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Wafer bin map recognition using a neural network approach

S. F. LIUt, F. L. CHENt* and W. B. LU}

Although the fabrication of modern integrated circuits uses highly automatic and
precisely controlled operations, equipment malfunctions or process drifts are still
inevitable owing to the high complexity involved in the hundreds of processing
steps. To detect the existence of these problems at the earliest stage, some import-
ant analytical tools must be applied. Among them is wafer bin map analysis.
When the bin map exhibits specific patterns, it is usually a clue that equipment
problems or process variations have occurred. The aim was to develop an intel-
ligent system that could automatically recognize wafer bin map patterns and aid
in the diagnosis of failure causes. A neural network architecture named Adaptive
Resonance Theory Network | was adopted for the purpose. Actual data collected
from a semiconductor manufacturing company in Taiwan were used for system
verification. Experimental results show that with an adequate parameter, the
neural network can successfully recognize and distinguish random and systematic
wafer bin map patterns.

1. Introduction

In many countries, such as the USA, Japan, South Korea and Taiwan, semicon-
ductor manufacturing has emerged as one of the most important industries.
However, complexity and cost continue to increase with each new generation of
semiconductor products. Semiconductor companies are being forced to improve
their manufacturing capability and develop their own techniques to create process
steps with tighter tolerances and smaller geometrics on larger dies. To compete in
this world-wide market, quality improvement and yield enhancement have received
increasing attention. For these reasons, every semiconductor manufacturing com-
pany makes an effort to monitor and control the manufacturing processes to reduce
variations and enhance yield (Mirza et al. 1995).

Typically, all dies on a wafer after the completion of the wafer manufacturing
process, must go through the so-called circuit probe (CP) test. The purpose of the CP
is to test the electrical functions of a die to determine the inferior dies on each wafer.
CP consists of serial pass-or-fail functional tests. The CP results determine the grade
of each die on a wafer. Each grade will be presented using a unique bin code. In
general, for different product types and different companies, the number of die
grades differs. Five, 10 or even 75 die grades are possible (Cox and Reynolds
1996). A good die can pass the functional tests thoroughly and be assigned with
the best grade. Other bin code assignments usually indicate different degrees of
quality inferiority. Table 1 illustrates an example of CP results. Here, all of the
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Bin Count  Yield (%)
DB 1 GOOD 875 78
DB 5 OPEN/SHORT 4 0
DB 6 I/P LEAKAGE HIGH 2 0
DB 16 GROSS FUNCTION (6.5V) 5 0

DB 18 CKB FUNCTION (4V) 22 |

Table 1. Example of CP results.

dies are bad except for those with Bin Code 1. After all of the dies in a wafer have
been CP-tested., a so-called wafer bin map (WBM) can be generated to depict the
distribution of quality grades. Since the occurrence of any quality inferiority can
usually be attributed to some specific causes, it is believed that WBM analysis can
help determine the possible causes of failures and help to devise solutions to prevent
the reoccurrence of these failures.

Patterns existing in WBMs may be classified into random and systematic types
(Kaempf 1995) (figure 1). Typical examples of systematic WBMs include cluster,
circle, arc, doughnut and Bull's-eye patterns. Traditionally, the analysis of these
patterns relies heavily upon the engineers’ experience and domain knowledge.
Since this "pocket” knowledge is difficult to accumulate, several advanced techniques
have been developed to aid in the diagnosis of WBM patterns. These techniques can
be categorized into statistic and artificial intelligence approaches.

1.1.  Statistic approach

It presented a join-count statistics based spatial clustering method to analyse
WBMs in two-dimensional space. Suppose that the ith die is the centre of a
WBM, the relationship between this die and the four neighbouring dies could be

defined as follows:
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Figure 1. Systematic (left) and random (right) WBMs (Kaempf 1995).
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where, J(GG), J(GB) and J(BB) are the number of times that two neighbouring dies
are good, one is good while the other is bad, and all are bad, respectively. If ¥ = 1,
die i is good. If ¥ = 0, die 7 is bad. §; is a neighbouring index, and = 1 if dies / and j
are neighbours. Otherwise, 6; = 0. The index below evaluates whether the dies on
WBMs are scattered randomly:

& ((J(GG) +0.5)(J(BB) + 0.5))
i (J(GB)/2 + 0.5)’ '

When 0 approaches 0, the dies are randomly scattered on the WBMs and no sys-
tematic patterns exist. When 0 > 0, the dies are scattered systematically (Taam and
Hamada 1993). A similar approach was also adopted by Kaempf (1995) to determine
the distribution of dies on WBMs using a binomial test.

