose on-center it has fallen and inhibits
those whose off-surround receptive field contain the
stimulus. This pattern of response specifies the receptive
field. Such a pattern is strictly valid when the cells have
identically designed receptive fields. This is the case for
the present implementation.

FIG. 18 is a graph of the input-output relationship of
a neural network without an interconnection scheme. It
shows the response of a circuit without any network
interactions. As in all the experimental results described
in this specification, the data shown in FIG. 18 is valid
only at cell locations as indexed by the cell number.
Linear interpolation between the data points is for vi-
sual consistency only. It is clear that the output (see key
in Figures) closely follows the input.

The sensory array which lacks interconnections re-
produces the input without processing it. This would be
the case for most conventional sensing apparatus such
as CCD camera arrays. FIG. 18 also shows that noise is
insignificant and the global interaction of the network
has encountered small parameter variations such as
variation of the level shifting stage among cells, as was
depicted in Table 3.

FIG. 5 is a graph of the response of a neural network
to a point-source input. The on-center off-surround
shape of the response is similar to those observed in
many excitable cells including the works mentioned
above by Kuffler (1953), Hubel and Weisel (1959), and
Barlow et al. (1964).

FIG. 5A is a graph of the receptive field of Lucilia
sericata, where the horizontal axis is visual angle, and
the vertical axis is relative voltage units of hyperpolar-
ization. It is derived by measuring the response of the
fly to gratings of different spatial frequencies. These
gratings curve-fit the data to find an analytical expres-
sion for the provide a modulation transfer function
(MTF), and perform an inverse Fourier transform on
this expression.

This type of receptive field has been approximated by
the difference of two Gaussian functions, a narrow
excitatory center and a wide inhibitory surround, and is
shown to be very similar to a gradient (Laplacian) oper-
ator. This work has been reported by Marr and Hil-
dreth, in Theory of edge detection, PROC. OF THE
ROYAL SOC. OF LONDON, (B) 207, pp. 187-217,
1980, and by Marr in VISION: A COMPUTA-
TIONAL INVESTIGATION INTO THE HUMAN
REPRESENTATION AND PROCESSING OF VI-
SUAL INFORMATION, Freeman: San Francisco.
Important properties of such receptive fields have been
well documented and have given rise to a prominent
school of thought in computational vision known as the
“zero crossing school” since the second derivative of an
edge which is smoothed by a Gaussians kernel is zero at
the location of the edge and thus zero crossings of this
function specify the edge locations.

Intensity Dependence

The zero-crossing computation is a feed forward
linear operation. Although very effective, the zero-
crossing computation does not possess the computa-
tional power or the versatility of the nonlinear shunting
networks., specifically any of the properties discussed
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previously. One such property is adaptation to mean
intensity level and is demonstrated in FIGS. 1 and 19.

Comparison of FIGS. § and 19 shows that as the
background intensity increases the receptive field be-
comes more pronounced, the inhibitory flanks become
relatively stronger showing higher levels of network
interaction (compare 184 in FIG. 5 to 184’ in FIG. 19.
The profile of the receptive field thus changes accord-
ing to the intensity level. FIG. 19A shows the strikingly
similar behavior (i.e., increased flanks) found Lucilia
(compare FIG. 5A). This proves the shunting networks
are capable of mediating the receptive field adaptation
to mean intensity level observed in many biological
units such as the LMC cells of Lucilia. Theoretical
analysis of multiplicative inhibitory networks had previ-
ously shown this property, as described in Product term
nonlinear lateral inhibition enhances visual selectivity
for small objects or edges, J. THEOR, BIOL., 100, pp.
525-531, 1983, The electrophysiological bases for linear
and nonlinear product term lateral inhibition and the
consequences for wide-field textured stimuli, J.
THEROR. BIOL,, 105, pp. 233-243, 1983, and Adapta-
tion of receptive field spatial organization by multiplica-
tive lateral inhibition, J. THEOR. BIOL., 110, pp.
435-444, 1984, However, no other implementation has
replicated this behavior.

A modulation transfer function (MTF) can be defined
as the Fourier transform of the receptive field, compari-
son of FIGS. § and 19 shows that, as the mean intensity
increases, the MTF extends to higher spatial frequen-
cies. Thus, the network “sees” with more detail in
higher levels. This result has also been theoretically
shown by Pinter, in his above-cited paper (Adaptation
of spatial modulation transfer functions via nonlinear
lateral inhibition, BIOLOGICAL CYBERNETICS,
51, pp. 285-291, 1985).

Intensity dependence is a very important property. It
allows the use of available ambient light to better pro-
cess the input. This provides one explanation for why a
light switch is turned on to see better in low luminance
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levels even though the reflectances (the percentage of .

the light reflected from objects) are independent of the
amount of light. The same applies to other sensory
systems, a speaker is asked to speak louder to become
more intelligible, even in the absence of noise, while the
- spectrogram of the speech does not change when the
signal is amplified. This property is a result of the re-
flectance-luminance interaction which is specific to
shunting networks.

