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A novel algorithm for obtaining flow velocity vectors using ART2 networks 
(based on adaptive resonance theory) is presented. The method involves tracking 
the movement of groups of seeding particles in a fluid space through the analysis 
of two successive images. Simulated flows, created artificially by shifting the 
particles through known distances or rotating through known angles, were used 
to establish the accuracy of the technique in predicting displacements. Accuracies 
were quantified by comparison with known displacements and were found to 
improve with increasing displacement, angle of rotation and size of the sampling 
window. In addition, the technique has been extended to derive qualitative and 
quantitative information for a practical case of natural convective flow. 0 1977 
Elsevier Science Ltd. All rights reserved. 
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1 INTRODUCTION 

Particle image velocimetry (PIV) is a powerful experi- 
mental technique that is often used to visualize full field 
velocity distribution by seeding the fluid with particles. 
It is an effective approach for obtaining both qualitative 
and quantitative information regarding a flow regime. 
Particle tracking velocimetry (PTV) is a similar tech- 
nique which also uses the images of seeding particles for 
analysis. PTV tracks the movement of individuai par- 
ticles while PIV monitors groups of particles. Currently, 
numerical techniques such as cross-correlation, auto- 
correlation, the Fourier transform method, orthogonal 
projection of centroids and the particle pathline method 
can be used to obtain the velocity of these seeding 
particles.‘-3 Conventional PTV methods that utilize 
particle streaks to determine velocities tend to be 
laborious and require the processing of large amounts 
of data.4 Furthermore, when the Delaunay net (a 
numerical method) is used to obtain the directions of 
the velocity vectors, error propagation leads to reduced 
accuracy in measured values. 

Artificial neural networks (ANNs) are increasingly 
being applied to pattern recognition problems and their 
application has recently been extended to PIV. The 
Hopfield network has been successfully utilized to 
suppress errors in the determination of 3-D vectors in 
flows5 and in obtaining flow directions using the 
Delaunay net6 Although very efficient, this latter applica- 
tion can only be used where the magnitudes, but not the 

directions, of velocity vectors are known. A modified 
version of the Kohonen network has been used to deduce 
fluid flow velocities.7 The success of this application 
demonstrates the capability of unsupervised networks to 
adapt to different flow situations. Its main shortcoming is 
that there is a 180” ambiguity in the measured flow 
direction. The backpropagation algorithm has been used 
to estimate the size distributions of bubbles in a liquid,’ 
and to determine the displacement of a group of particles 
from the complex phase of their pre-processed images.’ 

The application of neural networks to PIV and PTV 
has been beneficial for a number of reasons. First their 
capability to suppress noise has been demonstrated.5’6’g 
They have also been used to eliminate the need for 
sampling windows and their associated problems.7 
Finally, their application has been shown to eliminate 
many processing steps thus rendering current 
approaches less laborious.g The aim of the current 
research is to exploit the benefits of ANNs by 
developing an improved neural networks based method- 
ology for the quantitative and qualitative visualization 
of natural convection and, ultimately, the simultaneous 
measurement of temperature and velocity. Preliminary 
work using neural networks to evaluate fluctuating 
temperatures in a heated tube has been undertaken.io3” 

Using the centroids for particle identification, Teo et 
al.12 trained fuzzy adaptive resonance theory (ART) 
networks to pair corresponding particles from two 
successive images. This work demonstrates the potential 
of fuzzy ART networks in pattern-matching problems. 
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Since this technique uses the centroids for identification 
it can only reliably track a particle if it does not move 
very far from its initial position. Moreover, the accuracy 
of such a network would be reduced in flows with high 
seeding densities since it would be difficult for the 
network to separate particles that are very close to each 
other. This paper presents a novel technique that uses 
the ART2 network to deduce flow velocity vectors by 
tracking the movement of groups of particles. In order 
to establish its accuracy, the method has been applied to 
simulations of uniform and rotating flows. It has also 
been applied to a practical case of natural convective 
flow generated by a heated tube submerged in a cold 
water bath. 

