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(7) ABSTRACT

Aplurality of image chips (202) (over 100), each of the chips
containing the same, known target of interest, such as, for
example an M109 tank are presented to the system for
training. Each image chip of the known target is slightly
different than the next, showing the known target at different
aspect angles and rotation with respect to the moving
platform acquiring the image chip.

The system extract multiple features of the known target
from the plurality of image chips (202) presented for storage
and analysis, or training. These features distinguish a known
target of interest from the nearest similar target to the M109
tank, for example a Caterpillar D7 bulldozer. These features
are stored for use during unknown target identification.
When an unknown target chip is presented, the recognition
algorithm relies on the features stored during training to
attempt to identify the target.

The tools used for extracting features of the known target of
interest as well as the unknown target presented for identi-
fication are the same and include the Haar Transform (404),
and entropy measurements (410) generating coefficient loca-
tions. Using the Karhunen-Loeve (KL) transform 406,
eigenvectors are computed. A Gaussian mixture model
(GMM) (507) is used to compare the extracted coefficients
and eigenfeatures from the known target chips with that of
the unknown target chips. Thus the system is trained initially
by presenting to it known target chips for classification.
Subsequently, the system uses the training in the form of
stored eigenfeatures and entropy coefficients fused with
multiscale features to identify unknown targets.

24 Claims, 6 Drawing Sheets
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FUSION OF SHAPE AND MULTISCALE
FEATURES FOR UNKNOWN TARGET
REJECTION

BACKGROUND OF THE INVENTION

1. Field of Invention

This invention is in the field of automatic target recogni-
tion applied to a radar image.

2. Description of the Related Art

An important function of a radar system, whether a Real
Beam type, Synthetic Aperture (SAR) or Interferometric
SAR is to detect a target as well as identify it. Radar target
detection and identification have been proven necessary in
military surveillance, reconnaissance, and combat missions.
The detection and identification of targets provide real-time
assessment of the number and the locations of targets of
interest.

One method of target detection and identification is to
process the image acquired by the radar using, for example,
Synthetic Aperture Radar (SAR) technology. By processing
a SAR generated image, the features of a target can be
extracted and matched to a database for identification.

The general principle behind SAR is to obtain high
resolution images by coherently combining the amplitude
and phase information of separate radar returns from a
plurality of sequentially transmitted pulses from a relatively
small antenna on a moving platform. The returns from the
plurality of pulses transmitted during a SAR image, when
coherently combined and processed, result in image quality
comparable to a longer antenna, corresponding approxi-
mately to the synthetic “length” traveled by the antenna
during the acquisition of the image.

High resolution SAR maps are obtained by coherently
combining return signals reflected from transmitted pulses in
the cross range direction from radar platform movement.
However, formation of focused SAR images or maps
requires accurate information on platform position and
velocity to shift and focus the received radar returns over the
duration of the image acquisition time, the array length, so
as to have a useful, phase adjusted combination of pulse
returns from multiple pulses transmitted at different times
from different radar positions. The process of aligning pulses
in time and space for coherent integration is referred to as
motion compensation, and is usually performed with the raw
radar data, at the early stage of the image formation process.

The plurality of returns forming the image generated by
the transmitted pulses along a known path of the platform
make up an array length. During the array length, amplitude
as well as phase information (in phase (I) and quadrature(Q)
components) returned from reception of returns from each
transmitted pulse, for each of many range bins, is preserved.
The SAR image is formed and focused from the coherent
combination of the amplitude and phase of return(s) within
each range bin, motion compensated (phase adjusted) for
spatial displacement of the moving platform during the
acquisition of the returns for the duration of the array length.

One aspect of achieving coherent integration of pulses
into one SAR image is the need for some form of inertial
navigation/ground positioning satellite system (INS/GPS) to
indicate the spatial and time coordinates of each transmitted
and received (or reflected) pulse. These time and space
coordinates of radar returns need to be known to a relatively
high accuracy, typically in fractions of a wavelength, to
arrive at a clear, focused, un-smeared image. Sometimes the
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alignment of pulses using the INS/CPS is imperfect, espe-
cially towards the edge of the image, introducing “snow” or
a grainy character into the SAR image, making it difficult to
discern target outline from its background.