FIGS. § and 19 have been normalized to better show
their relative shapes and are clearly distinguishable even
after normalization. Considering that the only differ-
ence between these two patterns is their background
intensity, the network has in fact coded the intensity
information as well. The difference between the two
figures provides a clue to the amount of the intensity.
As mentioned previously, preservation of the intensity
clue has direct technological applications and is lost in
most front-end processors which require carefully regu-
lated lighting conditions or sensors whose output has to
be normalized before any processing to avoid exceeding
the dynamic range of processing circuitry. The luxury
to encode both the pattern and its relative intensity is
due to the unique wide dynamic range capability of
shunting networks.
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Boundary Effects

The asymmetry of the receptive field, especially the .
difference between the response of end cells 1 and 7 is
due to component variation as well as the abrupt bound-
ary. The effect of the boundary has been somewhat
compensated by application of a dummy load to cells 1
and 7, but can be further reduced by connecting these
cells together. Such a connection imposes a cyclic
boundary condition on the network. The response is
shown in FIG. 20. The boundary condition is equiva-
lent to the application of a periodic replication of the
input to an unlimited array of cells. The result is shown
in FIG. 20, which is a graph demonstrating the fact that
a circular boundary condition reduces the boundary
effects and adds to the symmetry of the response of the
neural network. The response is clearly much more
symmetric than FIG. 5.

Tunability of Sensitivity

The sensitivity of a network to a set of parameters can
be defined as the amount of change that is caused by the
variation of these parameters. For the present network
the sensitivity of each cell can be changed, or tuned, by
varying the membrane resistance. This is seen by noting
that each cell output equals the product of the input and
the resistance seen by the input, i.e.,

xi=I{Ro|| Reg) (20)
where R, is the membrane resistance and Req is the
equivalent resistance of the conductive paths estab-
lished by multiplicative interconnects. The sensitivity of
the network to variation of the membrane resistance is
found from

R%q @n

oX;
= Jj———te
(Ro + Reg)”

aRo

which is a positive definite quantity. Hence, as the mem-
brane resistance is increased, the output is increased.
Thus, -the cell shows more activity even though the
input and interconnections have not varied. By chang-
ing the membrane resistance of all the cells in the net-
work, the network can be tuned to be more, or less,
sensitive to the environment. FIG. 21 is a graph of the
tunability of the sensitivity. It shows experimental re-
sults concerning the tunability of the sensitivity. FIG.
21 demonstrates that the same input pattern produces
different behavior when the network is externally tuned
to be more sensitive. It also shows that the response
represents a clear change of activity pattern, where the
input pattern has remained constant but the network is
tuned to be more sensitive.

The tuning can be accomplished by changing the bias
on the transistor which models the membrane resis-
tance.

The discovery of the tunability property and the very
natural mechanism for achieving it is due to the insight
provided by the original model of FIG. 2.1. The simple
analytical explanation that required only two lines of
equations (Eqgs. 20 and 21) would have been much more
complicated had it not been for the expected properties
evident from the diagram that gave rise to the model.
This property has not been previously analyzed or dem-
onstrated. The simplicity of this property and its ndtural
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implementation by changing the bias of a transistor
should not conceal its importance and applicability.

FIG. 21 shows how the sensor can be tuned to oper-
ate optimally in bright or dim lighting conditions.
Curve 190 represent the response in relatively dim con-
ditions while curve 192 represents the response in rela-
tively bright conditions. The prospects of using this
property in a self-regulating mechanism, which lets the
device adapt its behavior according to the environment
in which it is operating, is very promising.

It is logical to predict that a natural mechanism, such
as self-modulating membrane resistances to adopt to

10

sensitivity requirements, are employed in biological

systems. Verification of this prediction and identifica-
tion of the mechanisms that may mediate such a process
are highly desirable.

Spatial Edge Response

Edges, boundaries, and areas of high contrast specify
important features of a scene. They also provide the
areas of highest information. The response of the net-
work to a spatial edge pattern is shown in FIG. 22,
which is a graph of the response 194 of the network to
a spatial edge pattern 192, showing that edges are ex-
panded. Also, as described below, Mach bands are ob-
served. The edges are enhanced and uniform areas are
suppressed.

FIG. 23 is a graph of the response 196 of the neural
network without network interaction, and is intended to
be contrasted with the network behavior, in addition to
showing the ignorable effect of noise.

The cells which are located next to the edge location
(cells 3 and 4) also show an interesting response; they
are less active than the next-nearest cells (cells 2 and 5)
even though both sets of cells receive equal inputs. This
phenomenon has been observed in psychophysical ex-
periments and studied by Ernest Mach. The response is
named Mach bands in his honor (Mach bands: Quantita-
tive studies on neural networks in the retina, Holden-
Day, by Ratliff, 1965). The seminal works of Hartline
on the lateral compound eye of Limulus, which led to a
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Nobel prize, shows the same pattern of response and is .

shown in FIGS. 24 and 25 for comparison. FIG. 24 is a
graph of the response 200 and 200’ of the eccentric cell
of the lateral eye of Limulus to a spatial edge pattern
202. It shows the response 202 of one ommatidium only
(plotted as triangles) and the effect of network interac-
tion 202’ (plotted as circles). FIG. 25 is a graph of the
spatial input pattern 202 for FIG. 24.

