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VQ parameters for Visible Human Image (a_vm1480, 2048x1024, red plane)

Level 4 Level 3
(total sample: 512, vector size 4x4) (total sample: 2048, vector size 4x4)
EX v D v H D
T|C T}IC| T C T Cl| T C T c
1 1.0 1326 | 1.0 | 304] 1.0 242 [ 1.7 {50 D 483 1.2 ] 499
2 07326 1 1.0 [304] 1.0] 242 [ 1.7 [ 50 DO [ 4B3 | 1.7 499
3 1 16(251] 1.2 [234] 1 242 11.85] 221 1 1.78] 216 | 1.45] 201
Level 2 Level 1
total sample: 2048, vector size 8xB) (total sample: 8192, vector size 8x8)
EX H D V_ H D
T C T C T C T C T C T C
1 11.9 1490 11,9 129911,47] 469 [1.75] 381 [ 1.7 36| 456
2 [N/ATN/AT 1.9 T299 N/AT N/ATN/A TN/AT 17 1385 N/A{ N/A
3 I N/ATN/ATN/ATN/ATNZAT N/A TNJA T N/A N/A IN/ATN/AT N/A

FIG.

VQ parameters for Visible Human Image (a_vm1480, 2048x1024, green plane)

Level 4 Level 3
(total sample: 512, vector size 4x4)| (total sample: 2048, vector size 4x4)
EX D V H D
T ]| C T C T C T C T C T C
1 | 1070339 [ 1.0 [ 326] 1.0 | 253 | 1.64] 479 [1.68 | 315 [ 1351 470
2 01339 1.0 [ 326 [ 1.0 253 [1.64 1 479 [T 68 315 [T 35 470
S 1 171240 112512541 1.2] 217 | 2.1 | 235 1.7 | 256 1.6 | 253
Level 2 Level 1
total sample: 2048, vector size 8xB) (total sample: 8192, vector size Bx8)
EX H D H D
T C T C T C T C T C T C
1 12151498 [ 2.0 [345(1.6 | 332 | 1.8 | 364 | 2.0 | 286 ] 1.4 | 432
2 | N/AIN/AT 2.0 [ 345 N/AT N/A TN/A N/AT 1.7 1385 | N/A] N/A
3 IN/AIN/ATN/ATN/A N/AT N/A IN/ATN/ATN/A N/ATN/AT N/A

FIG. 2b

VQ parameters for Visible Human Image (a_vm1480, 2048x1024, biue plane)

Level 4 Level J
(total sample: 512, vector size 4x4)| (total sample: 2048, vector size 4x4)
EX V H D V D
T C T C T C T C T C T C
1 01306 1.0 [288] 1.0 | 208 | 1.55| 475 [ 1.45] 499 | 1.9 | 458
2 0 [306 ] 1.0 [288] 7.0 20 D5 | 47511451409 [ 1.0 458
3 | 141244 11.15]245[ 1.0 | 208 | 2.0 | 2451 1.9 | 92 |1.45] 218
Level 2 Level 1
total sample: 2048, vector size 8x8) (total sample: 8192, vector size 8x8)
EX H D H D
T C T C T C T C T C T C
1 119314931 190143511531 509 | 1.8 | 499 | 1.8 | 456 | 1.7 | 75
2 [N/ATN/AT 1.90{435|N/A] N/A [N/A | N/AT 1.8 [ 456 N/AT N/A
3 [ N/ATN/ATN/ATN/ATN/AT N/A N/A [ N/A TN/ATN/ATN/A N/A

FIG.
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Vector Quantization paramaters for Cervical Image (512 x 512)

Level 4 Level 3
CR H D V H D
T C T ]| C T C T C T C T C
32.51 0187 0 |62 0] 45 1.0 {13211.0 1102 ; 1.0 ] 65
/877 | 1.0[87 0162 0145 110132110 [102110] 65
11378 | 1.0 (87 |1 1.0162 | 1.0] 45 1.0 1132710 [102] 1.0 65
Level 2 Level 1
CR H D H D
T C T C T C T C T C T C
5291 | 1.2 1228112 1220) 1.0} 152 1 1.7 1 112 ] 18121115 78
78.77 | N/AIN/AT 1.2 1220 N/A [ N/A TN/A [ N/ATN/ATN/ATN/AT N/A
113.78 | N/AN/AT N/ATN/ATNZA L N/ TN/A T N/AT N/ATN/A TN/AT N/A
FIG. 3
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Comparison between AFLC-VQ, JPEG and EZW (Cervical Spine Image)

Compression ! CR MSE PSNR
scheme
AFLC—VQ 32.51 17.48 35.71
(without | 78.77 77.10 29.26
entropy coding)[ 11378 9706 78.49
JPEG (with 32 5,35 40,85
: 78 18.18 35.54
entropy coding)|—2 15907 26.30
EZW (without | 32 37.96 32.34
arithmetic 78 134.25 26.85
coding 113 204.04 25.03
EZW (with 32 13.07 36.97
arithmetic 78 4911 31.21
coding 113 58.76 30.44

