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Using neural networks for the
diagnosis of localized defects in
ball bearings

M. Subrahmanyam* and C. Sujatha†‡

Two neural network based approaches, a multilayered feed
forward neural network trained with supervised Error Back
Propagation technique and an unsupervised Adaptive Resonance
Theory-2 (ART2) based neural network were used for automatic
detection/diagnosis of localized defects in ball bearings. Vibration
acceleration signals were collected from a normal bearing and
two different defective bearings under various load and speed
conditions. The signals were processed to obtain various
statistical parameters, which are good indicators of bearing
condition, and these inputs were used to train the neural network
and the output represented the ball bearing states. The trained
neural networks were used for the recognition of ball bearing
states. The results showed that the trained neural networks were
able to distinguish a normal bearing from defective bearings with
100% reliability. Moreover, the networks were able to classify the
ball bearings into different states with success rates better than
those achieved with the best among the state-of-the-art
techniques.  1998 Elsevier Science Ltd. All rights reserved
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Introduction

Machine monitoring and diagnosis involves intermittent
or continuous collection and interpretation of data relat-
ing to the condition of critical components. Constant
monitoring of machinery has been considered to be an
essential and integral part of any modern manufacturing
facility, because any unexpected failure or breakdown
will result in costly consequences. Adequate monitoring
greatly reduces the frequency of breakdowns before
they actually occur. Therefore, a machine monitoring
system can be seen as a decision support tool which
is capable of identifying the failure of a machine
component or system, and which also predicts its
occurrence from a symptom1.
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Bearings are essential components of most machinery
and their operating conditions influence directly the
operation of the whole machinery. The majority of the
problems in rotating machines are caused by faulty
bearings2. The classical failure mode of rolling element
bearings is localized defects, in which a sizable piece
of the contact surface is dislodged during operation,
as a result of fatigue cracking in the bearing metal
under cyclic contact stressing3. In industry, it is
required not only to diagnose the faults of rolling
element bearings in operation, but also to assess the
quality of new bearings before use4,5.

The existing techniques for detecting localized defects
in bearings and the rate of success achieved for classi-
fying the condition of bearings in each scheme are
shown in Table 13. From the table, it is observed that
the highest success rate possible to detect localized
defects in the bearing is around 92%. Moreover, most
of the bearing condition monitoring methods in vogue
need the assistance of an expert in the interpretation
of results, and the success rates achieved are less than
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Table 1 The time utilization of a typical machin-
ing center

Activity Time (%)

Metal cutting 23
Positioning and tool 27
changing
Gauging and loading 18
Set-up 5
Waiting and idle 14
Repair and technical 13

those required by the modern automated industries.
Hence, the need arises for the development of a new
scheme to outperform all the state-of-the-art techniques.

Neural networks

The present study aims at developing a method of
bearing condition estimation using neural networks
which give higher success rates in their condition
estimation than the existing methods. Two types of
neural network models, a multi-layered feed forward
neural network trained with Error Back Propagation
(EBP) algorithm and an unsupervised Adaptive Reson-
ance Theory-2 (ART2) based single layered competitive
neural network have been used. These neural networks
have an edge over conventional monitoring methods
in that they can classify the condition of machine
components even in the absence of explicit input–
output relationships. Besides, the networks can classify
well even in the case of noisy or incomplete infor-
mation obtained from the signals being monitored. For
the bearing condition estimation problem, both types
of neural networks have been used, the exact architec-
ture and the training parameters of the network being
problem dependent.

An MLFNN trained with EBP algorithm

A multi-layered neural network has one or more hidden
layers along with the input and output layer (Fig 1).
Each layer has a certain number of nodes and all the

Fig. 1 A two layer feed forward neural network
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nodes in one layer are connected with all the other
nodes in the succeeding layer. Associated with each
connection, a numerical value is assigned, which is
termed as weight, where the actual associative knowl-
edge between the inputs and outputs is stored6.

Input patterns are submitted during the EBP training
sequentially. If a pattern is submitted, and its classi-
fication or association is determined to be erroneous,
the weights are adjusted so that current least square
classification error is reduced7. Usually, mapping error
is cumulative and computed over the full training set6.
The Total Sum Squared (TSS) error is used as a way
of measuring the best fit to the data, and is as follows.

TSS Error,E = OP
p = 1

1
2 OK

k = 1

(dkp 2 okp)2 (1)

whereP is the number of patterns in the training data
set, K is the number of output nodes of the network,
dkp is the target output for thepth pattern at output
nodek, and okp is the actual output for thepth pattern
presentation at thekth output node. The squared error
is averaged over all output nodes in the output layer,
as well as all patterns in the training set8.

At each node in the hidden and output layers, two
functions are performed: (i) weighted summation of all
inputs (integration function) and (ii) generation of node
outputs (activation function). During the forward pass,
output at hidden node,j, i.e.

yj = F(NETj) (2)

where

NETj = OI

i = 1

vji xi (3)

wherevji represents the weight on connection between
nodes i and j. Outputs of the hidden nodes act as
inputs to the output layer, and similarly the output at
the output nodek (ok) is computed.