The importance of edge enhancement for image pro-
cessing applications is well known, the simplicity of the
design, the paralle} construction of the network, and its
operation in the below saturation region can quite possi-
bly make the GaAs-based implementation of this circuit
the fastest edge detector in existence today. It should be
reminded that edge enhancement is only one feature of
the diverse capabilities of this network.

A striking demonstration of the importance of the
response of the type shown in FIGS. 22 and 24 is pro-
vided by Stockham (in Image processing in the context
of a visual model, PROC. IEEE, vol. 60, No. 7, pp.
828-841, 1972). In the system whose response is shown
in FIGS. 22 and 24, a filter cancelled the preprocessing
accomplished by the peripheral visual system. The filter
did so in such a way that the output of an edge pattern
would “appear” as the input itself (as in FIG. 23). It was
shown that such an edge pattern would be completely
smeared and unrecognizable. :
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The test edge pattern used is a one pixel edge, i.e., the
areas of high and low contrast are separated by one cell.
Often edges are ramps which cover several intermedi-
ate cells. There is strong correlation between the degree
of interconnections and the slope of the ramp, or the
edge depth. The edge depth is preferentially enhanced
by the network. Results of a study of directional selec-
tivity are presented later. For edges of fixed depth,
interconnectivity beyond the nearest neighbor produces
a stable, geometrically decreasing oscillatory skirt
around each spatial edge input. The decay rate of this
spatial oscillation is dependent upon the contrast and
intensity of the input edge, the membrane resistance,
and the extent of interconnections.

Not all areas of contrast are edges. FIG. 26 is a graph
demonstrating the contrast enhancement property. It
shows a more complicated test pattern 210 than that of
FIG. 24. As shown by the response 212, FIG. 26 dem-
onstrates that the network is capable of contrast-
enhancing even a complicated pattern. It has been con-
firmed that the network treats the input as noises when
the pattern variation approaches the pixel level. It has
also been established that the network cannot establish
a correlation between different data points.

The smallest contrast for which the network pro-
duced a perceptible edge expansion was 1.1:1. Any edge
pattern having a ratio of light side to dark side that is
less than this ratio produces a noisy output pattern.
From theoretical considerations of FIG. 11, this ratio
may be improved by insertion of a sigmoidal nonlinear-
ity in the feedback loop and optimizing the slope of this
nonlinearity for the background input level.

Intensity Dependence

FIG. 27 is a graph of the response 214 of the neural
network to a spatial edge pattern 216 having a lower
mean intensity than that shown in FIG. 22. Adaptation
to mean intensity level which was shown for the point
source input can also be observed for the spatial edge
pattern. FIG. 28 is a graph of the response of the eccen-
tric cell of the lateral eye of Limulus to a limited extent
edge input; showing the clear correspondence of the
experimental and theoretical results.

FIG. 27 has the same contrast as FIG. 22 but a
smaller mean luminance level. The network is still capa-
ble of expanding the edges of the spatial edge pattern.
However, the amount of expansion is reduced at dim
light levels. FIG. 28 shows the response of Limulus to
a limited spatial edge pattern and is chosen to stress the
similarity at the boundaries.

FIG. 4 is a graph of the intensity dependence of the
response of the neural network. In FIG. 4 the intensity
of the input to the network is increased as shown and all
curves are normalized. FIG. 4 demonstrates the net-
work’s adaptation to the mean intensity level of the
input. As the intensity increases, the edges are expanded
further. The conclusion is that the network thus per-
forms better when more light is available. Enhancement
of the input’s edges in the space domain is translated
into higher spatial frequencies in the frequency domain.
Accordingly, as shown in FIG. 4, the modulation trans-
fer function of the network is extended to higher fre-
quencies as the input increases. Thus, the network gains
bandwidth, or sees more detail, as more ambient light,
or more total activity, is provided. Tuning the MTF and
applying it to vision has been studied in detail by Pinter.
Tunability of the network has been hereby experimen-
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tally verified in the studies described in this specifica-
tion.

The response of each of the seven cells of the net-
work in response to a change in the input pattern’s
intensity is plotted in FIGS. 29 and 30. Specifically,
FIG. 30 is a graph of the intensity dependence of each
cell in the neural network, showing the reflectance-
intensity interdependence. The response of each cell is
seen to be both a function of the input strength and the
reflectance pattern. Cells 4 and 5, for example, (see
curves 220 and 222 in FIG. 30) receive the same input
but have drastically different responses to changes in
intensity. The cells which most actively participate in
processing of the reflectances, most conservatively
respond to intensity change and thus preserve their
dynamic range. This is consistent with the previously
mentioned brightness contrast.

FIG. 4 and FIGS. 29-35 complement each other. In
FIG. 4, the intensity dependence of reflectance process-
ing is stressed. FIGS. 29 and 30 are graphs of the inten-
sity dependence of the response of each cell in the neu-
ral network to changes in reflectance. FIGS. 4 and
29-35 are drawn from the same data. This proves the
interdependence of the cells in the neural network. It
also demonstrates the capability of shunting networks
to capture some of the most salient features of periph-
eral visual processing.