FIG. Sa

Comparison between AFLC-VQ, JPEG and EZW (Visible Human Image)

Compression CR MSE PSNR
scheme
FLC-VQ 42 56 23.65 34.39
without_ 74.14 31.00 33.22
entropy coding)[ 32,13 1 49.71 3117
JPEG (with 42 14.36 36.56
: 74 25.92 33.99
entropy coding)}—2 347.00 2279
EZW (without | 42 45,46 31.55
arithmetic 74 87.94 28.69
coding 132 160.76 26.07
EZW (with 42 21.32 34.84
arithmetric 74 30.19 33.33
coding 132 45.19 31.58

FIG. 5b
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FIG. 7
ORed OGreen OBlue @Luminance Original cervical spine image histogram
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(c) EZW (32:1, without entropy coding) (d) EZW (32:1, with entropy coding)
3 P
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(e) AFLC-VQ (78:1, without entropy coding) (f) JPEG (78:1, with entropy coding)
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(k) EZW (113:1, without entropy coding) _ {1) 2w (113:1, with entropy coding)

Histogram comparsion between AFLC-VQ, EZW and JPEG (Cervical Spine)
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ADAPTIVE VECTOR QUANTIZATION/
QUANTIZER

CROSS-REFERENCE TO RELATED
APPLICATION

Priority is claimed under 35 U.S.C. §119 (e) on the
Provisional Application, Serial No. 60/136,418, filed on
May 28, 1999, of common title, of common inventorship
and assignment with the present application.

FIELD OF THE INVENTION

The present invention relates generally to data
compression, transmission and high fidelity reconstruction
of such data, especially image data. Although other infor-
mation types may benefit from the present invention, it
applies with special interest to complex images such as
medical and satellite images.

BACKGROUND OF THE INVENTION

Large volumes of medical imagery demand high fidelity
image compression for archiving and transmission. Lossy
compression of medical images, however, has always been
a subject of controversy since the loss of information
involved is thought to affect diagnostic judgment. Most
radiologists prefer not to exceed a compression ratio of 10:1
when JPEG compression is used. Application of Wavelet
Compression to digitized Radiographs, by M. A. Goldberg,
et al., Vol. 163, pp463-468, ATR(1994) describes wavelet
based compression techniques which may not reduce the
image quality even when subjected to compression ratio up
to 30:1. Wavelet coding is a class of sub-band coding that
allows selective coding of sub-bands significant to visual
perception. The encoding process actually determines the
distortion introduced by quantization. It is well known from
rate distortion theory that vector quantization yields optimal
distortion. Implementation of vector quantization, specifi-
cally the encoding process, is, however, quite involved.
However, the decoding process in vector quantization is
relatively simple and can be achieved from look up tables.
Vector quantization of standard images is a well-researched
topic. See special Issue on Vector Quantization, IEEE Trans.
Image Process (1996). Other prior art approaches, in
general, use a simple statistical clustering technique for
generating the code vectors in vector quantization. Limita-
tions of these earlier algorithms include long search pro-
cesses and getting trapped in local minima. Yet other
research discloses clustering techniques for efficient code-
book design, including fuzzy clustering in deterministic
annealing associated with the materials sciences.

Multi-resolution codebook design, as known in the art,
provides a database of the centroid vectors or code vectors
of differing resolutions. These centroid vectors as discussed
herein are used to reconstruct the entire set of vectors in a
given cluster within a given optimization criteria. The code-
book is indexed in some ordinary fashion as known in the
art. When a specific code vector is to be sent, the index into
the codebook is sent instead. The receiver indexes into the
same codebook and retrieves the code vector being sent. In
this way the data being sent is compressed.

However, it would be desirable to provide a system that
provides for image data compression and storage and/or
transmission of that compressed data and subsequent high
fidelity reconstruction of the image.

It is an object of the present invention to compress data by
combining vector quantization and adaptive fuzzy leader

10

15

20

25

30

35

40

45

50

55

60

65

2

clustering of the data, subsequent transmission or storage of
that compressed data, followed by reconstruction of the
original data.

It is another object of the present invention to provide a
process for fast high fidelity transmission of images.

SUMMARY OF THE INVENTION

The above objects are satisfied and other limitations of the
prior art are overcome in the present invention. The present
invention includes in combination an Adaptive Fuzzy
Leader Clustering or AFLC for on-line generation of code
vectors, and applying AFLC to quantization of wavelet
transformed sub images. The present invention may also be
referred to with the acronym AFLC-VQ. The selection of the
number of clusters generated is decided by the quantization
level to be applied i.e. whether coarse or fine quantization is
needed. AFLC-VQ is based on an integration of self-
organizing neural networks with fuzzy membership values
of data samples for upgrading the centroid values of the
clusters as the samples are presented thus eliminating most
misclassifications. This technique is also noise tolerant and
avoids many problems associated with earlier vector quan-
tization efforts particularly for large medical images. The
improved performance of this new technique is its capability
to generate high fidelity reconstructed images even at very
low bit rate in the compressed image with acceptable MSE
(mean square error) and PSNR (peak signal to noise ratio).