The gradient descent search is performed to reduce the
error (E) through the adjustment of weights. The error
(E) is back propagated to change the output and hidden
layer weights.

Mathematically, change in weight,

Dwkj~( 2 )
∂E

∂wkj

(4)

or

Dwkj = hdokyj (after simplification) (5)

whereh is the constant of proportionality called learn-
ing rate parameter anddok is the error at nodek. So
the weight adjustment expression is as follows.

Considering the sigmoid activation function (Fig 2), i.e.

F(NETk) =
1

(1 + e2 NETk)
(6)

After simplification, the following expressions for error
terms can be obtained.

dok = (dk 2 ok)ok(1 2 ok) for output nodes (7)
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Fig. 2 Sigmoid activation function

doj = yj(1 2 yj)OK
k = 1

dokwkj for hidden nodes (8)

It is to be noted that if the network has more than
one hidden layer, the same procedure is extended to
compute the weight adjustments of the hidden layer,
wherein the next immediate layer acts as an output
layer in weight adjustment determination of the hidden
layer under consideration. The final weight adjustment
expression is as follows.

wkj(t) = wkj(t 2 1) + Dwkj(t) (9)

In the above equation,t refers to the current training
cycle (at timet) and t 2 1 refers to the most recent
training cycle (at timet 2 1).

To accelerate the convergence of EBP learning process
a momentum term is introduced. The method involves
supplementing the current weight adjustments with a
fraction of the recent weight adjustments. This is done
according to the formula,

Dw(t) = ( 2 )h=E(t) + aDw(t 2 1) (10)

a is a user-selected positive momentum constant6,8.

To further accelerate the EBP training, expected values
of source nodes are used for updating the weights.
The expected value of a node can be approximated as
the sum of the output node and a fraction of its error
term9, and the modified EBP training rule is as follows:

Dwkj = 2 h(yj + bdj)dk (11)

whereb is a constant, named as accelerating constant.
The above expression reverts to the original rule when
b equals zero.b can usually be set to 1.0, and superior
results (over the conventional EBP training) are con-
sistently obtained. In many cases, however, higher
values ofb can further accelerate training. As withh,
a further increase inb, beyond some problem-specific
value, results in oscillations and non convergence.

The values of the input and output variables need to
be scaled to a range that is within the bounds of the
output node’s sigmoid function (0 and 1). The common
practice is to use only the relatively linear portion of
the sigmoid function, between 0.1 and 0.9, for the
selected logistic function, as shown in Fig 2. The
scaling is simple. Let the maximum and minimum
values of the dependent variable beVmax and Vmin, and
let the maximum and minimum scaled target values
be Tmax (0.9) andTmin (0.1). Then, for any example,
the target value (normalized value)Tar is a function of
the valueVal (the value to be normalized)8:
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Tar = Tmin +
(Val 2 Vmin)

(Vmax 2 Vmin)
(Tmax 2 Tmin) (12)

As there is no fixed rule to determine the neural
network architecture, different network architectures
must be tried to decide which network gives the best
results. The various steps adopted in developing this
neural network are as follows:

(i) The optimal architectures of the network, for the
chosen problem have been arrived at by trial
and error.

(ii) The optimal training parameters, i.e. learning rate
(h), momentum term (a) and accelerating con-
stant (b) have been determined by trial and error.

(iii) The Total Sum Squared Error (TSS Error) on a
validation sample during training has been con-
sidered as the main criterion to stop training,
keeping in view the classification performance.

(iv) For identifying the condition of a drill, drill
average flank wear data were presented as target
outputs to the neural network.

An SLCNN based on ART2 algorithm

The supervised BP learning requires external target
outputs, the measurement of which demands excessive
time and expensive equipment. Moreover, when
operating conditions change, a new training set must
be compiled and labeled, and the whole training must
be repeated. Also, evaluation of target output is itself
a tough task in the bearing fault diagnosis problem, as
this is not directly measurable. To overcome these
bottlenecks of supervised EBP learning, an unsuper-
vised ART2 based neural network has been proposed,
where the learning process does not need target outputs
and is much faster.

The primary function of an ART2 module is to carry
out clustering of input pattern sets such that patterns
of the same cluster exhibit a certain degree of simi-
larity. For a clustering procedure, it is necessary to
define a similarity measure to be used for evaluating
how close the patterns are. The most common one is
the Euclidean distance10 method and is adopted in the
present study and defined as given below.

Euclidean distance,dj(Xi, Xj) = ÎΣ
p
(Xip(k) 2 Xjp(k))2

(13)

where Xi and Xj are two column vectors, which rep-
resent the input and weight vectors (patterns) in prac-
tice.

The ART2 network is shown schematically in Fig 3.
It has two layers: the first is the input/comparison layer
and the second is the output/recognition layer. These
layers are connected together with extensive use of
feedback from the output layer to the input layer along
with the feed forward connections. Associated with
each connection, the ART2 network has feed forward
weights (wjis) from the input layer to the output layer
and feed back weights (tijs), from the output layer to
the input layer. Between the input and output layers
there is also a reset circuit which is actually responsible
for comparing the evaluated Euclidean distance
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Fig. 3 The configuration of ART2 network

(making use of the current inputs and the most recent
weights) to a vigilance threshold that determines
whether the pattern under consideration pertains to one
of the already generated clusters or a new class
(cluster) must be created11.