It is this grainy character that tends to obfuscate a SAR
image thus requiring robust algorithms to extract a target
from the SAR image as well as identifying it. The radar
image varies from radar to radar depending on the accuracy
of the particular INS/CPS, the position of the target within
the imaging area, instantaneous operating frequency, as well
as glint/fading and target fluctuations. Thus, unlike photo-
graphic images, target detection and identification requires a
robust approach capable of compensating for characteristics
specific to a particular radar system, its operation and type
of target being imaged and identified.

Attempts have been made towards target identification
extracted from radar images. For example, U.S. Pat. No.
6,295,373 to Abhijit Mahalanobis et al, incorporated herein
in its entirety, including all references, describes a method
and apparatus for detecting a pattern within an image.
Similarly, U.S. Pat. No. 5,947,413, also incorporated herein
in its entirety, including references, uses correlation filters
for target re-acquisition in trackers.

Another example, J. Wissinger, et. al., in MSTAR’s Exten-
sible Search Fngine and Model-Based Inferencing Toolkit,
SPIE 13th Annual International Symposium on AeroSene,
Algorithms for SAR Imagery VI incorporated herein in its
entirety, including all references, rely on models to imple-
ment an algorithm for target identification. During
operation, all targets under consideration are forced into one
of the known target classes. There is no mechanism to adapt
for an unknown target. Thus a high false alarm rate is
encountered.

Similarly, J. De Bonet, P. Viola, and J. Fisher, in Flexible
Histograms: A Multiresolution Target Discrimination Model
SPIE Proceedings, 1998, rely only on multiscale features of
targets. Again, this yields a relatively high false alarm rate.

Because of above limitations of the prior art, high false
alarm rates are encountered, limiting the utility of an imag-
ing and target detection radar.

SUMMARY OF THE INVENTION

The present invention avoids the limitations of the prior
art by presenting for storage and analysis a plurality of
image chips 202 (over 100), each of the chips containing the
same, known target of interest, such as, for example an
M109 tank. Each image chip of the known target is slightly
different than the next, showing the known target at different
aspect angles and rotation with respect to the moving
platform acquiring the image chip.

The system extract multiple features of the known target
from the plurality of image chips 202 presented for storage
and analysis, or training. These features distinguish a known
target of interest from the nearest similar target to the M109
tank, for example a Caterpillar D7 bulldozer. These features
are stored for use during unknown target identification.
When an unknown target chip is presented, the recognition
algorithm relies on the features stored during training to
attempt to identify the target.

The tools used for extracting features of the known target
of interest as well as the unknown target presented for
identification are the same and include the Haar Transform
404, and entropy measurements 410 generating coefficient
locations. Using the Karhunen-Loeve (KL) transform 406,
eigenvectors are computed. A Gaussian mixture model
(GMM) 507 is used to compare the extracted coefficients
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and eigen-features from the known target chips with that of
the unknown target chips. Thus the system is trained initially
by presenting to it known target chips for classification.
Subsequently, the system uses the training in the form of
stored eigenfeatures and entropy coefficients fused with
multiscale features to identify unknown targets.

BRIEF DESCRIPTION OF THE DRAWINGS

In the Drawing:

FIG. 1 is a sample configuration of the prior art showing
the acquisition of a radar image containing a target using
SAR methods;

FIG. 2 is an exemplary configuration of this invention
where two complementary analyses are performed to arrive
at a target classification;

FIG. 3 shows the pre-processing required for applying the
two complementary analyses to an image chip;

FIG. 4 is an exemplary implementation of extracting
entropy and eigenvector computations for an incoming
image chip having known characteristics;

FIG. 5 is an exemplary implementation of the use of
eigenvectors and other coefficients to train a Gaussian Mix-
ture Model to identify an unknown target;

FIG. 6 is an exemplary implementation of preprocessing
to be used with one of the complementary analyses requiring
high quality segmentation.

DETAILED DESCRIPTION

The present invention describes an apparatus and method
of target identification problem using two complementary
recognition algorithms operating in parallel with subsequent
fusion of results to produce a final classification, as shown
in FIG. 2. The first recognition algorithm is based on a
multiscale analysis, while the second uses shape statistics
analysis. They complement each other well because the
multiscale approach does not rely on segmentation of the
target from the background, but is not invariant to scale,
translation, or rotation. In contrast, the shape statistics
approach is completely invariant to scale, translation, and
rotation. However, shape statistics analysis relies on good
quality segmentation of the target from the background.