The results shown in FIGS. 29 and 30 are, as ex-
pected, similar in shape to the uniform input response
which was used to show intensity dependence proper-
ties of the network. Had the circuit been tuned to higher
sensitivity, the curves would have shown stronger satu-
ration properties.

Directional Selectivity

The network can be wired by choosing asymmetric
interconnections to be preferentially responsive to an
edge of a certain direction over other orientations.
FIGS. 31 and 32 show the responses of a network
which has only right going inhibitory connections, as
the extreme case of asymmetry, to edge inputs of equal
contrast and intensity but different directions. The input
230 in FIG. 31 is right-going while the input 232 in FIG.
32 is left-going. These figures are normalized by the
same values so as to preserve the relative shape of the
response. The boundary effects are also crucial since if
cell 1 does not receive input from any other cell it will
have disproportionally high value. The same applies to
cell 2 which receives input only from cell 1. If these
boundary effects are not compensated, they will domi-
nate the response characteristics. '

The solution to adverse boundary effects was pro-
vided by applying the output of the cell 1 to itself and
cell 2. The boundary effects were applied in such a way
that input appears to extend from the left.

As expected, FIGS. 31 and 32 show drastically differ-
ent responses to edges 230 and 232 which only differ in
orientation. The difference of response occurs in both
the shape and intensity of the input pattern. Hence di-
rection of the input pattern can be inferred from either
shape or intensity. FIG. 31 is a graph of the directional
selectivity (in the preferred direction) of the neural
network, in which each cell receives input from its
left-hand neighbor. As shown in FIG. 31, a right-going
edge 230, which steps up from left to right, is contrast-
enhanced in the usual manner. The response, in FIG. 32,
to the left-going edge 232 is smeared and attenuated.
Observation of the response of cell 4 alone can, in prin-
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ciple, determine the direction of the edge. FIG. 32 is a
graph of the directional selectivity (in the null direc-
tion) of the neural network, showing that direction of
the input produces differences in the response.

In response to a left-going edge, cells which receive
higher intensity can more strongly inhibit other cells
and thus attenuate the total activity of the network. The
total activity level of FIG. 31 differs from that of FIG.
32 by 119 mV for two nearest neighbor connections and
by 105 mV for only one nearest neighbor connection.
By monitoring only the total activity of the network, it
is possible to distinguish between two edges of same
contrast and intensity but different orientation; the net-
work is more “agitated” when an input with its prefer-
ential direction is presented.

Motion detection of an object within an image can
readily be calculated by subtracting two edge-enhanced
image frames which occur only some short time inter-
val apart. This was described by Bouzerdoum and Pin-
ter in Biophysical Basis, Stability, and Directional Re-
sponse Characteristics of Multiplicative Lateral Inhibi-
tory Neural Networks, PROC. INT. JOINT CONF.
NEURAL NET., Washington D.C., 1989. In a network
that is directionally sensitive to an input, an object mov-
ing to the left will produce a greater difference and will
be more easily identified. Preferential directional sensi-
tivity thus will result in preferential sensitivity.

A preferentially weighted interconnection profile
will produce an asymmetric receptive field, as shown in
F1G. 33. Specifically, FIG. 33 is a graph of the response
240 of the receptive field of a unidirectional network
wired for preferential directional and motion selectivity
to a point source input 242. A point source response is
thus sufficient to determine the preferred direction of
response.

Although the above experiments were conducted
with a one-dimensional array, the results can be ex-
tended to two-dimensional arrays to produce a direc-
tion preference of virtually any angle or localization to
any area of the visual field. In such a case, it is desirable
that the directional selectivity be dynamically program-
mable rather than pre-wired. Dynamic programmabil-
ity is a subset of complete programmability of the con-
nection strengths. However, it is much simpler to imple-
ment since only one line in the preferred direction is
needed to transmit the required control signal. A device
with programmable connection strength has been de-
signed and tested and is used in an integrated circuit
implementation which allows dynamic choice of direc-
tional preference. Fabrication and testing of this circuit
is presently under way.

Another parameter of interest in FIGS. 31 and 32 is
the effect of the extent of connections on the network
properties. These Figures show that a network with
nearest neighbor connections is more responsive to an
abrupt edge than a network with two nearest neighbor
connections.

Finally, unidirectionality is an extreme case of asym-
metry. Asymmetric networks are hard to analyze and
usually suffer from lack of stability. One such network
is the asymmetric network studied by Cohen and Gross-
berg (Absolute stability of global pattern formation and
parallel memory storage by competitive neural net-
works, 1983). This network could be arbitrarily close to
a symmetric network but can be proven to be unstable
regardless. Unidirectional networks, on the other hand,
have lower (or upper) triangular connection matrices
whose eigen values are the diagonal terms. Accord-
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ingly, it is easy to examine unidirectional networks for
stability. The stability problem was avoided in the study
of preferential selectivity by choosing the extreme case
of unidirectional connections.

Although the equations given above are non-linear,
small variations or low contrast will result in linearity
(rather than non-linearity). Therefore, linear processing
by the network is a subset of the non-linear adaptive
processing described above.