The number of nodes in the input layer depends on
the number of input features in each input pattern set
and the number of output nodes may be unknown
a priori, and the ART2 mechanism allows adaptive
expansion of the output layer until an adequate size
(required number of classes) is reached. The ART2
algorithm is designed for clustering continuous valued,
e.g. real valued patterns. The salient steps involved in
clustering are as follows.

(1) Initialization: Weights wji(t) and tij(t) are
initialized, and a value is set forr, which is
problem dependent. In the present case,wji(t)
= tij(t).

(2) Pattern presentation: A new input vectorXi is
presented. [For the first input pattern (X0), the
new output neuron (J0) is created with weights
W0 = X0.]

(3) Compute matching: Given a new training pattern,
a MINNET (minimum net) is adopted to select
the winner, which yields the minimum distance,
Euclidean distancedj(Xi, Wj), where

d2
j (Xi, Wj) = Σ

p
(Xip(t) 2 Wjp(t))2 (14)

(4) Vigilance test: A neuronj* passes the vigilance
test if and only if dj (Xi, Wj) , r, where the
vigilance threshold value (r) determines the radius
of the cluster.

(5) Test failed state: If a neuron fails the vigilance
test, a new neuronk is created with weight vector
Wk = Xi.

(6) Test passed state: When the winner passes the
vigilance test, the weight of the winnerj* is
adjusted by

Wj*( t + 1) =
Xi + Wj*( t)uclusterj*( t)u

uclusterj*( t)u + 1
(15)
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where uclusterj*( t)u denotes the number of nodes in the
cluster j at time t.
(vii) Repeat: This procedure is continued till all train-

ing patterns have been presented to the network.

The vigilance parameter controls the resolution of the
classification process. A low choice ofr produces a
high resolution of classification process, creating larger
class types and vice versa. In training, the networkr
is varied by trial and error till the required number of
output nodes (clusters/classes/exemplars) is adaptively
generated, so as to attribute meaningful interpretation
to each cluster generated.

If all input patterns are clustered based on the ART2
learning algorithm, some input patterns may be actually
closer to the centroids (updated weights/coordinates)
of the other clusters. Also, the ART2 is sensitive to
the order of presentation of the input patterns and
yields a different clustering on the same input patterns
when they are presented in the reverse order, even
though the vigilance threshold remains the same. To
overcome these effects, reclustering (making use of
final weights obtained through initial clustering as
initial weights) is done with reverse order of presen-
tation of the input patterns.

In the classification or testing phase, the process is
similar to the training phase with the only exemption
that the network makes use of the finally arrived at
weights to achieve the required classification of all
test patterns.

Experimental studies

Objective

The present study focuses on finding out whether a
bearing under consideration is good or bad. If it is a
bad bearing, the aim is to classify the fault, i.e. ball
defect or outer race defect. In a manufacturing plant,
the answers to these questions are of immense use, as
in producing a component of very high accuracy, one
would like to avoid faulty bearings. Besides, faulty
bearings often give rise to other problems in rotating
machinery.

Selection of parameters

Vibration information has been widely adopted for
malfunction detection of bearings in industry. The rol-
ling element bearing supports a load by means of
rolling elements and therefore has an unavoidable tend-
ency to produce undesirable vibration and sound. Many
studies have therefore been conducted to find a way
of preventing or reducing the vibration and sound from
rolling element bearings12,13. However, the previous
studies are, for the most part, concerned with normal
rolling element bearings except for a few studies car-
ried out to detect localized defects14,15. The vibration
and sound from rolling element bearings seem to con-
stitute an important subject of inquiry from the stand
point of early detection of defective rolling element
bearings. A thorough analysis of bearings and their
effects on vibrations can be found in the paper by
Igarashi et al.16. Malfunction alarms for rolling element
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bearings can be based upon the detection of localized
defects (which constitute a common mode of failure)
by processing the bearing vibration acceleration sig-
nals3.

Liu and Iyer17 used a feed forward neural network for
the recognition of different states of roller bearings
by feeding various parameters obtained by processing
vibration acceleration signals as inputs to the neural
network which decides the bearing condition. Unal18

made use of jerk fields (time rate of change of acceler-
ation data) as discriminating features in the training of
Artificial Neural Networks (ANNs) for the fault diag-
nosis of ball bearings in a paper mill. Chiouet al.19

made use of vibration signatures in the ultrasonic
frequency range (beyond 100 kHz) to train a neural
network in order to identify the condition of needle
bearings.

Parameters monitored

Vibration acceleration signals have been processed
using a signal analyzer and the following parameters
are obtained, as suggested in the literature and sup-
ported by the observations made in the present study,
for estimating the condition of bearings.

(1) Peak value of amplitude in PSR.
(2) Average of top five peak values of amplitude

in PSR.
(3) Peak value of autocorrelation function in PSR.
(4) Peak value of amplitude in HFR.
(5) Average of top five peak values of amplitude

in HFR.
(6) Peak value of autocorrelation in HFR.
(7) Standard deviation (0–10 kHz).
(8) Kurtosis (0–10 kHz).