2 THE ART2 NETWORK 

Developed by Carpenter and Grossbergt3 the ART2 
network is based on adaptive resonance theory and carries 
out stable self-organization of recognition codes for 
arbitrary sequences of input patterns. The ART2 network 
consists of two main subsystems: the attentional sub- 
system and the orienting subsystem. The attentional 
subsystem comprises the F1 and Fz layers while the 
orienting subsystem consists of the r layer. In the ART2 
network the F1 layer consists of six sublayers which 
collectively perform normalization and contrast enhance- 
ment of the input pattern. The orienting subsystem 
contains the r layer that contributes to the matching 
process. There is also an F. layer whose sublayers pre- 
process the input vector before sending it to the F1 layer. 
Figure 1 shows a schematic diagram of the ART2 
network in which the sublayers in the F. and F, layers 
are deliberately omitted for simplicity and clarity. 

There are two sets of weights. The bottom-up weights 
connect the units in the p sublayer (in the F1 layer) to 
those in the F2 layer; b, denotes the weight of the 
connection from the ith unit in the p sublayer to the jth 
F2 unit. The top-down weights, on the other hand, 
connect the F2 units to those in the p sublayer; Zji 
denotes the weight from the jth F2 node to the ith node 
in the p sublayer. 

F2 layer 

0 Gain control unit 
inputs, I o 

Fl layer 

FO layer 

The input vector, I0 is rippled through the F. 
sublayers until the inputs become stable. The output 
of the F. layer is then fed into the w sublayer in the F, 
layer. This vector is also rippled through the successive 
sublayers of the F1 layer until a stable pattern results. 
The net effect of the F, sublayers is to normalize and 
contrast enhance I, the input vector to the F, layer. 

The output of the p sublayer in the F, layer is then 
propagated to the F2 layer through the bottom-up 
weights, b,. At each F2 node the net input is given by the 
weighted sum of the p vector and the bottom-up weights, 
b,. 

M 

i.e. yj = CP;bb 
i=l 

where yj is the net input to the jth F2 node and 
A4 = number of nodes in the p sublayer. The F2 node 
with the highest sum is chosen as the winner; this 
winning node is set active while the rest are inhibited. 
The output of the winning F2 node, J, is then 
transmitted back to the p sublayer (in the F1 layer) via 
the top-down weights, zJi. At this point the outputs of 
the p sublayer, together with the F, input, I are 
propagated to the r layer for comparison. If the current 
F2 winner is an uncommitted node, or if the current 
input pattern is similar to that stored in the weights to 
the current winner, then there will be no reset. The 
weights to the winning Fz node are then modified to 
store the current input vector. The condition for a reset 
is given by eqn (2): 

P>l 
llrll 

where p is the vigilance parameter. Conversely, if the 
current vector is dissimilar to the stored pattern the reset 
condition is satisfied; the system is reset and the current 
winner is disabled so that it can no longer take part in 
the competition. The F2 nodes are then searched until a 
node with a similar pattern, or an uncommitted node, is 
found. 

The vigilance parameter determines the strictness or 
coarseness of the classification. If this parameter is high, 
the classification is very strict and hence only very 
similar patterns are classified together. On the other 
hand, if the vigilance is very low then patterns with little 
similarity will be classified together. After learning, the 
bottom-up weights to the winning F2 node are modified 
as in eqn (3): 

(3) 

Similarly, the top-down weights from this winning node 
are adjusted according to eqn (4): 

Fig. 1. A simplified schematic diagram of the ART2 network. 
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where d is the output of the winning F2 node. Further 

details of the ART2 network can be obtained from 

Carpenter and Grossberg13 and Carpenter et &.I4 

3 THE NEW TRACKING METHOD 

This section presents a novel technique for obtaining 

flow velocity vectors using ART2 networks. Here, two 
successive images of a flow are taken and a sampling 
window is created to capture a group of particles from 
the first one. The input to the ART2 network is the 

intensity pattern of this initial sampling window which is 

stored in the weights after learning. Numerous sampling 
windows are also chosen from a search region of the 

second image; the intensity pattern of each window is 
also fed into the ART2 network. The network compares 
the pattern of each of these windows with the initial one 
stored in its weights. If the second pattern is similar to 

the first then the network selects it as a good match. 