Integrated Circuit Implementation on GaAs Substrate

The simplicity, compactness, and parallelism of the
design presented in this specification, is adaptable to
very high integration densities. As explained previ-
ously, this design can be implemented in any of the FET
technologies, with the choice of technology depending
on many engineering trade-offs. Since the projected
application of the present work is for optoelectronic
applications, gallium arsenide provides a potent me-
dium with ample room for future expansion.

Monolithic fabrication of the circuit of FIG. 13 has
been methodically pursued. The first step was to imple-
ment the discrete component version. This provided
much insight into the operation of the circuit. This
insight was presented above in this specification. All the
circuit components which comprise the integrated cir-
cuit, i.e., MESFETs, photoconductors, and diodes,
have been fabricated and tested. All the fabrication
steps have been performed at the Solid State/Molecular
Beam Epitaxy Laboratory of the University of Wash-
ington and include the following:

Growth of an active layer by molecular beam epitaxy
(MBE) with optimally chosen active layer thick-
ness and doping density, for operation below. pinch
off.

Production of photolithographic masks for different
processing steps.

Wet chemical etching for mesa isolation.

Patterning of ohmic contacts, metal deposition (by
lift-off), and sintering to provide ohmic contacts.

Wet chemical etching for exact channel depth.

Patterning of the gate contacts, deposition (by lift-off)
of gate metal(s).

Testing.

Mounting and packaging.

A circuit consisting of linear arrays of 30 cells each,
with nearest neighborhood interconnections, and with
monolithic photodetectors has been designed and laid
out with 2-micron design rules. Provisions for variable
membrane resistance for tuning of the sensitivity have
been made.

A second circuit which has the additional feature of
programmable connection strengths has also been de-
signed and laid out and is awaiting fabrication. In order
to reduce the complexity, the programmability feature
is used only for preferential directional selectivity stud-
ies.

In these circuits, a novel ohmic contact mesa-finger
photodetector has been used. The photodetector pro-
duces five to six times the photocurrent of standard
metal-semiconductor-metal (MSM) photodetectors in
steady state, while being capable of operating at the
same speed. All of the process steps required for the
fabrication of these detectors are fully compatible with
the steps used in the fabrication of mesa-isolated MES-
FETs and diodes which comprise the rest of the cir-
cuitry, and hence a fully monolithic optoelectronic
circuit is being built.

10

15

20

25

30

35

40

45

50

55

60

65

30

It must once again be stressed that every effort was
made to have the test results of the monolithic circuit
available for presentation in this manuscript but un-
avoidable difficulties inherent in the fabrication of such
complicated circuitry prevented this desire to be real-
ized. Future publications are planned to report on the
design considerations, process and device aspects, and
optoelectronic applications of the monolithic circuit.
Transduction and processing of color information.

In the above descriptions, the inputs to the processing
are monochromatic. That is, the photodetectors sense
only the incident intensity or a pattern luminance. The
pattern luminance is detected via its spectrally inte-
grated radiative power, not its spectrum. To have color
vision processing, it is well known that three suffi-
ciently separate primary or basis vector colors are usu-
ally satisfactory. In biological vision, this is often the
case, and it is also true that lateral inhibitory color pro-
cessing has been demonstrated. For example, effects of
such color lateral inhibition have been found in verte-
brate ganglion cells having red on-excitatory centers
and green on-inhibitory centers. There are other combi-
nations, and relative timing of color signals may also be
of importance. However, it is well known that there are
color antagonistic effects, and these antagonistic effects
occur between the various photoreceptor spectral sensi-
tivity functions.

In a two, three or more primary color system each
pixel (picture element) selectively receives different
spectral colors. In such a system, it is necessary to have
a separate but integrated photodetector in each pixel for
each color. The spectral differentiation of the photode-
tectors may be accomplished by band gap engineering
or using applied spectral filters. The first case is particu-
larly applicable to compound semiconductors such as
GaAs or InP which readily form heterojunctions with a
wide range of alloys. The band gap of these materials
can be easily controlled by the alloy constituency. The
resulting band gap of the semiconductor sets the wave-
length at which the fundamental absorption edge oc-
curs. Thus, spectral differentiation can be accomplished
directly by using several integrated detectors for each
pixel with a different band gap for each. Alloys of (In,
Ga) As can be grown lattice-mismatched to GaAs and
alloys of (In, Ga) (As, P) can be grown lattice-matched
to InP. The effective range of spectral tunability for
alloys (In, Ga) is 0.8-1.2 microns and the effective range
of spectral tunability for alloys of (In, Ga) (As, P) is
0.8-1.6 microns. Hence, photodetectors fabricated in
this manner would provide spectral selectivity princi-
pally in the infrared wavelengths.