These parameters have been fed as inputs to an Arti-
ficial Neural Network (ANN), which judges the con-
dition of the bearing as good or bad, and if it is found
to be bad, it also pinpoints the fault.

Bearing test rig and instrumentation

The schematic of the bearing test rig on which experi-
ments were carried out is shown in Fig 4. The rig
consists of a short shaft, supported between two bear-
ings at its ends. The shaft is coupled to a variable
speed dc motor through a coupling arrangement which
ensures that the shaft does not experience any of the
vibrations from the motor. Also, the coupling accom-
modates any misalignment present in the assembly.
The dc motor is connected to a speed control unit, an
auto transformer, to achieve variable speeds. With the
present motor, speeds up to 3000 rpm are possible.

The support bearing adjacent to the coupling is an
SKF2310 double row self-aligning ball bearing. The
other support bearing (the test bearing) is an SKF6307
single row deep groove ball bearing, on which tests
are conducted. The specification of the test bearing is
given in Table 2.

The loading of the shaft is done through an SKF6411
heavy duty deep groove ball bearing. This load bearing
is mounted in between the test bearing and the support
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bearing. The load bearing is kept near the test bearing,
so that nearly three-quarters of the load applied on it
would be transferred to the test bearing. The load
bearing is equipped with an outer casing, having an
eye bolt at the bottom, which is connected to a
hydraulic jack via an extensometer used for measuring
the applied load, using a rope and pulley arrangement.
The hydraulic jack is connected to a hydraulic pump,
which is operated manually.

A piezo-electric accelerometer (Bruel and Kjaer, 4332)
is stud-mounted on the housing of the test bearing.
The accelerometer is connected to a charge amplifier
(Bruel and Kjaer, 2626), the output of which is fed to
a signal analyzer (SD 380, Scientific Atlanta) to ana-
lyze the signals. The signals are monitored on a digital
storage oscilloscope (Kikusui Electronics) and also sim-
ultaneously recorded on a magnetic tape using an
eight channel FM tape recorder (Racal, England). The
recorded signals are replayed and processed in the
signal analyzer to extract different features from the
vibration acceleration signal.

Experimental procedure

Three SKF6307 single row deep groove ball bearings
are used in the present study. The details of this
bearing are as given in Table 2. One is a brand new
bearing (assumed to be free from defects) and defects
were created in the other two bearings using EDM, in
order to keep size and depth of the dent under control.
A dent was created in one of the balls of one bearing
and another created in the inside groove of the outer
race of the other bearing. The size of the defect is
about 1.0 mm in diameter and 0.5 mm in depth, and
is the same for both bearings. Before installing, each
bearing is properly lubricated with grease and mounted
on the shaft. After allowing initial running of the
bearing for some time, the acceleration signal from the
pick-up mounted on the test bearing is fed to a charge
amplifier and the conditioned signal is tape recorded
at a tape speed of 3 3/4 inch/s to cater to a frequency
range of 0–10 kHz. This test is done for various load
and speed combinations, the loads being 2.5–10 kN in
steps of 2.5 kN and the speeds being 80, 100, 120,
150, 200 and 250 rpm.

Signal analysis

Significant frequency regions

Bentley13 pointed out that vibrations produced by
machines equipped with rolling element bearings
always have components in the following frequency
regions:

(1) Rotor Vibration Region: This includes the range
of one-quarter to three times the shaft rotating
speed, and is the direct result of rotor related
malfunctions like imbalance, misalignment, rotor
instability, etc. which must be corrected to elimin-
ate bearing overloading and subsequent failure.

(2) Prime Spike Region (PSR): This includes the
frequency range which covers bearing character-
istic defect frequencies generated by rolling
elements traversing either an inner or outer race
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Fig. 4 Schematic of bearing test rig and loading arrangement

Table 2 Specification of test bearing

Test bearing

Type SKF6307
Number of balls 8
Ball diameter 13.2 mm
Pitch diameter 57.5 mm
Contact angle 0°

flaw. Generally this region includes one to seven
times the element passage rate (the rate at which
the rolling elements pass a point on either the
inner or outer race of the bearing). Field studies
indicate that approximately 90% of rolling
element bearing failures is related to either an
inner or outer race flaw. The other 10% is related
to either a rolling element flaw or cage flaw. For
the problem under study, the prime spike region
is given as the outer race defect frequency to
seven times inner race defect frequency. This has
been calculated to cover the frequency range 3–
142 Hz and is taken as 0–200 Hz for the sake
of analysis.

(3) High Frequency Region (HFR): The third
vibration frequency region, to be monitored for
machines with rolling element bearings, is the
high frequency region. When a flaw develops in
a rolling element bearing, the vibration signals
generated are in the form of short, sharp impulses.
Since an accelerometer is a lightly damped device,
it will respond to this type of input by ringing at
its resonance frequency. Utilizing the acceler-
ometer mounted resonance and measuring its
amplitude, in units of acceleration, it is possible
to monitor rolling element bearing condition in
HFR. However, due to noise susceptibility prob-
lems and the possibility of ‘self-peening’ of the
bearing flaws, which may result in decreasing
readings as the bearing damage progresses, high
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frequency measurements for bearing failure detec-
tion should only be used as a supplement to
measurements made in rotor vibration region and
PSR. The predominant vibration frequencies in
the high frequency region are the resonant fre-
quencies of the races modulated by the character-
istic defect frequencies and their harmonics. For
the present low speed bearing, the high frequency
range has been taken as 200 Hz to 10 kHz.