Otherwise it is rejected. 
The search region in the second image can be 

represented by the set S defined in eqn (5): 

S={(x,y):x,-R<x<x,+R: 

yO - R L 1’ < yo + R} 
(5) 

where (x,, y,) is the position of the initial sampling 
window from the first image and R is the maximum 
search radius. 

The initial window and those from the search region 

in the second image are fed to the network. The patterns 
from the search region which win on the same node as 
the initial one are selected as the winners. The error (in 
the pattern space) between each of these winners and the 
initial sampling window, is calculated. If there is only 
one winner from the second image then the position of 
this winning window is considered to be the new 

location of the particles from the initial window. If 
there is more than one winner then interpolation is 

applied in order to determine the best position of the 
winner, using a parabolic fit. If the distance of the 
winning position from (.x~.Y,,) is (Ax, A.v) then the 
velocity will be given by eqn (6). 

(Zl,II) = (E, g) (6) 

where At is the time difference between the first and 
second images. 

Figure 2 presents a block diagram of the proposed 
algorithm to determine the new position of each original 
sampling window. The intensity pattern of a sampling 
window taken from the first image is presented to the 
network. After this pattern is learned the patterns of 
successive windows, selected from the search region in 

the second image, are also presented to the network. The 
ART2 network chooses the patterns that are most 

(Ax,Ay) 

Fig. 2. A schematic diagram of the new algorithm used to 
derive one velocity vector. 

similar to the initial one as the winners. Interpolation is 
then applied to the coordinates of these winners in order 

to find the new position of the original particles. This 

process yields a single velocity vector corresponding to 

the position of the initial sampling window. 
The procedure described above is repeated at different 

positions in the first image in order to obtain the full 
field velocity vectors. The complete algorithm is outlined 
in the flowchart in Fig. 3. 

4 DATA PREPARATION 

The data used in these experiments were obtained from 
video images of seeding particles in a flow. Micro- 

encapsulated liquid crystals, with an average diameter of 
100 pm, were used as the seeding particles. Images of the 

I Set maximum searchradius , 
- --/ 

i 
Read image1 and Image2 i’ ! 

I I 

I-- Read 

i at point (x,y) in image 

1 1 Present to ART2 network 
-7p- 

9 

1 Read sampling windowB from image2 / ~~._ l.--- r Present to ART2 network 
r- -i 

/ Detetie velocity vector at (x,y) / 

Fig. 3. The complete flowchart of the new algorithm. 
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flow were taken using a monochrome CCD camera (0.5 
Lux sensitivity) and a Sony U-matic video recorder was 
used to record the images. Two successive frames were 
then extracted. The time difference between the two 
images was At. More details of the image processing 
system can be found in previous literature.” 

Only one image was utilized in simulated flows. A 
region of this image was manipulated by shifting 
through known distances or rotation through known 
angles. After each shift or rotation sampling windows 
were created in the original and the shifted regions. The 
size of each sampling window varied between 20 x 20 
and 30 x 30 pixels. Typically, each sampling window 
contained the images of approximately three seeding 
particles. The intensity pattern of each window was 
represented by a matrix of the same size as that of the 
sampling window. For instance a sampling window of 
size 20 x 20 pixels was represented by a 20 x 20 matrix. 
The intensity pattern was measured by the Grey level 
value at each pixel. Thus, for the ART2 network to learn 
the pattern of a sampling window, this 20 x 20 pixel 
matrix is input to a network with 20 x 20 nodes in each 
of its input layers. The value of each of these nodes 
would be between 0 and 255, representing the Grey level 
value at each pixel of the sampling window. The number 
of output nodes determines the number of classes into 
which the input patterns are to be categorized. In this 
case only two classes of outputs are necessary. The 
pattern in the original sampling window is learned and a 
class is created for it. When each subsequent sampling 
window is presented the network compares its pattern to 
the first; if they are similar they are grouped in the same 
class, otherwise they are rejected and no learning takes 
place. 