Alternatively, dielectric absorptive filter layers can
be fabricated directly on top of the photodetectors. This
gives the detectors a spectral selectivity set by the trans-
mittance of the filter layer. This technique is in popular
use in the construction of color CCD cameras. CCD
cameras use three photodetectors per pixel with filters
for the R, G, B primary signals. This approach is much
more applicable to the visible spectrum. The reason is
that the band gaps of the most common semiconductor
alloys do not extend up to photon energies this high.
The choice of the appropriate photodetector technol-
ogy to implement spectrally selective response charac-
teristics is quite broad. These technologies are all gener-
ally compatible with monolithic integration with field-
effect transistors. This integration is a key element for
implementing the lateral inhibitory or excitatory inter-
connections between the adjacent pixels.
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As an example, consider the primary colors as red,
green, and blue; R, G, B. These colors necessitate a
three layer lateral inhibitory sensory neural network
where the inhibitory cross-coupling between and
among layers need not be the same for each color R, G,
B. This may be expressed in the equations of the three
layers,

E'_{._IR Rl 3 3£ k)
72 i + RGB J(eJ
de{C .

— = ]G _ G

- =1 — e (1+R%B§gj(ef‘))
deB

— e B B
T =1F -« (1+R%;E§h,(e,k))

where the R, G, B superscripts signify the node voltage
responding excitatorily (positively) primarily to that
spectral color, and the nonlinear lateral inhibition oc-
curs via the different functions f}, g h, for each respec-
tive node voltage, over all the layers. This encompasses
a quite general color processing. The linearization of
these equations would demonstrate all possible combi-
nations of color center-surround. The nonlinear equa-
tions in and of themselves are adaptive to the mean
color luminances. Their adaptability is in the same sense
of adaptation to monochromatic light shown above.
Examples are the increase of surround inhibition as
mean luminance is raised, and the automatic gain con-
trol feature.

Transduction and processing of polarization
information

Terrestrial and flying insects sense polarization of the
E vector of the skylight. In many cases, they utilize this
information to navigate. Humans utilize polarizing ma-
terial in sunglasses to remove polarized light selec-
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tively. An example of polarized light is the glaring re- |

flection from a water surface.

Polarized light can be also used to differentiate
among various objects via the difference in specular vs.
diffuse reflection. These differences can be exploited in
transduction of light by integrated optical components
constituting two or more photodetectors underlying
each pixel (picture element). Similar to color selectivity,
preferential polarization detection can be implemented
in monolithically integrated photodetectors in either of
two ways. One way is the inherent response of the
detector itself. The other way is the use of a polarizing
thin film deposited over the top of the photodetector. In
the first case, photodetectors with interdigital collec-
tion electrodes can be easily fabricated to finger widths
of 0.5-1.0 microns. This is directly comparable to the
wavelength of light. Thus the grid pattern of the elec-
trodes can be used to differentiate the linear polariza-
tions that are parallel to the fingers from those that are
perpendicular to the fingers. This is due to the different
diffraction efficiencies of the TE and TM cases. The
difference in the responses to these two polarizations is
typically 20-30 percent. Much greater polarization se-
lectivity can be obtained by the use of nematic thin
films. The most common example of nematic thin films
is Polaroid films. A Polaroid film can be added as a
prefilter to the photodetectors of each pixel.
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As an example of processing of this information in
many useful ways, consider the color primaries above
now equivalent to E vector polarization angles, such as:

R=Egp

G=Ens

B=Ess, :

where each superscript attached to a node voltage signi-
fies its preferred polarization angle. In this particular
example, the polarization angles are 90, 225 and 315
degrees. This is not unlike what is known for the insect
photoreceptors and optic lobe. If the number of layers
of equation (1) is expanded to nine, each color primary
could be sensed and processed at each of the polariza-
tion angles. This scheme would be capable of process-
ing or distinguishing many optical scene combinations.
While the detailed description above has been ex-
pressed in terms of specific embodiments, those skilled
in the art will appreciate that many other embodiments
could be used to accomplish the purpose of the dis-
closed inventive apparatus. In particular it will be un-
derstood that the scope of the invention includes neural
network which are connected between layers as well as
within a layer. Accordingly, it can be appreciated that
various modifications of the above-described embodi-
ments may be made without departing from the spirit
and the scope of the invention. Therefore, the present
invention is to be limited only by the following claims.

We claim:

1. A neural network for processing light energy hav-

ing a plurality of characteristics, comprising:

a plurality of layers of cells, each cell in a layer hav-
ing one or more neighboring cells in that layer,
each layer of cells being connected in a neighbor-
ing relationship for processing light energy having
a distinct one of the plurality of characteristics,
each cell comprising:

selective means for receiving an input signal repre-
senting an input corespondent to light energy hav-
ing the characteristic to be processing by the layer
in which the cell belongs;

means for transforming the input signal to a corre-
sponding current produced by a current source, the
current being transmitted through a capacitive
element and producing a resulting change in a
voltage across the capacitive element;

programmable means for sensing the states of the one
or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedforward subset of the
states of the one or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedback subset of the states
of the one or more neighboring cells, the feedback
subset being disjoint from the feedforward subset;

means for producing a positive state voltage corre-
sponding to the state of the cell, the positive state
voltage being transmitted through the capacitive
element and producing a resulting change in a
voltage across the capacitive element;

means for producing a positive feedback voltage
corresponding to each of the states in the feedback
subset of the states of the adjacent cells, the posi-
tive feedback voltage being transmitted through
the capacitive element and producing a resulting
feedback change in the state voltage across the
capacitive element; and
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means for producing a negative feedforward voltage
corresponding to each of the states in the feedfor-
ward subset of the states of the adjacent cells, the
negative feedforward voltage being transmitted
through the capacitive element and producing a
resulting feedforward change in the state voltage
across the capacitive element;

the voltage across the capacitive element represent-
ing the state of the cell.