Processing of vibration signals

Typical time domain and frequency domain plots are
taken from the three bearings at different speeds and
loads. Figs 5–7 show the time domain plots of vibration
acceleration of a new bearing, bearing with a ball
defect and bearing with an outer race defect, respect-
ively. Similarly, the spectra for these three bearings
are shown in Figs 8–10, respectively.

The recorded signals are analyzed in the spectral mode
of the analyzer and from the frequency response, in
both PSR and HFR, parameters [(1)–(6)] mentioned
below have been extracted. The rotor vibration region
has not been considered separately as steps have been

Fig. 5 Time domain plot of vibration acceleration
(new bearing)
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Fig. 6 Time domain plot of vibration acceleration
(bearing with a ball defect)

Fig. 7 Time domain plot of vibration acceleration
(bearing with an outer race defect)

Fig. 8 Frequency domain plot of vibration acceleration
(new bearing)

taken to eliminate rotor related malfunctions. In
addition, the signals are analyzed in the statistical
mode of the analyzer and the statistical parameters,
i.e. standard deviation and kurtosis [(7) and (8)] are
obtained.

Thus, the various bearing condition descriptors used
are:

(1) Peak value of amplitude in PSR: This is a good
indicator of bearing condition since the peaks in
the PSR correspond to the characteristic defect
frequencies17,20.
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Fig. 9 Frequency domain plot of vibration acceleration
(bearing with a ball defect)

Fig. 10 Frequency domain plot of vibration acceler-
ation (bearing with an outer race defect)

(2) Average of top five peak values of amplitude in
PSR: This provides a better indication than the
peak value since it gives an indication of the
averaged spectral heights corresponding to various
defect frequencies17.

(3) Peak value of autocorrelation function in PSR: In
the prime spike region, the bearing vibration sig-
nal may be treated as a narrow band (0–200 Hz)
random signal. Hence, the autocorrelation function
has a sharp spike att = 0, that does not die off
very rapidly with ± t, as shown in Fig 11. This

Fig. 11 Autocorrelation in prime spike region
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peak value is nothing but the mean square value
of the signal3,17.

(4) Peak value of amplitude in HFR: With degra-
dation in the bearing condition, vibrations in the
high frequency region are seen to go up because
of the increase in amplitudes of resonances of the
races and the amplitudes of the modulating defect
frequencies. Therefore, many researchers have
used the peak value of frequency response ampli-
tude in HFR to detect faulty bearings17,20. This
value corresponds to the predominant resonance
frequency.

(5) Average of top five peak values of amplitude in
HFR: Instead of relying on a single peak (as
above), which is indicative of one predominant
resonance frequency, by considering more peaks,
resonances of other components of the bearing
are also brought into the picture along with the
modulating defect frequencies. Hence, the average
of top five peaks in the HFR is probably a better
indicator of bearing condition than the predomi-
nant peak value17,20.

(6) Peak value of autocorrelation in HFR: The peak
value of autocorrelation function in the HFR (Fig
12) is nothing but the mean square value of the
bearing vibration signal in the 0–10 kHz range
and is highly indicative of the condition of the
bearing17.

(7) Standard deviation (0–10 kHz): This is a measure
of the effective energy or power content of the
vibration signal and clearly indicates deterioration
in the bearing condition.

(8) Kurtosis (0–10 kHz): Kurtosis is related to the
shape of the probability density distribution and
is indicative of flatness or spikiness of the signal
being considered. Kurtosis is a unitless quantity,
which emphasizes the tails of the probability den-
sity histogram and is 3 for a normal Gaussian
noise. Thus, for a healthy bearing the kurtosis is
around 3 and for a defective bearing it is always
high due to the spiky nature of the signal. Kur-
tosis is highly sensitive to bearing damage and is
independent of shaft and bearing dimensions21.

The above mentioned features are chosen because of
their successful application in previous works13,17,22,23

Fig. 12 Autocorrelation in high frequency region
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related to bearing damage detection. The use of these
parameters is also justified from the observations made
in the present investigation.

Table 3 shows the variation in these eight input para-
meters for the new and defective bearings for various
speeds and for a load of 5 kN.

Problems associated with low speed bearing
condition monitoring

Defects in rotating rolling element bearings generally
produce impacts when the mating parts of the bearing
come in contact with one another. These impacts occur
regularly and the frequencies of occurrence correspond
directly to the ball or roller pass frequencies. These
characteristic defect frequencies as they are known,
can usually be easily identified when monitoring the
vibrations of rolling element bearings operating at high
speeds. Various techniques have been proposed and
evaluated by Alfredson and Mathew24,25. It was shown
that spectrum analysis of bearing cap acceleration was
usually sufficient to detect and diagnose damage of
high speed bearings. At low speeds (# 250 rpm),
however, these defect frequencies are sometimes diffi-
cult to detect, usually due to the presence of dominant
background noise and the lack of sensitivity of acceler-
ation measurements at low frequencies26.