5 RESULTS AND DISCUSSION 

5.1 Application to simulated flows 

Simulated flows, created artificially by shifting the 
particles through known distances or rotating through 
known angles, were used to establish the accuracy of the 
technique in predicting displacements. The network was 
tested to predict the displacement of these particles and 
the accuracy quantified by comparing the network’s 
predictions with the known displacements. Two main 
types of flow were simulated, namely uniform and 
rotating flows. 

5.1.1 UniformJlows 
Uniform flow was simulated to quantify the accuracy of 
the proposed method in tracking particles when they 
undergo translational motion. The translational motion 
of particles was simulated by shifting a region of the 
image through a known distance. This shifted region 
was placed in the second image. The new method 
outlined in section 3 was then applied to the original 

windowA 

Fig. 4. Illustrating the simulation of uniform flows. 

image and its shifted partner in order to determine the 
displacement. For instance the selected region could be 
shifted through a distance (Ax, Ay) and the network 
tested to determine the exact displacement. The accu- 
racy of this method was calculated by comparing the 
actual shifts with the values predicted by the network. 

Figure 4 illustrates this simulation. Region (a) from 
the first image, is shifted through (Ax, Ay) and placed 
as region (b) in the second image. A sampling window, 
window A, is created to capture a few particles in region 
(a). The intensity pattern of window A is presented to 
the ART2 network which stores it in its weights after 
learning. A second window, window B, is created from 
region (b). Its intensity pattern is also presented to the 
ART2 network for comparison. If the latter pattern is 
not similar to that of window A, it is rejected. Otherwise 
it is retained and the displacements in the x and y 
directions are obtained from the position of window B. 

This method faithfully tracks the movements of 
particles in these simulations. Its accuracy is seen to 
increase with increasing displacement of the particles. 
Figure 5 shows a graph of the average errors obtained 
from this method when particles are shifted between 2 
and 12 pixels. It can be seen that the average error stays 
very low, varying from 0.61% to 0.104% for displace- 
ments between 2 and 12 pixels respectively. The high 

Oi,-- _-.._..__-____-~ 

0 2 4 6 8 10 12 

Displacement (pixels) 

Fig. 5. Illustrating the change in average error with increasing 
displacements for translational motion. 
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Fig. 6. A typical example of velocity vectors obtained from a 
simulation of uniform flows. 

reliability of this method in tracking particles in 
translational motion is confirmed by the diagram in 
Fig. 6 which illustrates typical velocity vectors obtained 
by this method. In this example the particles were shifted 
through (4,-4) pixels. 

5.1.2 Rotating_f?ows 
The new algorithm presented in Section 3 was also 
tested on a simulation of rotating flows in order to 
determine its accuracy in tracking particles in such 
flows. Simulations of these flows were achieved by 
rotating a region of the image (together with its seeding 
particles) through known angles. 

The simulation of these flows is represented in Fig. 7. 
Region (a) is rotated through a known angle and then 
placed as region (b) in the second image. After the 
ART2 network learns the intensity pattern of window 
A, sampling windows from region (b) are then inspected 
until window B, which corresponds to the rotated 
pattern from region (a), is located. Knowing the 
displacement of window B from window A, the angle 
of rotation predicted by the network can be determined. 

The accuracy of this method generally increases with 

regi& (a) 

region (b) 

Fig. 7. Demonstrating the simulation of rotating Aows. 
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Fig. 8. The variation of average error with the angle of rotation 
for simulations of rotating flows. 

increasing angles of rotation. However, after 7” the 
accuracy gradually decreases with increasing angles of 
rotation. Figure 8 illustrates the change in average error 
with angle of rotation. It can be seen from this diagram 
that the average error decreases from 16.4% to 6.3% for 
rotations between 1.72” and 7” respectively. After 7” of 
rotation the error gradually increases to 9.6% at an 
angle of 10”. Figure 9 also shows the velocity vectors 
obtained after rotation using this new method. The plot 
in this figure demonstrates the vectors obtained when a 
region of the original image was rotated through 8”. 