2. The neural network of claim 1 wherein means for
transforming the input signal to the corresponding con-
ductance is formed from the parallel combination of a
plurality of transistors having conductances that are
individually controlled in accordance with the states of
the one or more neighboring cells.

3. The neural network of claim 2 wherein each of the
transistors is formed in an integrated circuit.

4. The neural network of claim 2 wherein the transis-
tors are field effect transistors.

5. The neural network of claim 4 wherein each of the
field effect transistors is formed in an integrated circuit.

6. A neural network for processing light energy hav-
ing a plurality of characteristics, comprising:

a plurality of layers of cells, each cell in a layer hav-
ing one or more neighboring cells in that layer,
each layer of cells being connected in a neighbor-
ing relationship for processing light energy having
a distinct one of the plurality of characteristics,
each cell comprising:

selective means for receiving an input signal repre-
senting an input corespondent to light energy hav-
ing the characteristic to be processing by the layer
in which the cell belongs;

means for transforming the input signal to a corre-
sponding current produced by a current source, the
current being transmitted through a capacitive
element and producing a resulting change in a
voltage across the capacitive element;

programmable means for sensing the states of the one
or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedforward subset of the
states of the one or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedback subset of the states
of the one or more neighboring cells, the feedback
subset being disjoint from the feedforward subset;

means for producing a positive state voltage corre-
sponding to the state of the cell, the positive state
voltage being transmitted through the capacitive
element and producing a resulting change in a
voltage across the capacitive element;

means for producing a positive feedback voltage
corresponding to each of the states in the feedback
subset of the states of the adjacent cells, the posi-
tive feedback voltage being transmitted through
the capacitive element and producing a resulting
feedback change in the state voltage across the
capacitive element; and

means for producing a negative feedforward voltage
corresponding to each of the states in the feedfor-
ward subset of the states of the adjacent cells, the
negative feedforward voltage being transmitted
through the capactive element and producing a
resulting feedforward change in the state voltage
across the capacitive element;

the voltage across the capacitive element represent-
ing the state of the cell.
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7. The neural network of claim 6 wherein means for
transforming the sensory input signal to the correspond-
ing conductance is formed from the parallel combina-
tion of a plurality of transistors having conductances
that are individually controlled in accordance with the
states of the one or more neighboring cells.

8. The neural network of claim 7 wherein each of the
transistors is formed in an integrated circuit.

9. The neural network of claim 7 wherein the transis-
tors are field effect transistors.

10. The neural network of claim 9 wherein each of
the field effect transistors is formed in an integrated
circuit.

11. A neural network for processing light energy
consisting of a plurality of wavelengths, comprising:

a plurality of layers of cells, each cell in a layer hav-
ing one or more neighboring cells in that layer,
each layer of cells being connected in a neighbor-
ing relationship for processing light energy having
a distinct wavelength in the plurality of wave-
lengths, each cell comprising:

selective means for receiving an input signal repre-
senting an input corespondent to light energy hav-
ing the distinct wavelength corespondent to the
wavelength to be processed by the layer in which
the cell belongs;

means for transforming the input signal to a corre-
sponding current produced by a current source, the
current being transmitted through a capacitive
element and producing a resulting change in a
voltage across the capacitive element;

programmable means for sensing the states of the one
or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedforward subset of the
states of the one or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedback subset of the states
of the one or more neighboring cells, the feedback
subset being disjoint from the feedforward subset;

means for producing a positive state voltage corre-
sponding to the state of the cell, the positive state
voltage being transmitted through the capacitive
element and producing a resulting change in a
voltage across the capacitive element;

means for producing a positive feedback voltage
corresponding to each of the states in the feedback
subset of the states of the adjacent cells, the posi-
tive feedback voltage being transmitted through
the capacitive element and producing a resulting
feedback change in the state voltage across the
capacitive element; and

means for producing a negative feedforward voltage
corresponding to each of the states in the feedfor-
ward subset of the states of the adjacent cells, the
negative feedforward voltage being transmitted
through the capacitive element and producing a
resulting feedforward change in the state voltage
across the capacitive element;

the voltage across the capacitive element represent-
ing the state of the cell.

12. The neural network of claim 11 wherein means
for transforming the input signal to the corresponding
conductance is formed from the parallel combination of
a plurality of transistors having conductances that are
individually controlled in accordance with the states of
the one or more neighboring cells.
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13. The neural network of claim 12 wherein each of
the transistors is formed in an integrated circuit.

14. The neural network of claim 12 wherein the tran-
sistors are field effect transistors.

15. The neural network of claim 14 wherein each of
the field effect transistors is formed in an integrated
circuit. ,

16. The neural network of claim 11, wherein the
plurality of wavelengths are in the red, green, and blue
light spectral regions.