Mirza et al. (1995) divided the patterns on WBMs into gross (systematic) and
local (random) types and proposed methods to distinguish these two types of pat-
terns. Gross failure means that a large die area or even all of the dies on a wafer are
bad. This kind of failure may be caused by temperature variations during processing
or other serious reasons. For Local failure, small die areas are bad. Pinholes from
particles or spot defects are usually the main causes., Mirza et al. used a Gibbs/
Markov random field (G/MRF) model to develop a Spatial Randomness Test meth-
odology. Because the G/MRF model may be used to determine object independence
or dependence, it can recognize gross failure and local failure on WBMs.

Friedman et al. (1997) developed a two-stage spatial pattern analysis approach.
In the first stage, good or bad die images (white and black; 0 and 1) were preceded
with an averaging operation where each die was averaged by its 3 x 3 or 5x 5
neighbourhoods. The original die is then replaced by the obtained average value.
A smoothed grey-level WBM could be obtained after this stage. A threshold value
must be selected in the second stage. If the grey level of a die exceeds the threshold
value, it is determined to be bad; otherwise, it is good.

It must be noted that although the statistical based approaches can detect the
existence of systematic patterns, they lack the capability to identify the correct
pattern types. It is therefore difficult to devise solutions for the detected failures.

1.2. Artificial intelligent approach

Lin (1998) used machine vision techniques to preprocess WBMs. A supervised
neural network architecture (Back Propagation) was then applied to recognize the
systematic patterns. In his research, three limitations were determined, which are
discussed as follows.

e The image-based approach requires much storage space. It also requires long
processing time in the preprocessing stage.

e In the back propagation (BP) architecture, the number of output nodes must
be defined in advance. In fact, a skilled manufacturing engineer cannot be sure
how many systematic patterns actually exist. If new patterns occur, they will
not be detected and recognized.

e Sufficient symbolic training patterns must be provided. A tremendous amount
of time will be consumed in training new patterns.

Similar to Lin's work, software named NeuralNet'™ Engineering Data Analysis
(NEDA), developed by Defect & Yield Management, Inc. (DYM), was applied to
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neural network techniques to detect similar patterns. Enough templates must be
provided to train the knowledge base. Meanwhile, users cannot retrain new WBM
patterns and hence the flexibility is limited.

In view of the limitations in the above methods, this research was intended to
develop an intelligent algorithm for detecting a greater number of different WBMs.
To speed up the detection process and to provide flexibility for new pattern learning,
a neural network architecture named Adaptive Resonance Theory (ARTI1) was
adopted in this research. Details about the development of this algorithm are pre-
sented below.

2. Recognition of patterned wafer bin maps
2.1. Design the input vector

Before the collected wafer bin maps can be analysed, the input data format
design is crucial for sample pretraining and future recall procedures. The input
training sample vector is also named the characteristic vector. The number of
processing units depends upon the type of problems to be studied. A linear
transformation function is usually used to pass the input vector into the next
layer. In solving a problem, in which the recognition performance may be
influenced by too much noise (Lin 1998), a noise reduction procedure was first
applied to all of the training samples. The input vector design differs for every
product type. The number of dies in a specific product type determines the
number of nodes in the input layer. The detailed notations are explained below
and shown in figure 2

N number of dies per wafer,
X; input vector of the ith sample data, and
x; jth element of the input vector,
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Figure 2, Relationship between the input vector and dies.
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where
Xi = (X, X0y X3y -y Xiw)
1, if the bin code is not equal to 0;
s { 0, otherwise.

After the required sample training data for the neural network has been pro-
vided, the number of nodes in the input layer and their corresponding values must be
defined to start the training process. In this research, the unsupervised neural net-
work was trained according to different product types. The reasons are as follows.

e The number of input processing units is the total number of dies for a wafer.
Different product types have different numbers of dies for each type of wafer.
The collection of weights must be prepared by product type.

e Since the unsupervised neural network can also classify a single input pattern,
data insufficiency is not a critical concern in the neural network architecture.
After training with the available samples, any type of pattern can be recog-
nized.

e Although the life cycles of certain products may not be long, a considerable
number of wafers will be produced in fabrication. Pattern recognition training
is also required for these types of products.