Another aspect of the invention is that it can adapt to
specific characteristics of a target,that is it can be “trained”
from the examination of radar returns acquired for a par-
ticular target (image chips) acquired at different times with
separate radar systems. These specific characteristics for the
particular target are expressed as eigenvectors that are
considered and updated every time a particular target is
presented.

FIG. 1, the prior art, shows a simplified, typical geometric
relationship between a moving platform carrying a radar
transmitter/receiver using Synthetic Aperture (SAR) meth-
ods and target area 109 to be imaged by said radar
transmitter/receiver. The moving platform is initially at
position 101, travels with velocity V in the direction 107.
The moving platform moves from position 101 to position
103, and then to position 105 along a path in direction 107.
Imaging pulses are transmitted and received at each position
101, position 103 and position 105. At position 103 for
example, the target area 109 to be imaged falls within range
bins 117, 119, and 121. In azimuth, target arca 109 falls
within azimuth positions 111, 113 and 115. The range
bin/azimuth positions at this position 103 are most favorable
as they most closely correspond to the square nature of target
area 109 and subdivisions thereof. The simple example of a
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3 by 3 matrix of range bins/azimuth positions is illustrative
of the raw data used by the present invention for target
acquisition and identification using SAR methods. Typically,
a target is contained within a plurality of range bins/azimuth
positions, where the plurality of range bins/azimuth posi-
tions are part of a larger image rendered by the radar system.

In FIG. 2, target chip 202 has been extracted from the
radar image generated with a SAR system shown in FIG. 1.
The target chip contains the target of interest. Radar pre-
processing extracts only the target itself and its shadow to be
present within the image chip. The target is rotated to the
horizon line given the pose estimate. During field operation
the pose estimate comes from the target detection function
of the radar system. Radar pre-processing is detailed in FIG.
3.

Multiscale analysis 204 is performed on the target chip to
generate a first classification. Shape statistics analysis 206 is
also performed on the same target chip 202 to generate a
second classification. The first and second classification, the
results from multiscale analysis 204 and shape statistics
analysis 206 are combined in fusion 208, generating a target
classification from the results derived from both methods of
analysis.

Multiscale analysis 204

The multiscale analysis 204 uses a statistical pre-
processor performing the following steps, using the detec-
tion angle supplied by the radar, and shown in FIG. 3:

a) Compute the mean and standard deviation 301 for the
image chip containing the target using the amplitudes of
each image element (pixel or range/azimuth bin or
increment) available from the radar system for the image
chip.

b) Set a first threshold two standard deviations below the
mean 303 of the image chip.

¢) Reject all image elements below said first threshold to
create a first thresholded image chip, i.e. comparing each
image element in the image chip to a value two standard
deviations below the mean, the first threshold, and setting to
zero all image elements below said first threshold.

d) Compute a second mean and second standard deviation
305 for said first thresholded chip.

e) Set a second threshold 307, said second threshold
one-half of a second standard deviation above the second
mean.

) Reject all image elements below said second threshold
to generate a second thresholded chip.

) Subtract the amplitude of the minimum non-zero value
from each column in the second thresholded chip 309. That
is, determining the minimum non-zero value in each column
of the second thresholded chip, and subtracting its amplitude
from the amplitudes of all non-zero values within the
particular column of the second thresholded chip to generate
a third image chip.

h) Perform a binarization 311 of the third image chip
using morphological filtering of holes and single pixel noise,
further eliminating extraneous information, thus obtaining a
fourth image chip.

i) Retain amplitude (gray level) values from the fourth
image chip under the binary region determined in (h) above.

Perform a Haar transform decomposition 313 applied to
the fourth image chip. The multiresolution representation
defines a spatial frequency response at several different
scales. Three scales are used in the best mode of this
invention. This facilitates efficient computation because of
the down sampling occurring at every level. The Haar
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transform is further detailed by Haar, A. in Zur Theorie der
Orthogonalen Funktionensysteme. Math. Ann. 69, 331-371,
1910.

Adaptive function—Training and testing

Another aspect of the present invention is its adaptive
capability to learn from a plurality of images of the same
subject, such as for example an M109 tank, presented to it
for training.