Vector quantization algorithms provide advantages for
high fidelity transmission of medical images at very low bit
rates in a fast, progressive manner for applications in tele-
medicine and other interactive web based downloading of
large medical images in monochrome and color. In a pre-
ferred embodiment, the addition of an adaptive arithmetic
coder further improves the performance of the application of
the AFL.C-VQ algorithm. An advantage of being able to use
such low bit rate, i.e. a high compression ratio without
introducing significant distortion in the reconstructed image,
is that under medical emergency conditions the compressed
image can be sent to a remote location quickly (since there
are few bits) over the internet for immediate evaluation
while images with better quality can follow in a progressive
manner if desired.

A paper relevant to the present invention, authored by the
present inventor, Sunanda D. Mitra, along with Shuyu Yang
(who is not an inventor of the present invention), entitled
High Fidelity Adaptive Vector Quantization at very low bit
rates for Progressive Transmission of Radiographic Images,
was published in Journal of Electronic Imaging, Jan. 1999,
Vol. 8(1)/1. This paper is hereby incorporated herein by
reference.

For a better understanding of the present invention,
together with other and further objects thereof, reference is
made to the accompanying drawings and detailed descrip-
tion and its scope will be pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of the inventive
Vector Quantizer;

FIG. 2a contains Tables 1(1) of vector quantization for a
visible human image in red;

FIG. 2b contains Tables 1(2) of vector quantization for a
visible human image in green;

FIG. 2¢ contains Tables 1(3) of vector quantization for a
visible human image in blue;

FIG. 3 is Table 2 of vector quantization for a human
cervical image;
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FIGS. 4a and 4b are histogram associated with Table 1
and Table 2;

FIG. 5a and 5b are two Tables 3(a) and 3(b) comparing
AFLC-VQ, JPEG and EZW for different compression rates
(CR), means square error (MSE), and peak signal to noise
ratios )PSNR);

FIGS. 6(a) and 6()) are graphs of algorithm performance;

FIG. 7 has histogram comparisons of cervical spine image
reconstruction; and

FIG. 8 has histogram comparisons of three color human
image reconstruction.

DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 illustrates the general principle of wavelet based
vector quantization for encoding an image. The original
input image 2 is decomposed (wavelet decomposition/
transformation filter) 4 into four levels. Each high resolution
image at each level is then vector quantized by AFLC-VQ 6
to generate a multiresolution codebook 8. As discussed
below, the codebook is indexed and an index file represent-
ing the decomposed/transformed sub-image data is formed.
The indexed codebook is sent and stored at the receiver.
When data is being sent, the actual data being sent is the
index into the codebook for the sub-images. This index data
is entropy encoded 9 for sending via a communications
channel 11 to a receiver. The received index data is entropy
decoded 13 and the transformed sub-images are recon-
structed .15 by looking up the received indexes from the
codebook 8 at the receiver. The image is reconstructed 10
ready for presentation 17.

The filter in items 4 and 10 of FIG. 1, includes a length
of wavelet transformation 4 (and related 10) matrix which
plays an important role on the accuracy of the encoding
scheme. Based on the distribution characteristics of the
wavelet coefficients, appropriate filter lengths for specific
wavelets are chosen prior to encoding.

The wavelet transformation of a signal provides a com-
pact representation of the signal in the space/time frequency
plane. In practice, the finite multiresolution wavelet repre-
sentation of a signal can be expressed as a sum of superpo-
sitions of two properly chosen orthonormal basis functions
known as the wavelets and the scaling functions.

The multiresolution discrete wavelet decomposition of
any arbitrary function f(x) in terms of two properly chosen
sets of orthonormal basis functions {(x) and ¢(x) is
expressed as

& M
fw=3 cbnaa‘%(% —nbo]+

n=—o0

NGk

L
m=1n:

x
[ HEM/ZL/I( m ”bo]
)

—ca

where the scaling coefficient is the inner product

| . @
6t = {0, b1 = 5 [ S0~ b
)

and where (x) and ¢(x)eZ* are known as the mother
wavelets and the scaling functions respectively. It can be
shown that the detail or information lost in representing a
function f(x) in a lower resolution by taking an inner product
of f(x) with the scaling function ¢(x) is the projection of the
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4

original function f(x) in the ¢(x) sub-space. The expansion
coefficients are computed from orthonormality and vanish-
ing moments criteria to ensure exact reconstruction. The
details of multiresolution wavelet reconstruction can be
found in well known references. Such multi-resolution
decomposition can be extended to 2-D signals and used for
image compactness and decorrelation prior to scalar or
vector quantization. In 2-D multi-resolution discrete wavelet
decomposition, the 2-D scaling function ¢(x,y) is assumed to
be separable, ie., O(X,y)=p(X)$(y). If P(x) and Y(y) are
companion wavelets to scaling functions ¢(x) and ¢(y), then
the three basic 2-D wavelets are:

Y1=0CIW(Y), Yo=p()9(y), and P;=tp(x)(y)-

Therefore, 2-D discrete wavelet decomposition at each
level yields horizontal, vertical, and diagonal edge informa-
tion corresponding to the three basic 2-D wavelets. The
multiresolution wavelet decomposition of an image, based
on the above discussion, is a type of sub-band analysis
system, which results in a pyramidal structure consisting of
a low level smooth image and several error images belong-
ing to different resolutions.