Besides, due to inherent performance limitations of the
FFT approach, i.e. limited frequency resolution and
masking of weak signal spectral responses by stronger
spectral responses, the spectral analysis method of
monitoring does not offer very reliable diagnosis. Also,
low speed rolling element bearings are not considered
for monitoring in most industrial situations because of
the long sampling and data analysis times required.
When considering vibration data in the low frequency
bands, long records of signals are required in order to
achieve repeatable and trustworthy results. Up to
10 min of vibration signal may be required if a con-
siderable amount of noise is present in the signal27.

Despite these problems associated with low speed rol-
ling element bearings, neural networks seem to play a
very promising role for fault detection and isolation,
by making use of multiple features extracted from a
relatively short vibration signal (about 10 s), though
the signal is dominated by background noise. Hence,
low speed bearings have purposely been chosen for
this study, to prove that, in spite of all the above
mentioned difficulties in monitoring vibration signals
of these bearings, neural networks are able to predict
their condition with very high success rates by making
use of multiple parameters.

Results and discussion

Results of EBP based neural network

The neural network has to be traineda priori to
learn the complex input/output association for bearing
condition recognition. Here, the training process has
been divided into two cases. In the first case, effort
has been concentrated on distinguishing a defective
ball bearing from a normal one. In the second case,
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Table 3 A typical input data set

Speed 1 × 1024 2 × 1024 3 × 1024 4 × 1024 5 6 7 8 × 1024

(rpm)

New bearing
80 2.15 2.00 2.25 2.13 0.92 0.92 1.40 81.40
120 2.22 3.22 4.67 3.68 0.92 0.93 1.96 83.60
160 2.92 2.59 5.15 3.74 0.93 0.91 2.32 87.60
200 3.22 2.57 4.61 4.41 0.94 0.92 3.32 88.60
Bearing with a ball defect
80 2.61 1.64 3.97 3.27 0.96 0.91 4.01 90.10
120 1.23 0.89 7.59 5.57 0.93 0.82 4.34 90.70
160 2.95 2.01 10.04 7.66 0.96 0.87 4.40 91.80
200 2.00 1.68 12.60 9.92 0.95 0.80 5.21 94.70
Bearing with an outer race defect
80 7.42 3.66 6.05 5.48 0.95 0.94 2.21 84.70
200 9.53 4.62 7.19 5.88 0.93 0.95 3.82 86.30
160 9.84 4.48 8.72 7.59 0.93 0.93 5.80 99.10
200 10.02 5.41 9.77 8.45 0.93 0.94 7.38 102.10

1: Peak value of vibration acceleration frequency response in PSR (g)
2: Average of top five peaks in PSR (g)
3: Peak value in HFR (g)
4: Average of top five peaks in HFR (g)
5: Peak value of autocorrelation in PSR (non-dimensional)
6: Peak value of autocorrelation in HFR (non-dimensional)
7: Kurtosis (non-dimensional)
8: Standard deviation (g)

the training process aims at identifying various ball
bearing states (normal, ball defective and outer race
defective). Training involves determination of the net-
work architecture (number of nodes in each layer) and
the network training parameters: Learning rate (h),
momentum parameter (a) and accelerating constant (b),
which are problem dependent.

Case 1

In the first case, the neural network is trained using
94 sets of normalized input/output data. A typical set
of normalized input data, normalized between 0.1 and
0.9, corresponding to Table 3 is shown in Table 4.

Table 4 Typical normalized input data set

Speed 1 2 3 4 5 6 7 8
(rpm)

New bearing
80 0.18 0.29 0.10 0.10 0.10 0.74 0.10 0.10
120 0.19 0.51 0.28 0.25 0.10 0.79 0.17 0.18
160 0.25 0.40 0.32 0.26 0.30 0.68 0.22 0.33
200 0.28 0.39 0.28 0.33 0.50 0.74 0.35 0.37
Bearing with a ball defect
80 0.22 0.23 0.23 0.21 0.90 0.68 0.44 0.43
120 0.10 0.10 0.51 0.45 0.30 0.20 0.49 0.45
160 0.25 0.29 0.70 0.66 0.90 0.47 0.50 0.50
200 0.17 0.23 0.90 0.90 0.70 0.10 0.60 0.61
Bearing with an outer race defect
80 0.66 0.59 0.39 0.44 0.70 0.84 0.20 0.22
120 0.85 0.76 0.48 0.48 0.30 0.90 0.42 0.28
160 0.88 0.73 0.60 0.66 0.30 0.79 0.68 0.84
200 0.90 0.90 0.68 0.74 0.30 0.84 0.90 0.90
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Each data set consists of the eight input parameters and
the target output of the network, which is normalized to
0.1 for normal bearing data, 0.6 for data taken from
a bearing with a ball defect and 0.9 for data corre-
sponding to a bearing with an outer race defect.
Initially, weights are assigned at random (between 0
and 0.5) and are continuously updated as per EBP
training algorithm. To obtain optimal network architec-
ture and the training parameters, training has been
stopped after completion of 2000 training iterations, to
save computational time, as the training convergence
behavior remains the same after this.
(1) Learning rate (h): The effectiveness of conver-

gence of training depends significantly on the
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value ofh, the optimal value of which is problem
dependent. As the numbers of input and output
nodes are fixed, eight and one, respectively, in
this case, for eight hidden nodes, chosen arbi-
trarily initially, the learning rate (h) is varied as
shown in Fig 13(a) and whenh = 0.375, the
convergence has been found to be faster and
better without leading to oscillations.