2.2.  Selection of network model

Because of the huge number of WBMs, it is difficult and time consuming to
decide how many types of patterns may appear. That is, the number of output
patterns is unpredictable. For this reason, network learning can only be accom-
plished using the input data alone. This is the reason why unsupervised learning
was adopted. Chen and Liu (2000) used ART1 and SOM architectures to compare
the pattern recognition performance on defect maps (under wafer level considera-
tion). The results showed that ART1 performed better than SOM. Therefore, among
the many kinds of unsupervised neural networks architectures, the Adaptive
Resonance Theory (ART) was considered in this research. The ART network
accepts input vectors that are classified according to the stored pattern they most
resemble. The ART network also provides a mechanism allowing adaptive expan-
sion of the neuron output layers until an adequate size is reached based on the
number of classes. The ART network can adaptively create a new neuron corre-
sponding to an input pattern if that pattern is determined to be ‘sufficiently” different
from the existing clusters. This determination, called the vigilance test, is incorpo-
rated into the adaptive backward network. The ART network modifications are
ARTI] and ART2 (Pandya and Macy 1996). The ART1 model clusters binary
input patterns and ART2 clusters analogue input patterns. Considering the signifi-
cant processing timesaving, ARTI was selected here. A good knowledge-based
system must satisfy two characteristics: stability and plasticity. ART]1 uses a vigi-
lance test to learn new patterns without forgetting old knowledge and thus can solve
the contradiction between stability and plasticity. The vigilance test concept is
described as follows.

e If the characteristic of a new pattern is quite similar to a previously stored
pattern (vigilance test passed), only a slight modification of the knowledge
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contained in the old pattern will be executed. The characteristics of the old and
new patterns can be satisfied and the old knowledge can be properly retained.
The stability of the system can be maintained.

e If the characteristics of a new pattern are not similar to any of the previously
stored patterns (vigilance test failed), new knowledge for the new pattern will
be created. This implies quick learning of a new pattern, or the so-called
plasticity.

The ART] architecture construction includes an input layer, network connection
and output layer (figure 3). It uses an output-processing unit to present a certain
cluster. Every connection weight between the input layer and the output units indi-
cates the characteristics of a specific cluster. The number of output processing units
passing the vigilance test may exceed one, so the network utilizes a match value to
control the output processing units. The vigilance test is first applied to the output
processing units with the highest match value. In general, the higher the match value
possessed by an output-processing unit, the higher its similarity.

The vigilance value plays an important role in the ART1 algorithm. This value
can be used to distinguish the similar patterns. The higher the assigned vigilance
value, the fewer the number of output units that will pass the vigilance test. On the
contrary, the lower the assigned vigilance value, the greater the number of output
units that will pass the vigilance tests. In other words, this system can detect similar
but different types of clusters.

The detailed steps of the ART1 algorithm developed in this research are stated
below and shown in figure 4.

(1) Set network parameter
Nout = 1
(2) Set initial weighting matrix, W

W'i][1] = 1 (a similar value)

whli[) = (a match value)

1
N 41

(3) Input a training sample vector X

Figure 3. ARTI network.
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Figure 4. ARTI network procedure.

(4) Calculate the match value

net(f] =y W'lil[j] - X[i

leount =0

set ¥1/]=0

LIS ]
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(5)

(6)

(7

(8)

9)
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Determine the maximum match value

net[j*] = m]ax{ner[j])

Calculate the similar values

X1 = _ X0
1w} - x| =Y wWil* - X[

LW x|
1T

Judge and test the vigilance value

if j* < p(vigilance value)

go to step (8) (not similar, test another output processing unit)
or else

go to step (9) (similar enough, modify weights)

Test any available output processing units

if lcount < Nout

test another output processing units to find the output processing unit
with max. match value,

set lcount = lcount + 1

set net[ j*| =0

go to step (5)

or else (no other output processing units require testing)

(a) create a new cluster output

set Nout = Nout + 1

set new weight

W'[i][Nout] = X[i]

WOl [Nout] = —
0.5+ XIi
(b) set output unit value
if j=j*
¥lj=1
else
Y[jj=0

(c) go to step (3)
Modify the weight
(a) modify weights

Wi = Wi * - X1
Wi - X 1]