Since a coder performance at any level of decomposition
and orientation can be predicted from the statistics of the
sub-image and such pdf (probability distribution function)
has been reported to be approximately represented by a
generalized Gaussian for specific wavelets and filter lengths,
Three classes of wavelets were analyzed and the filter
lengths varied from 6 to 20 coefficients. The goal was to find
the pdf of subimages which would best fit a generalized
Gaussian of the following form for a specific class of
images, namely the Visible Human color images:

P )=y 5P~ By |7 ) 3)

with

where I is the standard Gamma function.

Experimental results indicate that the pdf’s of the wavelet
coefficients of sub-images of typical Visible Human images
are represented by a generalized Gaussian function with the
value of the parameter r around 0.7. However the difference
in variances between the experimental and the theoretical
pdf’s are minimized by choosing appropriate filter lengths
and a specific wavelet family for specific classes of images.

With the use of Daubl12 (a process well known in the art)
for wavelet decomposition, the number of clusters resulted
from AFLC vary more smoothly and show more controlla-
bility of compression ratio.

Preferred embodiments of the present invention are best
understood by describing the major component parts, Vector
Quantization (VC) and Adaptive Fuzzy Leader Clustering
(AFLC) separately.

Vector Quantization:

A vector quantizer Q is a mapping from a vector in
k-dimensional Euclidean space, R¥, into a finite set W
containing M reproduction vectors, referred to as code
vectors or codewords:

Q: RF—»W,

Where W={w,, i=1, 2 . . . M} is the set of reproduction
vectors.

Vector quantization can be described as the process of
grouping similar vectors into the same cluster so that the
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centroid vector of each cluster is able to reconstruct the
entire set of vectors in that cluster with a minimum distortion
dictated by the similarity and optimization criteria
employed. Therefore the centroid vectors or the code vectors
form the codebook that consists of the addresses of all code
vectors thus reducing the file size of the original data set
tremendously while introducing minimal distortion. The
distortion introduced depends on the complexity of the
similarity criterion, optimization criterion, and the level of
quantization used. In most vector quantization techniques,
Euclidean distance measure is used as a similarity measure.
An integrated neural-fuzzy clustering technique is used,
with a modified ART (Adaptive Resonance Theory) type
neural networks that initially clusters the vectors into similar
groups, and then the cluster centroids are updated by an
optimization constraint including fuzzy membership values
of the data samples following the use of the fuzzy C means
(FCM) nonlinear equations. A modification of this algorithm
may be used that includes a new similarity measure enabling
formation of clusters of any shape and a Kohonen type
upgrading rule for the centroids. These modifications allow
better allocation of the vectors to the proper clusters by
introducing an intra-cluster membership function while
upgrading the centroids. It also eliminates some of the
problems with ART-type networks due to normalization of
the sample vectors. Although the achievability of minimum
distortion at a specific bit rate by vector quantization has
been theoretically proven from rate distortion theory almost
half a century ago, practical implementation of VQ for small
sizes and classes of images has been achieved relatively
recently. Many of the earlier algorithms using simple sta-
tistical clustering suffer from a number of problems namely
lack of convergence, getting trapped in local minima, and
inability to handle large data sets. More advanced vector
quantization algorithms have eliminated some of the above
problems. However, vector quantization of large data sets as
encountered in many medical images still remains a chal-
lenging problem.

The present invention provides an adaptive vector quan-
tization technique that is capable of encoding large size as
well as color images with minimum distortion in the
decoded images even at a compression ratio (CR) above
100:1. The success of this new technique depends on an
adaptive clustering technique with efficient optimization
criteria in combination with multiresolution wavelet decom-
position.

For each image class, a suitable vigilance parameter, T,
needs to be selected for a range of clusters that could be
formed to generate multi resolution codebooks for wavelet
decomposed sub images. Once the parameter T is
established, the optimization process involves updating of
the cluster centroids, initially formed by the modified self
organizing neural network architecture, by using the well
known FCM equations.

In non-fuzzy “hard” clustering, the boundaries of different
clusters are such that one pattern is assigned to exactly one
cluster. On the contrary, fuzzy clustering provides partition-
ing resulting from additional information supplied by the
cluster membership values indicating different degrees of
belongingness.