17. A neural network for processing light energy
having a plurality of distinct polarizations, comprising:

a plurality of layers of cells, each cell in a layer hav-

ing one or more neighboring cells in that layer,
each layer of cells being connected in a neighbor-
ing relationship for processing light energy having
a distinct one of the distinct polarizations, each cell
comprising:

selective means for receiving an input signal repre-

senting an input corespondent to light energy hav-
ing the distinct polarization to be processing by the
layer in which the cell belongs;
means for transforming the input signal to a corre-
sponding current produced by a current source, the
current being transmitted through a capacitive
element and producing a resulting change in a
voltage across the capacitive element;

programmable means for sensing the states of the one
or more neighboring cells;
means for producing a conductance corresponding to
each of the states in a feedforward subset of the
states of the one or more neighboring cells;

means for producing a conductance corresponding to
each of the states in a feedback subset of the states
of the one or more neighboring cells, the feedback
subset being disjoint from the feedforward subset;

means for producing a positive state voltage corre-
sponding to the state of the cell, the positive state
voltage being transmitted through the capacitive
element and producing a resulting change in a
voltage across the capacitive element;
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means for producing a positive feedback voltage -

corresponding to each of the states in the feedback
subset of the states of the adjacent cells, the posi-
tive feedback voltage being transmitted through
the capacitive element and producing a resulting
feedback change in the state voltage across the
capacitive element; and

means for producing a negative feedforward voltage

corresponding to each of the states in the feedfor-
ward subset of the states of the adjacent cells, the
negative feedforward voltage being transmitted
through the capacitive element and producing a
resulting feedforward change in the state voltage
across the capacitive element;

the voltage across the capacitive element represent-

ing the state of the cell.

18. The neural network of claim 17 wherein means
for transforming the sensory input signal to the corre-
sponding conductance is formed from the parallel com-
bination of a plurality of transistors having conduc-
tances that are individually controlled in accordance
with the states of the one or more neighboring celis.
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19. The neural network of claim 18 wherein each of
the transistors is formed in an integrated circuit.

20. The neural network of claim 18 wherein the tran- .
sistors are field effect transistors.

21. The neural network of claim 20 wherein each of
the field effect transistors is formed in an integrated
circuit.

22. The neural network of claim 17 wherein the plu-
rality of polarizations are orthogonal polarizations.

23. The neural network of claim 22 wherein the plu-
rality of polarizations are orthogonal linear polariza-
tions.

24. The neural network of claim 22 wherein the plu-
rality of polarizations are orthogonal circular polariza-
tions.

25. A neural network comprising a plurality of cells
and means for connecting each cell to one or more
neighbor cells, each cell comprising:’

a photodetector for receiving optical illumination and

for producing a corresponding input current; and
circuit means having a variable conductivity, the
circuit means comprising means for receiving the
input current for the cell and for conducting the
input current such that a voltage is produced across
the circuit means, the voltage comprising a state
value for the cell, the conductivity of the circuit
means being in part a function of the product of the
state value of the cell and the state value of one of
the neighbor cells. ,

26. The neural network of claim 25, wherein each cell
is connected to at least first and second neighbor cells
and comprises first and second conductance elements
connected in parallel, the first conductance element
having a conductance that is a function of the product
of the state value of the cell and the state value of the
first neighbor cell, and the second conductance element
having a conductance that is a function of the product
of the state value of the cell and the state value of the
second neighbor cell.

27. The neural network of claim 26, wherein each
conductance element comprises a field effect transistor
having a gate coupled to the respective neighbor cell.

28. The neural network of claim 27, wherein each
field effect transistor is formed in an integrated circuit.

29. The neural network of claim 26, wherein each
circuit means comprises a capacitive element connected
in parallel with the conductance elements.

30. The neural network of claim 25, wherein each cell
further comprises a voltage shifter circuit for producing
an output voltage that differs from the state value by an
amount independent of the state value, and means for
coupling the output voltage to at least one neighbor
cell, and wherein the conductivity of the circuit means
is in part a function of the product of the state value of
the cell and the output voltage of the neighbor cell.

31. The neural network of claim 26, wherein the cells
are arranged in a sequence in which for each cell, the
first and second neighbor cells are positioned immedi-
ately adjacent to the cell in the sequence, and wherein
each cell further comprises means for attenuating the
state voltage coupled to the first neighbor cell with
respect to the state voltage coupled to the second neigh-
bor cell, whereby the response of the network is asym-

metric along said sequence.
* ¥ ®* =x %
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Column 15, line 62 "depletionmode" should read --depletion-mode--
Column 15, line 65 "GaAsbased" should read --GaAs-based--
Column 16, line 9 "depletionmode" should read --depletion-mode--
Column 16, line 10 "enhancementmode" should read --enhancement-mode---
Column 16, lines 11-12 "metal-semi-contuctormetal" should read

--metal-semiconductor-metal--
Column 17, line 3 "implicity" should read --implicitly--
Column 17, line 25 "selfinhibition" should read --self-inhibition--

Column 17, line 31 "cell-inhibition" should read --self-inhibition--
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Column 32, line 39 "corespondent" should read --correspondent--

Column 33, line 31 "corespondent" should read --correspondent--

Column 34, line 23 "corespondent” should read --correspondent--

Column 34, line 24 "corespondent” should read --correspondent--

Column 35 line 20 "corespondent" should read --correspondent--
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