As shown in FIG. 4, after statistical preprocessing of the
SAR image, extracting the image chip containing the target,
and considering the detection angle of the target 402, the
target information is passed to the Haar transform 404.
Following the Haar transform results, the present method
splits into two distinct phases: training and testing. The
training phase is also split into two phases as shown in FIG.
4 and FIG. 5. During the training phase, shown in FIG. 4, a
set of image chips, typically 180 or more, depicting a target
of interest, such as an M109 tank, acquired under different
conditions (such as different target orientations), with dif-
ferent SAR radars is used. This collection of image chips of
the same target rendered by radar under differing circum-
stances provides a cross section of “typical” signatures for
that particular target.

Apart of the training phase is the feature selection which
utilizes information theoretic measures for optimum fea-
tures. Entropy measure 410 relay the level of uncertainty
about a variable. Thus, another step is to calculate the
entropy of the coefficients in the wavelet decomposition
over all training samples. Select the coefficient positions
with the lowest entropy, making sure to select some coef-
ficients from each subband including the low frequency
subbands on level one and two. Furthermore, compute the
eigenvectors 408 from the frequency subbands on each
level, after summing up the energy of the corresponding
eigenvalues until it reaches 99 of the total. These are the
significant eigenvalues. Next, store all of the corresponding
significant eigenvectors for use during the training of the
Gaussian Mixture Model (GMM)507 in FIG. 5 as well as
during the testing phase.

After finding the coefficient locations and significant
eigenvectors, proceed to the second half of the training
phase in FIG. 5. Process all of the training image chips
showing a particular target, such as, for example, an M 109
tank, again extracting features (coefficients) 503 for each
one. The entropy features come from the coefficient loca-
tions selected earlier by 410. Compute eigenfeatures 505
multiplies the selected eigenvectors by the appropriate sub-
band from the individual training example. This process
produces one value for each eigenvector. It is similar to a
procedure known as eigenfaces. Typically 45 entropy fea-
tures and 71 eigenfeatures are generated for each training
example, such as the M109 tank.

The Gaussian Mixture Model 507 trains itself using these
116 features from the 120 examples used for example in the
M109 tank training set, typical for this type of target. This
results in a prototypical feature, which is the mean of the
m109 tank cluster. Compute class statistics 509 computes
the standard deviation of the cluster for use later as a
rejection threshold.

The following steps are performed during testing, that is
identifying a known target within a radar image, such as for
example an image chip of the M109 tank:

a) Preprocess the image chip,

b) Compute the Haar transform,

¢) extract the entropy features from the stored coefficient
locations,
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d) compute the eigenfeatures,

¢) append the entropy features and eigenfeatures, compute
their distance from the standard, known, prototype image of
an M109 tank, using the GMM and threshold the result.

f) If the distance is within a distance threshold, classify
the input as an M109 tank. (An input with a distance greater
than the threshold is rejected as not an M109 tank.)

The threshold at the output of the GMM dictates the
operating point on the Receiver Operator Curve.

Shape Statistics Analysis

The components of the shape statistics analysis are shown
in FIG. 5. High quality segmentation is important for robust
shape features, thus, use the preprocessing system shown in
FIG. 6.

Noise compensation 602 uses a multiscale approach
across six scales and six orientations. The expected value of
the energy due to noise is estimated from the smallest scale
filter. A noise threshold is then set three standard deviations
above the mean. Next, anisotropic diffusion 604 boosts the
signal and isolates it from the background. This technique
uses diffusion to spread across low frequency content and
inhibition to create bounds at the high frequency content
(contrast/edges). Finally, incremental binary thresholding
followed by size filtering and directional edge linking com-
plete the extraction of any distinct areas within the image
chip. The preprocessing is able to extract both the target,
using target signal extraction 606 and the shadow of the
target, using target shadow extraction 608.

Extract shape signatures of objects using a probability
distribution sampled from a shape function measuring geo-
metric properties of the object under consideration. This
method is for extracting the overall shape of a given class of
objects. The shape function used is the Euclidian distance
measure between pairs of randomly selected points around
the object’s perimeter. This shape function yields invariance
under rigid motions and mirror imaging. Invariance to
scaling is added by normalization of shape distributions
before comparing them and/or by factoring out scale during
the comparison. Random sampling of the perimeter also
ensures that the shape distributions are insensitive to small
perturbations. This property essentially provides insensitiv-
ity to noise, blur, cracks and dust. The distance measures are
then placed into a histogram and the object’s shape signature
is represented by the vertices of the histogram (distance vs.
probability of that distance for the object).