Wl =

05=3 Wil Xl
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(b) set output unit value

if =¥

Yjl=1

or else
Y[jj=0

(c) if a learning cycle is finished and no new clusters are created, the final
results are obtained and the network ceases to learn situations.
or else go to step (3)

3. Network training

There are two phases in the ART1 architecture. One is the training process and
the other is the recognition process (figure 5). After the intelligent patterned WBMs
recognition system was conceptually designed, a practical software system was devel-
oped for system implementation and verification. This system was developed using
Borland C++, under a Microsoft Windows 98 operating platform. Actual data from
a product with 387 dies for a wafer were provided by a semiconductor company and
tested through this system. Before the ARTI network can be used to identify the
systematic pattern types on the wafers, the network must be trained. Since ART]1 is
an unsupervised network, it is not necessary to link the input and output vectors to
attain good recognition. That is, we do not need to send the training output results
back into the network.

Because the learning is unsupervised, the ARTI network convergent process
cannot be evaluated using error rate or square error. Total distance is used in this
kind of network and it can be defined as:

a1 At e s oAl
Total distance = Z{: (mim d, )
where d’ is the distance between the pth samples and the jth output processing
unit = 1 — similarity between the pth samples and the jth output processing unit.
During our training processes, the ARTI1 network converged in three cycles. The
time utilized for training 20 samples on a PC with an Intel Pentium 166 and 64 MB
RAM was approximately 3s.

Phase I : ARTI1
Training
Process

Training ART! Neural Network P;;';L‘;“"
Data set Training Process B

Wafer Bin Map
Database

Systematic or
Testing ART! Neural Network Random

Data set Recognition Process WBM:
Phase I1: ART1 A :

Recognition
Process

Figure 5. Two phases in the ARTI network.
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4. Experimental results

To evaluate the performance of the developed system, the ARTI network must
be trained and tested using actual samples. Owing to the business security considera-
tion and the fact that ARTI network does not need many samples for training. A
semiconductor manufacturing company in Taiwan provided only 20 WBM samples.
Each of these map samples consisted of 387 dies. For these 20 WBMs samples,
skilled manufacturing engineers identified the following three types of systematic
patterns:

(1) Type I: ring-type with small thickness (figure 6).
(2) Type II: ring-type with large thickness (figure 7).
(3) Type I11: Bull’s eye (figure 8).

The ART1 network was trained and adjusted to recognize the above three systematic
patterns. It adjusted the number of output nodes (number of pattern types) accord-
ing to the vigilance value. With an adequate vigilance value, the training WBMs will
be assigned to the right group. According to the pilot runs in this study, when the
vigilance value is set in the range (0.330, 0.340), the classification of all of the training
WBMs would be the same as the results from skilled manufacturing engineers. The
exact vigilance value used in the ART1 training was set to 0.335. The ART1 network
converged after three cycles.

With the trained ART1 network, the weight parameters were used to test the
other WBMs. Test sample classification was determined using the match and thresh-
old values. The match value (ranging from 0 to 1) indicates the similarity between a
test sample and a certain pattern type. The higher the match value, the more likely a
test sample will pass the threshold and be allocated to a group. If the match value is
smaller than the threshold value, the current test sample will not be allocated to any
group. In this situation, the test sample was either a random pattern or an unrecog-
nized pattern. If the match value is greater than the threshold value, the test sample
will be recognized as one of the three known systematic patterns or unknown pat-
terns and further analysis will be required. Figure 9 illustrates the procedures for
testing WBMs and the possible test results are summarized below.

(1) Match value < threshold value. In this situation, the test sample is either
recognized as a random or new pattern that has not yet been recognized.

(2) Match value > threshold value. The test sample is classified as one of the
three pattern types if only one match value exceeds the threshold value. If
two or more match values are greater than the threshold value, the current
testing sample will be identified as an unknown pattern.

Seventy-five WBMs were tested in this research and all were of the same product
type (DRAM) but from three different lots. Among these 75 WBMs, random pat-
terns and systematic patterns were included. The experimental results are summar-
ized in table 2. Match [1] to match [3] in table 2 represent the match value of a test
sample to the three systematic patterns.