Consider a finite set of elements X={x;, X, . . . , X,,} as
being elements of the p-dimensional Euclidean space RZ.
The problem is to perform a partition of this collection of
elements into ¢ fuzzy sets with respect to a given criterion,
where c is a given number of clusters. Usually, the criterion
iS to optimize an objective function that acts as a perfor-
mance index of clustering. The end result of fuzzy clustering
can be expressed by a partition matrix U such that
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U=[ﬂij]i=1 G,
where p;; is a numerical value in and expresses the degree to
which the element x. belongs to the ith cluster. A widely used
clustering method 1s the fuzzy c-means (FCM) algorithm
developed by Bezdek. The objective function of the FCM
algorithm takes the form of

<2 @
I (i, vie) = ZZ#ZIHXJI —velPm > 1

=1 j=1

where m is called the exponential weight, which influences
the degree of fuzziness of the membership (partition) matrix.
To solve this minimization problem, the objective function
in equation [4] is first differentiated with respect to v, (for
fixed yy, i=1,...,¢,j 1,. .., n) and then to u; (for fixed

v, i=1, . . ., c). After applying the condition ,_,%;=1,
Vij=1,2, . . . n, equation [4] gives
u ©)
Vi = — ! Z(#ij)mxja i=1,2,...,¢c
3 (g
=1
1 T 1m-1 )
yg:%, i=1,2,...,¢j=1,2,...,n

Dby = vy

k=1

The system described by equation (5) and equation (6)
cannot be solved analytically. However, the FCM algorithm
provides an iterative approach to approximating the mini-
mum of the objective function starting from a given position.

Neural networks draw their inspiration from the function
of the brain and model the brain at the level of neurons.
Motivation for using neural models for performing intelli-
gent tasks stems from the fact that humans exhibit remark-
able ability to cope with unexpected situations and to learn
without the help of any teacher. Perhaps this explains why
learning and classification are the central issues of neural
network research. Here, the concepts of two self-organizing
neural networks which perform clustering by different
approaches are presented. The ideas embedded in these
neural networks have been integrated with fuzzy member-
ship concepts to develop the AFLLC and IAFC clustering
algorithms.

Kohonen Clustering Network (KCN), known in the art, is
an unsupervised scheme, which finds the “best” set of
weights for hard clustering in an iterative, sequential man-
ner. The structure of KCN consists of two layers: an input
(fan-out) layer and an output (competitive) layer. Given an
input vector, the neurons in the output layer compete among
themselves and the winner (whose weight vector has the
minimum distance from the input vector) updates its weight
and those of some set of predefined neighbors using equa-
tion (7), below. The process is continued until the weight
vectors “stabilize.” In this method, a learning rate must be
defined which decreases with time in order to force termi-
nation. The update neighborhood that is also reduced with
time must be defined by

wi; (k) + a(k) [x;(k) — wy(k)], for i € N;(k), otherwise,
wii(k) ,

@
w;j(k +1)= {

for all i and j, where N; (k) is the neighborhood set of the
winner node, and (k) is the learning rate.

A competitive learning model does not always learn a
stable code in response to arbitrary input patterns and
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problems arise especially if too many input patterns are
presented to the network or if the input patterns form too
many clusters. The reason is that, as new input patterns
arrive, old patterns are washed away due to the plasticity or
instability of competitive learning model. Grossberg’s
Adaptive Resonance Theory (ART), known in the art,
addresses exactly this plasticity-stability problem and forms
the basis of ART-1, ART-2 and ART-3.

The ART-1 architecture has two layers of neurons called
the comparison layer (F1) and the recognition layer (F2).
The classification decision is indicated by a single neuron
activated in the recognition layer. The neurons in the com-
parison layer respond to input features in the pattern (in
ART-1, inputs are binary valued). The weights between
these two layers are modifiable in both directions according
to two different learning rules. The recognition layer neurons
have inhibitory connections that allow for a competition.
The network architecture can be separated into two parts: the
attention and the orienting systems. The attention system has
two layers of neurons (comparison and recognition) with
feed-forward and feedback characteristics. This system
determines whether the input pattern matches one of the
prototypes stored. If a match occurs, resonance is estab-
lished. The orienting subsystem is responsible for sensing
mismatch between the bottom-up and top-down patterns on
the recognition layer. The recognition layer response to an
input vector is compared to the original input vector through
a mechanism termed vigilance. Vigilance provides a mea-
sure of the distance between the input vector and the cluster
center corresponding to the activated neuron in the recog-
nition layer. When vigilance falls bellow a preset threshold,
a new category must be created and the input vector must be
stored into that category. That is, a previously unallocated
neuron within the recognition layer is allocated to a new
cluster category associated with the new input pattern.

The recognition layer follows the winner-take-all para-
digm (also known as MAXNET). If the input vector passes
the vigilance, the winning neuron (the one most like the
input vector) is trained such that its associated cluster center
in feature space is moved toward the input vector.

Neuro-Fuzzy algorithms retain the basic properties and
architectures of neural networks and simply “fuzzify” some
of their elements. In these classes of networks, a crisp
neuron can become fuzzy and the response of the neuron to
its activation layer signal can be of a fuzzy relation type
rather than a continuous or crisp function type. Examples of
this approach can be found where domain knowledge
becomes formalized in terms of fuzzy sets and afterward can
be applied to enhance the learning algorithms of the neural
networks or augment their interpretation capabilities. Since
the neural architecture is conserved, changes are made in the
weights connecting the lower layer to the upper layer
neurons.