The histograms comprise the shape feature vector which
is then classified with a model based on Adaptive Resonance
Theory (ART). Histograms were constructed for both the
target’s signal and shadow and then appended prior to the
ART-based classifier. ART must undergo training with, for
example the M109 tank radar data prior to its use in the
testing operation.

Fusion 208

Following both the multiscale and shape statistics
algorithm, fusion is used to improve performance. Fusion is
at the feature level by appending the two sets of features to
create a feature vector of, for example, 148 values. The
GMM was is used to classify the test data using this
conglomerate 148 value feature vector.

Therefore, the learning/testing sequence is as follows:

1) Present for storage and analysis a plurality of image
chips (over 100) each of the containing the same, known
target of interest, such as, for example the M109 tank. Each
image chip is slightly different than the next, showing the
known target at different aspect angles and rotation with
respect to the moving platform acquiring the image chip.
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2) Extract from the plurality of image chips presented for
training multiple features of a known target of interest that
distinguish it from the nearest similar target, for example a
bulldozer. Store these features for use during unknown target
identification.

3) When an unknown target chip is presented, the recog-
nition algorithm relies on the features stored in 2 to attempt
to identify the target.

The tools used for extracting features of the known target
of interest as well as the unknown target presented for
identification are the same and include entropy measure-
ments 410 generating coefficient locations, and using the
Karhunen-Loeve (KL) transform, computing eigenvectors.
The KL transform is well known, and is described, for
example, in Applications of Digital Signal Processing, by
Oppenheim A. V., 1978, Prentice Hall, Inc. A Gaussian
mixture model (GMM) is used to compare the extracted
coefficients and eigenfeatures from the known target chips
with that of the unknown target chips. Thus the system is
trained initially by presenting to it known target chips for
classification. Subsequently, the system uses the training in
the form of stored eigenfeatures and entropy coefficients to
identify unknown targets.

All references cited in this document are incorporated
herein by reference in their entirety, including all references
contained therein.

Although presented in exemplary fashion employing spe-
cific embodiments, the disclosed structures are not intended
to be so limited. For example, the concept described herein
is applicable to radar as well as sonar imaging and seismic
processing.

Those skilled in the art will also appreciate that numerous
changes and modifications could be made to the embodi-
ment described herein without departing in any way from
the invention. For example, other pairs of analyses other
than the multiscale and shape statistics can be used to reach
target classification. Furthermore, a plurality of two or more
analyses can be performed, each analysis having its
strengths complemented by the other(s). These changes and
modifications and all obvious variations of the disclosed
embodiment are intended to be embraced by the claims to
the limits set by law.

What is claimed is:

1. A method for automatic target recognition, said target
acquired as part of a radar image, said radar image formed
from digitized returns, said digitized returns processed into
pixels forming said radar image, each of said pixels having
an amplitude, comprising the steps of:

storing said pixels forming said radar image in a memory,

pre-processing said pixels forming said radar image to
extract a target chip containing said target from said
image;
applying a first recognition algorithm to said target chip to
identify a first classification of said target extracted
from said image;
applying a second recognition algorithm to said target
chip to identify a second classification of said target
extracted from said image, said second algorithm
complementary to said first algorithm;
fusing said first classification and said second classifica-
tion to generate a target classification identifying said
target.
2. A method as described in claim 1 wherein said pre-
processing of said image also extracts a shadow cast by said
target.
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3. A method as described in claim 2 wherein said first
algorithm performs a multiscale analysis.

4. A method as described in claim 3 wherein said multi-
scale analysis is not dependent on segmentation.

5. A method as described in claim 4 wherein said multi-
scale analysis is not invariant to target scale, target transla-
tion and target rotation.

6. A method as described in claim 2 wherein said second
algorithm performs a shape statistics analysis.

7. A method as described in claim 6 wherein said said
shape statistics analysis is invariant to scale.

8. A method as described in claim 6 wherein said shape
statistics analysis is invariant to target translation, rotation
and scaling.