(2) Hidden nodes: The size of the hidden nodes is
one of the most important considerations during
training. The function of these nodes is to capture
the complex association between inputs and out-
puts, instead of mapping them directly. The num-
ber of hidden nodes is varied as shown in Fig
13(b). For the chosenh = 0.375, 16 hidden
nodes are found to be sufficient to achieve the
required classification.

(3) Momentum parameter (a): The purpose ofa is
to accelerate the training process, which involves
supplementing the current weight adjustments
with a small fraction of the most recent weight
adjustments. The value ofa is varied as shown
in Fig 13(c) anda = 0.2 is found to be optimal
in conjunction withh = 0.375 and the architecture
8 2 16 2 1 (no. of input nodes2 no. of hidden
nodes2 no. of output nodes).

(4) Accelerating constant (b): To further accelerate
the training process, an accelerating term has been

Fig. 13 Effect of training parameters on convergence. (a) Effect of learning rate (h). (b) Effect of hidden nodes.
(c) Effect of momentum (a). (d) Effect of accl. const. (b)
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introduced and the effect of this term is shown
in Fig 13(d). For the selected optimal architecture
(8 2 16 2 1) and the training parameters (h =
0.375, a = 0.2), at b = 1.0 much faster conver-
gence is achieved and henceb = 1.0 has been
taken as the optimal value for the final learning.

For the finally obtained optimal architecture (82 16
2 1) and the training parameters (h = 0.375,a = 0.2,
b = 1.0), the training has been continued and the final
learning curve is shown in Fig 14. After completion
of training, the weights and thresholds along with the
network architecture are stored to judge the network’s
classification ability to recognize the condition of the
bearing.

The ability of the fully trained network to distinguish
a defective bearing from a normal bearing is tested
using 30 fresh test patterns (which have been obtained
from interpolation of the original data). The ball bear-
ing states are categorized into two classes, based on
the network predicted output values: Normal bearing
(0.100–0.200) and defective bearing (0.201–0.900). It
has been noticed that the network clearly distinguished
a defective bearing from a normal bearing with cent
per cent accuracy, as seen from the first row of Table 5.
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Fig. 14 Learning curve (case 1)

Table 5 Classification performance of the neural network in deciding the component condition

Problem case Architecture No. of test patterns No. of correct Does the network
(EBP)/vigilance classifications estimate the
threshold (ART) component

condition correctly?

1. Bearing (EBP) 8 2 16 2 1 (h = 30 30 Yes
0.375,a = 0.2, b =

1.0)
2. Bearing (ART2) 0.8 30 30 Yes

Case 2

In the second case, the network is also trained with
the same 94 sets of data, but the number of output
nodes is taken as three and the target outputs are
assigned as follows.

New bearing (NB) [0.90, 0.01, 0.01]

Bearing with a ball defect (BD) [0.01, 0.90, 0.01]

Bearing with an outer race defect (OD) [0.01, 0.01,
0.90].

The training process is repeated as discussed earlier
to ascertain optimal architecture and other training
parameters, and the learning curves are typical of
those given in Fig 13. For the finally chosen optimal
architecture (82 16 2 3) and the training parameters
(h = 0.3, a = 0.1, b = 0.5), the learning process has
been continued, as discussed earlier and the final learn-
ing curve is shown in Fig 15. The classifying ability
of the fully trained network to recognize various ball
bearing states, has been tested on 12 fresh test patterns
and the results are shown in Table 6. From the table
it can be seen that the network correctly estimated the
bearing states on all test patterns.

ART2 results

The same normalized input data samples, as used in
EBP learning, without target outputs, are presented to
the ART2 type neural network for clustering the input
samples for condition monitoring of the bearing. The
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Fig. 15 Learning curve (case 2)

clustering process (training) involves the selection of
vigilance threshold (r) and optimal number of reclus-
terings (with the same inputs), and also considers the
effect of order of presentation of the inputs.

Training

The normalized data were presented to the network
(94 data sets, each set consisting of eight parameters)
and the training process has been done as described
below.

(1) Vigilance threshold (r): Vigilance threshold con-
trols the resolution of the classification process.
A low choice of r produces a high resolution of
the classification process, creating larger class
types (clusters). A highr produces a smaller
classification, creating fewer class types. The
effect of r is shown in Table 7. Atr = 0.7, it
has been observed that the ART2 network clus-
tered all 94 input patterns into five groups.