AFLC is a hybrid neuro-fuzzy system that can be used to
learn cluster structure embedded in complex data sets, in a
self-organizing, stable manner. A choice of the Euclidean
metric is made in developing the AFLC system while
keeping a simple control structure adapted from ART-1. The
AFLC algorithm initially starts with the number of clusters
set to zero. The system is initialized with the input of the first
feature vector X.. As is to leader clustering, this first input is
said to be the prototype of the first cluster. The next
normalized input feature vector is then applied to the
bottom-up weights in a simple competitive learning scheme,
or dot product. The node that receives the largest input
activation Y, is chosen as the prototype vector. As in the
original ART-1:
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P (8)
Y :maxZ Xpbg, 1< j<N
Ry

After a node is selected as a winner, the comparison
between the cluster prototype associated with Y, (the cen-
troid v;) and the current input vector X; is performed as
follows:

[1X; =wvill

e ©

1N x
ﬁ‘_g‘l” =il

where N; is the number of samples in class i. If the ratio R
is less than a user-specified threshold T, then the input
belongs to the cluster originally activated by the simple
competition. The choice of the value of T is determined
empirically after a number of initial runs.

When the input is classified as belonging to an existing
cluster, it is necessary to update the prototype (centroid) and
the bottom-up weights associated with that cluster. First, the
degree of membership, g, of X; to the winning cluster, v,,
is calculated using equation. If the fuzzy membership value
of the input pattern is less than a threshold o, AFLC resets
the winning node and activates a procedure to find a new
winning node whose centroid is closest to the input pattern.
If the fuzzy membership value of the input pattern is greater
than o, the new cluster centroid for the winning node Yi is
updated by equation where parameter n changes to N; (the
number of samples in cluster i). The AFLC model was later
modified to develop the IAFC model to eliminate some of
the inherent problems in the ART-type algorithms. A brief
description of the IAFC model is provided below.

An IAFC model, known in the art, introduces a similarity
measure for the vigilance criterion incorporating a fuzzy
membership value to Euclidean distance as follows:

R=e™|X-v,| (10)
where u; is the fuzzy membership value of the input data
pattern in the ith winning cluster, and y is a multiplicative
factor that controls the shape of the clusters. Such an
incorporation considers not only the Euclidean distance
between the input pattern: and the centroid of a winner but
also the relative proximity of the input pattern to the
currently existing cluster centroids as the degree of similar-
ity. This similarity measure can cause the cluster centroids to
drift around preventing weights from converging quickly.
The incorporation of an intra-cluster membership value and
a function of the number of iterations into a Kohonen-type
learning rule eliminate this problem.

IAFC finds a winning cluster by performing the dot
product (similar to ART and AFLC) between the normalized
input vector I and the bottom-up weights b,. The neuron that
receives the largest input activation Y, wins the competition.
After selecting a winning cluster, the IAFC algorithm per-
forms the vigilance test according to the vigilance criterion
between the unnormalized input vector X and the winning
node. If the winning cluster satisfies the vigilance test (R<t),
the centroid is updated using the following equation:

Vi("EW)=(I_A’fuzzy)vi(()ld)"'}\’fuzzyx 1y
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where,

1 ) )M'z (12)

Afuzzy = m”( Vi i

and

”(X; Vgold)’ T) _ (13)

1-2(1x - vﬁ"’d’n/r)z, when 0 <||X — V|| <7/2
21 -1Ix - vE"’d’n/r)z, when 7/2 < [|X =% < ¢

0, when ||X =) = ¢

The m-function decides the intra-cluster membership value
of the input data pattern in the ith-winning cluster, where 1
is the number of iterations and k is a given constant.

The IAFC algorithm initially starts with the number of
clusters set to zero. When the first input pattern is presented,
it becomes the first cluster centroid. For the next input
pattern, the membership value will obviously be one since
only one cluster is present. In this case, the vigilance
criterion used is just |[X-v/<t, as the fuzzy membership
value has no physical meaning. If it satisfies the vigilance
test, the centroid is updated by the statistical average
between two points. After more than one cluster are formed,
the IAFC algorithm uses the fuzzy membership value for the
vigilance test and the intra-cluster membership value for
updating the centroid of a winning cluster. While determin-
ing a winning cluster, the winner is decided by the direction
between the input data and the centroid of clusters. This
procedure can cause misclassifications because a cluster for
which the centroid has the smallest difference of angle wins
the competition even though it is located farther from the
input data than other cluster centroids. To avoid
misclassifications, the IAFC algorithm calculates the mem-
bership value after selecting the winning cluster. If the fuzzy
membership value is less than a threshold o, decided by the
user, the IAFC algorithm activates the procedure to find the
cluster that is closest to the input pattern. The closest cluster
becomes the new winner.