According to the results in table 2, it is clear that the match values of the 50
WBMs from Lot_2 and Lot_3 are quiet small, which means that these maps do not
match any of the known patterns. Only random patterns exist on the maps from
Lot_2 and Lot_3. These results are consistent with the recognition results verified by
the skilled manufacturing engineers. The WBM test results from Lot_1 are of more
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Figure 8. Type III defect— Bull's-eye WBMs.
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Map

Lot_I

Lot_2

Lot 3

10

match[1]=0.134200
match[2] =0.110980
match[3] = 0.054600
match[1]=0.638739
match[2] = 0.510920
match[3] = 0.425100
match[1]=0.337230
match[2] = 0.251740
match([3] = 0.234000
match[1] = 0.246600
match[2] = 0.170900
match[3] =0.120900
match[1]=0.374500
match[2] = 0.264140
match[3] = 0.304200
match[1]=0.668520
match[2] = 0.504580
match[3] = 0.335400
match[1] =0.473960
match[2] =0.371940
match[3] = 0.249600
match[1] = 0.077870
match[2] = 0.078360
match[3] = 0.054600
match[1]=0.035100
match[2] = 0.039000
match[3] = 0.046800
match[1]=0.581160
match[2] = 0.451000
match[3] = 0.370500
match[1]=0.321530
match[2] = 0.259180
match[3]=0.175500
match[1]=0.194820
match[2] = 0.118780
match[3] =0.105300
match[1]=0.203030
match[2] =0.110620
match[3] = 0.109200
match[1]=0.667099
match[2] =0.587499
match{3] = 0.382200
match[1]=0.237150
match[2] = 0.160260
match[3] = 0.120900
match[1] = 0.094890
match[2] = 0.086160
match[3] = 0.035100
match[1] = 0.866849
match[2] = 0.691039
match[3] = 0.643499
match[1]=0.317810
match[2] = 0.238980
match[3]=0.163800
match[1] = 0.464690
match[2] =0.321240
match[3] = 0.323700

match[1]=0.101400
match[2] = 0.120900
match[3] = 0.070200
match[1] = 0.128080
match[2] = 0.143600
match[3] = 0.105300
match[1] = 0.071000
match[2] = 0.049640
match[3] = 0.042900
match[1]=0.131490
match[2] =0.126580
match[3] = 0.089700
match[1]=0.161550
match[2] = 0.101760
match[3] = 0.109200
match[1] = 0.098300
match[2] = 0.088640
match[3] = 0.074100
match[1]=0.168730
match[2] =0.147500
match[3] = 0.081900
match[1]=0.112970
match[2] =0.125160
match[3] = 0.081900
match[1] = 0.147090
match[2] =0.101760
match[3] = 0.097500
match[1]=0.134820
match[2] =0.088640
match[3] = 0.089700
match[1]=0.047730
match[2] = 0.040420
match[3] = 0.023400
match[1] = 0.058500
match([2] = 0.074460
match[3] = 0.066300
match[1] = 0.087660
match[2] = 0.089000
match[3] = 0.042900
match[1]=0.205820
match[2] = 0.151400
match[3] = 0.093600
match[1] = 0.143060
match[2] = 0.099640
match[3] = 0.054600
match[1]=0.155250
match[2] =0.117720
match[3] =0.113100
match[1] = 0.093470
match[2] = 0.084740
match[3] = 0.085800
match[1] = 0.124800
match[2] =0.113100
match[3] = 0.124800
match[1]=0.292420
match[2] = 0.236500
match[3] = 0.144300

match[1]=0.121700
match[2] = 0.086160
match([3] = 0.070200
match[1] = 0.068160
match[2] = 0.053540
match[3] = 0.050700
match[1]=0.047730
match[2] = 0.036520
match[3] = 0.023400
match[1] = 0.178030
match[2] =0.117720
match[3] = 0.120900
match[1] = 0.066300
match[2] = 0.081900
match[3] = 0.058500
match[1] = 0.085670
match[2] = 0.067720
match[3] = 0.062400
match(1] = 0.097320
match[2] = 0.087580
match(3] = 0.050700
match[1]=0.051630
match[2] = 0.070560
match[3] = 0.054600
match[1]=0.218970
match[2] = 0.166660
match[3] =0.117000
match[1]=0.120640
match[2] = 0.097860
match[3] = 0.085800
match[1]=0.090630
match[2] = 0.075520
match[3] = 0.081900
match[1]=0.079860
match[2] = 0.073040
match[3]=0.042900
match[1]=0.117180
match[2] = 0.060280
match[3] = 0.046800
match[1]=0.077380
match[2] = 0.053540
match[3]=0.031200
match[1] = 0.128520
match[2] = 0.112400
match[3] = 0.093600
match[1]=0.215300
match[2] = 0.209540
match[3] = 0.156000
match[1] = 0.060360
match[2] = 0.051060
match[3] = 0.027300
match[1] = 0.059430
match[2] = 0.062760
match[3] = 0.058500
match[1] = 0.036030
match[2] = 0.020920
match[3]=0.031200