5.2 The effect of the size of the sampling window 

The size of the sampling window influences accuracy of 
the current technique. The effect of its dimensions on the 
cross-correlation method has been studied by Kimura 
and Takamori. I6 Their work demonstrated that the 
accuracy of the cross-correlation technique decreases 
with decreasing size of the sampling windows. This is 
undesirable for two reasons. First, the velocity obtained 
at each point represents the mean velocity of the 
particles in the sampling window. Thus, for larger 

Fig. 9. A typical example of vectors obtained from a 
simulation of rotating Aows. 
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Fig. 10. The effect of the size of the sampling window on the 
accuracy. 

windows the resolution of the measurements is lower. 
Smaller windows would lead to higher resolution of the 

measurements. Secondly, smaller windows also lead to 
fewer inputs, and hence, shorter processing times. 
Therefore it would be advantageous if the accuracy 
still remained high at smaller window sizes. Against this 

background the effect of the size of the sampling 
window on the accuracy of the new method has been 

investigated. Windows of sizes ranging from 8 x 8 to 

50 x 50 pixels were studied. For each window size, a 
group of particles was captured in the window and the 

new method (developed in this work) was applied. The 
average error was calculated for velocity vectors taken 
at many different points of the initial image. This 
procedure was repeated for windows of different sizes. 

The accuracy of the current method has been found to 
increase with an increase in the size of the sampling 
window. Figure 10 shows the average error decreasing 
from 10.9% to 0.142% for window sizes of 8 x 8 to 

50 x 50 respectively. 

5.3 Application to natural convection 

The new technique reported in this work has also been 
applied to a real natural convective flow. This section 
describes the use of the method to derive qualitative and 

quantitative information from this flow. 

5.3.1 The experimental rig 
The natural convective flow was generated by a 
uniformly heated and steel cylinder submerged in a 
cold water bathI and is illustrated in Fig. 11. The 
test cell, which was made of acrylic, measured 
150 x 186 x 1OOmm and contained cold water at 
approximately 25”. Hot water, at approximately 5O”C, 
was pumped through the submerged cylinder. The water 
in the test cell was seeded with O+Ol% temperature 
sensitive microencapsulated liquid crystal particles 

A water mrvoir 

steel pipe 
PumP 

Fig. 11. The experimental rig used to generate natural 
convective flows. 

(measuring on average 1OOpm in diameter). A white 
light source was used to illuminate the flow and a 
monochrome CCD camera (0.5 Lux sensitivity) to film 
the flow pattern. Two successive frames were then 

captured from the video using a Data Translation 
DT2871 image board. The time difference between the 
two frames was 0.5s. These two frames, each with a 
resolution 512 x 512 x 8 bits were stored on a DEC3000 
workstation for analysis. Figure 12 illustrates a typical 

image of the flow investigated. 

5.3.2 Results 
In this experiment the heated cylinder submerged in the 
cold water bath, creates a flow due to natural convec- 
tion. The fluid density in the immediate vicinity of the 

hot cylinder is reduced and hence particles rise to the 
top. The surfaces of the test cell combine to create two 

areas of recirculation near the top of the water level, one 
on each side of the cylinder. Figure 13 displays the flow 
pattern generated by the new method using the ART2 
network. This present method displays the two regions 
of recirculation clearly, confirming its capability to 
follow the movement of particles even in regions of 

rapidly changing velocities. 

Fig. 12. A typical image of the flow used for this analysis. 
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Fig. 13. Vectors of a true natural convective flow obtained 
using 30 x 30 pixel sampling windows. 

6 CONCLUSION 

A new algorithm for obtaining flow velocity vectors 

using ART2 networks has been proposed. This method 

has been successfully applied to simulations of uniform 
and rotating flows in order to establish its accuracy in 
tracking the movement of seeding particles. For simula- 

tions of uniform flow the average error decreases from 
0.61% to 0.104% for displacements between 2 and 12 
pixels respectively. In rotating flows the average error 

varies from 16.4% to 9.6% for rotations between 1.72” 

and 10” respectively. Furthermore, the accuracy 
increases with the size of the sampling window, varying 
from 89.1% to 99.85% for window sizes from 8 x 8 to 
50 x 50 respectively. Finally this technique has been 

successfully employed to derive qualitative and quanti- 
tative information from a real natural convective flow. 
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