Suitable criteria, also called performance criteria, are
needed to rigorously evaluate the performance of a com-
pression scheme. In case of images, the search for simple
and suitable criteria is hindered by the fact that the results
obtained by statistical performance criteria may not agree
with the subjective evaluation of the human eye. Since the
objective is data compression, the compression ratio at
optimal distortion is obviously an important performance
measure. The reconstructed image quality can be evaluated
using the mean-squared error (MSE), the normalized mean-
squared error (NMSE) and peak signal-to-noise ratio
(PSNR) as error metrics. These error metrics do not always
correlate well with perceived image quality, although they
provide statistical measures of relative quality. Denoting the
original NxN image gray level matrix by f and the corre-
sponding reconstructed image matrix by f, MSE and NMSE
are given by:

1 NoiN-L (14)

MSE = - IfG, j)— jT(l', J.)]z’ and
i=0 j=0
&S & ;o e w12 (15)
S =L
i=0  j=0 max
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The related measure of PSNR (in dB) is computed using

(16)

\/_

-1
PSNR =10 logy, VISE
J

The bit per pixel (bpp) value and compression ratio (CR) are
calculated as follows.

Number of bits required to represent the image a7n

bpp =

5

Number of pixels in the image

and

Total Number of bits of original image (18)

~ Total Number of bits of compressed image

bpp of original image

= bpp of compressed image

Experimental Examples:

The wavelet transform of an image decomposes the image
into different subimages containing different information.
Subimages in higher levels of decomposition contain more
information while lower level subimages contain more detail
of the image. Experimental results demonstrate that, when
an image is decomposed into 4 levels, subimages on the 1%
level and 2 level can be selectively discarded or coarsely
quantized without severely deteriorating the visual effect of
the reconstructed image.

Codebook size resulting from AFLC-VQ depends mainly
on the user-specified vigilance test parameter T (tao, the
symbol and the word are used interchangeably herein),
which has a direct control of the number of clusters (C)
resulting from the algorithm. FIG. 2 in Tables 1(1), 1(2), and
1(3) give the T-C results derived from a 2048x1024 Visible
Human Image a_,,,1480 and FIG. 3, Table 2 show the T-C
results from a a typical 512x512 image for the Cervical
Spine from original graphical Visible Human images.

As can be seen from the Tables of FIGS. 2 and 3, lower
resolution subimages can be quantized in a smoother con-
tinuous manner than the higher level subimages. For low
compression ratio, both the lower level and higher level
subimages are quantized finely by specifying a small value
of T s0 as to preserve as much image information as possible.
On the other hand, for high compression ratio, high-
resolution subimages can be selectively discarded or roughly
quantized by providing a large T value combining together
with an appropriately quantized lower resolution subimages.
Graphs showing the tao-C of the tables in FIG. 2 and FIG.
3 are shown in FIG. 3b and 3c.

Results according to the inventive compression scheme
are presented in FIG. 4 in Tables 3(@) and 3(b). These results
show that AFL.C-VQ compressed and reconstructed images
show better MSE and PSNR than JPEG for the highest
compression ratio used. It is noteworthy, however, that the
compression ratio computed for the AFLC algorithm does
not include entropy coding of the code book at this stage.
When AFLC-VQ results are compared with the results of
EZW without entropy coding, the performance of AFLC-
VQ is much better than EZW in terms of MSE (mean square
error) and PSNR(peak signal to noise ratio). An adaptive
arithmetic coder for the multiresolution codebook generated
by AFLC-VQ is currently under development. The addition
of the entropy coder to the current compression scheme is
expected to result in better performance of AFLC-VQ over
JPEG for all compression ratios. FIGS. 5(a) and 5(b) show
graphical representations of the performance for all the
algorithms used. Actual examples of cervical spine image
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reconstructed by AFLC-VQ are visually superior over the
ones by JPEG, and EZW with and without entropy coding at
compression ratios around 100:1. The degradation in visual
appearance of the images reconstructed by JPEG and EZW
does not correlate with the statistical performance criteria
such as MSE and PSNR as documented in other current
literature. AFLC-VQ out-performs JPEG and EZW whose
reconstructed images show deterioration dominated by the
blocking artifact. FIG. 6 (a)—~() shows the histograms of the
above reconstructed images. It can be seen that compared
with EZW and JPEG, AFLC-VQ reconstructed images pre-
serve a much better shape of histogram of the image than
those reconstructed from EZW and JPEG. Histograms of
three color planes (R, G, B) are shown in FIGS. 7 (a)—(%).
The high fidelity to the original image histogram by AFLC-
VQ reconstruction in all color planes gives a sharp contrast
to the much-deteriorated histograms from both EZW and
JPEG reconstructions.

Application of fuzzy type clustering in nonconvex opti-
mization problem in the framework of statistical mechanics
has been addressed by maximizing the entropy at a given
variance. The present invention provides for applying fuzzy
clustering to codebook design leading to an efficient global
optimum. The use or neuro-fuzzy algorithms for efficient
vector quantization have led to high fidelity reconstruction
of medical images even at very low bit rates.