9. A method as described in claim 3 wherein said pre-
processing comprises the steps of:

computing a mean and a standard deviation of said target

chip containing the target using the amplitudes of each
pixel part of said target chip;
computing a first threshold equal to said two standard
deviations below said mean of said target chip;

setting to zero all pixels within said target chip having
said amplitude below said first threshold to create a first
thresholded target chip;

computing a second mean and a second standard devia-

tion using amplitude of pixels part of said first thresh-
olded target chip;

computing a second threshold, said second threshold

one-half of said second standard deviation above said
second mean;

setting to zero all pixels within said first thresholded target
chip below said second threshold to generate a second
thresholded chip;

subtracting an amplitude of the minimum non-zero value

from each column of said second thresholded chip to
generate a third thresholded target chip;
performing a binarization of said third thresholded target
chip using morphological filtering of holes and single
pixel noise to generate a fourth target chip;

performing a Haar transform on said fourth target chip to
generate a transformed target chip.

10. A method as described in claim 9 wherein said Haar
transform is performed for three levels.

11. A method as described in claim 10 wherein said first
algorithm tests said target chip comprising the steps of:

extracting the entropy features of said target from stored

coefficient locations;

computing one or more eigenfeatures said eigenfeatures

uniquely distinguishing said target;

appending the entropy features and eigenfeatures;

computing distances of said eigenfeatures extracted from

said target chip;

thresholding said distances to limits identifying said tar-

get.

12. A method as described in claim 11 wherein said
second algorithm is adaptive to a new target by accepting a
new set of eigenfeatures.

13. An apparatus for automatic target recognition, said
target acquired as part of a radar image, said radar image
formed from digitized returns, said digitized returns pro-
cessed into pixels forming said radar image, each of said
pixels having an amplitude, comprising:

memory for storage of said pixels forming said radar

image;
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a processor for pre-processing said pixels forming said
radar image to extract a target chip containing said
target from said image;

said processor applying a first recognition algorithm to
said target chip to identify a first classification of said
target extracted from said image;

said processor applying a second recognition algorithm to
said target chip to identify a second classification of
said target extracted from said image, said second
algorithm complementary to said first algorithm;

said processor fusing said first classification and said
second classification to generate a target classification
identifying said target.

14. An apparatus as described in claim 13 wherein said
processor also extracts a shadow cast by said target from
said radar image.

15. An apparatus as described in claim 14 wherein said
first recognition algorithm performs a multiscale analysis.

16. A method as described in claim 15 wherein said
multiscale analysis is not dependent on segmentation.

17. An apparatus as described in claim 16 wherein said
multiscale analysis is not invariant to target scale, target
translation and target rotation.

18. An apparatus as described in claim 14 wherein said
second recognition algorithm performs a shape statistics
analysis.

19. An apparatus as described in claim 18 wherein said
said shape statistics analysis is invariant to scale.

20. An apparatus as described in claim 19 wherein said
shape statistics analysis is invariant to target translation,
rotation and scaling.

21. An apparatus as described in claim 15 wherein said
processor performs the steps of:

computing a mean and a standard deviation of said target

chip containing the target using the amplitudes of each
pixel part of said target chip;

computing a first threshold equal to said two standard

deviations below said mean of said target chip;
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setting to zero all pixels within said target chip having
said amplitude below said first threshold to create a first
thresholded target chip;

computing a second mean and a second standard devia-

tion using amplitude of pixels part of said first thresh-
olded target chip;

computing a second threshold, said second threshold

one-half of said second standard deviation above said
second mean;

setting to zero all pixels within said first thresholded target

chip below said second threshold to generate a second
thresholded chip;

subtracting an amplitude of the minimum non-zero value

from each column of said second thresholded chip to
generate a third thresholded target chip;
performing a binarization of said third thresholded target
chip using morphological filtering of holes and single
pixel noise to generate a fourth target chip;

performing a Haar transform on said fourth target chip to
generate a transformed target chip.

22. An apparatus as described in claim 21 wherein said
Haar transform is performed for three levels.

23. An apparatus as described in claim 21 wherein said
first algorithm performed by said processor comprises the
steps of:

extracting the entropy features of said target from stored

coefficient locations;

computing one or more eigenfeatures said eigenfeatures

uniquely distinguishing said target;

appending the entropy features and eigenfeatures;

computing distances of said eigenfeatures extracted from

said target chip;

thresholding said distances to limits identifying said tar-

get.

24. A method as described in claim 21 wherein said
second algorithm is adaptive to a new target by accepting a
new set of eigenfeatures.
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