(2) Reclustering: Once all input patterns are clustered
based on the ART2 learning algorithm, some
input patterns may be actually closer to the cen-
troids (weights) of other clusters. Hence, reclus-
tering has been done, using current centroids
obtained through initial clustering, as initial refer-
ence weights for reclustering. This has been
repeated until no change of clustering during one
entire sweep occurs, i.e. there is no jumping of
patterns from one cluster to other clusters. The
effect of reclustering on the number of clusters
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Table 6 ANN classification performance (EBP)

Test pattern Actual class EBP classification
NB BD OD

1 NB NB — —
2 NB NB — —
3 NB NB — —
4 NB NB — —
5 BD — BD —
6 BD — BD —
7 BD — BD —
8 BD — BD —
9 OD — — OD
10 OD — — OD
11 OD — — OD
12 OD — — OD

Table 7 Effect of vigilance threshold (r) on number of clusters

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.1

No. of 89 62 33 23 15 11 5 3 2 1
clusters

Table 8 Effect of reclustering on number of clusters

r No. of reclusterings
0 1 2 3 4 5

0.6 11 11 13 14 14 14
0.7 5 5 6 6 6 6
0.8 3 3 6 6 6 6

Table 9 Effect of order of presentation of input patterns on number of clusters

r Normal order with five Reverse order with five
reclusterings reclusterings

0.6 14 10
0.7 6 3
0.8 6 2

is shown in Table 8 (though the number of
clusters is the same with three or four reclus-
terings, the number of patterns in each cluster
is different). It has been noticed that after five
reclusterings, no shifting of patterns from one
cluster to another is found and hence five is taken
as the optimal number of reclusterings.

(3) Order of presentation of input patterns: ART2 is
sensitive to the order of presentation of inputs
and yields a different clustering for the same
input patterns. To overcome this, the input data
have been presented in the reverse order and
reclustering has been allowed five times. The
effect of this is shown in Table 9.
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After completion of training, the weights (updated
centroidal coordinates of each cluster) along with the
optimal vigilance threshold (r) and network architec-
ture are stored for testing purposes.

Testing

The classification performance of the trained network
has been tested on 12 fresh test patterns (same as
those used in EBP training) and the results are summar-
ized below.

(1) At r = 0.8, with five reclusterings, ART2 created
two clusters on reverse order presentation of
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Table 10 ANN classification performance (ART2)

Test Pattern Actual Class ART2 Classification
NB BD OD

1 NB NB — —
2 NB NB — —
3 NB NB — —
4 NB NB — —
5 BD — BD —
6 BD — BD —
7 BD — BD —
8 BD — BD —
9 OD NB — —
10 OD — — OD
11 OD NB — —
12 OD — — OD

Table 11 Neural network training time comparison

Problem Optimal architecture EBP training time (CPU ART2 training time (CPU
time in min) time in min)

1. Bearing condition 8 2 16 2 1 (h = 0.375, a 600 8
estimation (case 1) = 0.2, b = 1.0)
2. Bearing condition 8 2 16 2 3 (h = 0.3, a = 840 8
estimation (case 2) 0.1, b = 0.5)

inputs, clearly separating defective bearing data
from normal bearing data. Testing has been car-
ried out on 30 fresh test patterns and the results
are shown in the second row of Table 5. From
the table, it can be seen that ART2 network’s
classification is exceptionally good.

(2) At r = 0.7, with five reclusterings, ART2 created
three clusters with reverse order presentation of
inputs. Testing has been done on 12 fresh test
patterns, and the ART2 classification is shown in
Table 10. The results show that ART2 is not so
effective in isolating bearing defects as compared
to EBP network, but the utility of the model
has been overwhelmingly satisfying in detecting
whether the bearing is defective or not.

Comparison of training time

Table 11 shows a comparison of training time for both
the network models for the chosen problem for both
the cases. The training time mentioned is the CPU time
on a PC386 machine at 40 MHz with a coprocessor at
33 MHz. Referring to the table, it can be noticed that
the ART2 network is about 100 times faster than the
EBP neural network in the training mode (but the
classification performance achieved with the latter is
much better than that achieved with the former). Test-
ing can be implemented on both the network models
in a fraction of a second.
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Conclusions

Two neural network approaches, based on the super-
vised Error Back Propagation (EBP) learning algorithm
and the unsupervised Adaptive Resonance Theory-2
(ART2) based training paradigm, have been developed
for bearing condition recognition. The results of these
studies show the potential suitability of these
approaches for the chosen application, for use in indus-
try.

(1) The performance of the error back propagation
neural network in recognizing ball bearing states
has been found to be exceptionally good. Using
the proposed neural network, any defective ball
bearing can be distinguished from a normal one
with cent per cent reliability. Moreover, the net-
work has been capable of estimating the three
different ball bearing states (having different
localized defects) for diagnostic purposes with a
success rate of over 95%.

(2) The results of bearing condition monitoring using
ART2 neural network lead to the following con-
clusions.
The ART2 neural network has been found to
be extremely fast, about 100 times faster than
EBP learning.
A faulty bearing can be distinguished from a
normal bearing with 100% reliability.
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The recognition of different ball bearing states for
diagnostic purposes is not so effective as com-
pared to the classification achieved through EBP
network, but the performance of the ART2 neural
network is overwhelmingly satisfying in dis-
tinguishing a normal bearing from defective bear-
ings.
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