Although the invention has been described with respect to
various embodiments, it should be realized this invention is
also capable of a wide variety of further and other embodi-
ments within the spirit and scope of the appended claims.

What is claimed is:

1. A method for sending an image over a communications
channel between and sender and a receiver comprising the
steps of:

decomposing said image into sub-image data by multi-

resolution wavelet decomposition/transformation,
vector quantizing said sub-image data,

vector quantization processing said vector quantized data

with an adaptive fuzzy leader clustering algorithm,
forming an indexed multi-resolution codebook and stor-
ing said codebook at both the sender and the receiver,
sending said processed and quantized sub-image data as
an index file of said multi-resolution codebook,
receiving said index file and retrieving said processed and
quantized sub-image data from said multi-resolution
codebook at the receiver, and

reconstructing said image data by inverse wavelet

decomposition/transformation, and

presenting said reconstructed image.

2. The method as defined in claim 1 further comprising the
steps of:

forming the indexed multi-resolution codebook at the

sender,

sending said indexed codebook to said receiver, and

storing said indexed codebook at said receiver.

3. The method as defined in claim 1 further comprising the
steps of entropy encoding of the index file being sent and
entropy decoding of the index file being received.

4. The method as defined in claim 1 wherein the step of
vector quantizing comprises the steps of:

generating vectors from said wavelet transformed sub-

image data,

grouping similar vectors, and

forming a centroid vector of said groupings of similar

vectors.
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5. The method as defined in claim 4 further comprising the
steps of: selecting a vigilance parameter T, said vigilance
parameter T determined by the ratio R,

using R to group said vectors, where N is the number of

samples in class i, and X; is the current input vector, and
v, is the winning centroid vector, and wherein

Re [1X; =wvill

! % [I1X II
— =i
Nig=1 '

6. The method as defined in claim 1 wherein said step of
decomposing by multiresolution wavelet transforms
includes the step of decomposing said image into a plurality
of levels, wherein each level has a different resolution of said
image, and said step of reconstructing said image includes
reconstruction of said plurality of levels.

7. The method as defined in claim 1 wherein the step of
decomposing comprises the steps of: providing a filter
function and choosing filtertaps.

8. The method as defined in claim 7 wherein said step of
proving a filter functions comprises of the step of selecting
an optimum filter length for the wavelet transformation for
optimum representation of the image data.

9. A system for sending an image from a sender to a
receiver over a communications channel comprising:

means for decomposing said image into sub-image data

by multiresolution wavelet decomposition/
transformation,

a vector quantizer operating on said sub-image data,

means for processing said vector quantized data with an

adaptive fuzzy leader clustering algorithm,

an indexed multi-resolution codebook stored at both the

sender and the receiver,

means for sending said processed and quantized sub-

image data as an index file of said multi-resolution
codebook,

means for receiving said index file,

means for retrieving said processed and quantized sub-

image data from said multi-resolution codebook at the
receiver, and

means for reconstructing said image data by inverse

wavelet decomposition/transformation, and

means for presenting said reconstructed image.

10. The system as defined in claim 9 further comprising:

means for forming the indexed multi-resolution codebook

at the sender,

means for sending said indexed multi-resolution code-

book to said receiver, and

means for storing said indexed multi-resolution

codebook at said receiver.

11. The system as defined in claim 9 further comprising
means for entropy encoding of the index being sent and
means for entropy decoding of the index being received.

12. The system as defined in claim 9 wherein said means
for vector quantizing comprises:

means for generating vectors from said wavelet trans-

formed sub-image data,

means for grouping similar vectors, and

means for forming a centroid vector of said groupings of

similar vectors.

13. The system as defined in claim 12 further comprising:
means for selecting a vigilance parameter T, said vigilance
parameter T determined by the ratio R,
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means for using R to group said vectors, where N is the
number of samples in class 1, and X is the current input
vector, and v is the winning centroid vector, wherein

Re [1X; = will

! % [I1X II
— =i
Nig=1 '

14. The system as defined in claim 9 wherein said means
for decomposing by multiresolution wavelet transforms
includes means for decomposing said image into a plurality
of levels, wherein each level has a different resolution, and
said means for reconstructing said image includes means for
reconstruction of said plurality of levels.

15. The system as defined in claim 9 further comprising
means for filtering and means for choosing the filtertaps for
optimal wavelet decomposition/transformation.

16. The system as defined in claim 15 wherein said means
for choosing comprises means for selecting an optimal filter
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length for the wavelet transformation for optimal represen-
tation of the image data.

17. A method for sending an image over a communica-
tions channel between and sender and a receiver comprising
the steps of:

decomposing said image into sub-image data by multi-
resolution wavelet decomposition/transformation,

vector quantizing said sub-image data,

vector quantization processing said vector quantized data
with an adaptive fuzzy leader clustering algorithm,

sending said processed and quantized sub-image data,

receiving said processed and quantized sub-image data at
the receiver, and

reconstructing said image data by inverse wavelet
decomposition/transformation, and

presenting said reconstructed image.
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