(continued opposite)
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Lot_1

Lot_2

Lot_3

24

25

match[1]=0.109950
match[2] =0.095740
match[3] = 0.050700
match[1] = 0.168370
match[2] = 0.138280
match(3] = 0.097500
match[1] = 0.051630
match[2] = 0.071980
match[3] = 0.042900
match([1] = 0.595720
match[2] = 0.536480
match[3] = 0.315900
match[1] = 0.249420
match[2] = 0.210280
match[3] = 0.097500
match[1] = 0.287950
match[2] = 0.231180
match[3] = 0.187200

match[1]=0.138720
match[2] =0.108140
match[3] = 0.085800
match[1]=0.231080
match[2] =0.145020
match[3] = 0.117000
match[1]=0.219430
match[2] = 0.152460
match[3] = 0.124800
match[1] = 0.103260
match[2] = 0.128360
match[3] = 0.078000
match[1] = 0.390720
match[2] = 0.256000
match[3] = 0.198900
match[1]=0.130920
match[2] = 0.063820
match[3] = 0.085800

match[1]=0.055530
match{2] = 0.045740
match([3] = 0.046800
match[1] = 0.076890
match(2] = 0.060280
match[3]=0.031200
match[1]=0.095020
match([2] = 0.062400
match[3] = 0.058500
match[1]=0.220800
match[2] = 0.106020
match[3] = 0.089700
match[1]=0.139650
match[2] = 0.114880
match[3] = 0.085800
match[1]=0.124180
match[2] = 0.113460
match[3] = 0.085800

Table 2. Testing results of 75 WBMs.
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Figure 10.

Examples of ring-type patterns with a mouse bite.
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interest. Two of the match values (match [1] and match [2]) from maps 2, 6, 14 and
23 are greater than the threshold value. According to the predetermined rule, if two
or more match values are greater than the threshold value, the tested sample will be
classified as having an unknown pattern. This does not agree with the preknown
answers provided by the manufacturing engineers. The algorithm failed to correctly
recognize the four maps. The recognition rate can therefore be claimed to be about
95% (71/75) at this moment.

To improve the recognition rate, the aforementioned four maps (maps 2, 6, 14
and 23) from Lot_1 deserve further analysis. The systematic pattern of map 2 is a
ring type pattern with a mouse bite on the top of the ring, while the patterns of maps
6 and 23 have a mouse bite on the left and right sections of the ring (figure 10). A
ring-like pattern is a common characteristic of these maps and the known ring type
patterns. Consequently, the test result shows that these maps are similar to the two
ring type patterns. To increase the recognition capability of these pattern types, these
three maps should be trained into the network to become a new pattern.

In summary, the approach presented in this paper helps skilled manufacturing
engineers to screen out the systematic patterns. The recognition rate can be up to
95%, which can further be improved by training with more data in the future. This
approach also successfully replaces the human recognition and improves the pro-
cessing speed. In real situations, there may be plenty of possible situations in which
systematic patterns will occur. Although the developed system can only recognize
three types of patterns due to the limited number of available samples, the ARTI
network can be retrained whenever new patterns are presented to the system. This
flexibility makes it a valuable tool in wafer bin map recognition.

5. Conclusions

In view of increasing demands in the area of quality improvement and capability
enhancement in semiconductor failure analysis. this research developed an auto-
mated recognition system for wafer bin maps collected from circuit probe tests.
The reason this area was chosen was because a fast and correct recognition of bin
maps is an essential step in maintaining or improving product yield. This system
features a modular structure and incorporates the Adaptive Resonance Theory
Networkl (ARTI) technique. It has accomplished the initial requirements of our
expectations. It provides not only automatic recognition of the known patterns but
can also detect potential and unknown patterns. Actual data obtained from a semi-
conductor manufacturing company were used to train and test this algorithm. The
recognition rate was about 95%. It is believe that this rate can be improved after
more sample maps have been trained into the network. A possible extension of this
research is the incorporation of defect knowledge to determine the possible causes in
the manufacturing processes.
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