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Airborne particle classification that leads to particle source 
identification is important to both the improvement of 
the environment and the protection of public health. In 
this study, individual airborne particles were analyzed 
using a computer-controlled scanning electron microscope 
(CCSEM). It, was found that a more accurate particle 
classification can be obtained when it is based on both the 
chemical compositions and a shape index of the individual 
particles compared to one that is based only on the 
chemical compositions. This study also demonstrated that 
a newly developed adaptive resonance artificial neural 
network system (ART2A) has a high potential value in 
particle classification. The ARTBA system can identify 
new cluster(s) for the unknown particles and dynamically 
update the particle class library. Thus, it provides a way 
to both identify and further investigate new sources for 
the airborne particles. 

Introduction 

Airborne particles play a very important role in air 
quality with 1;he resulting problems of public health. In 
order to make effective control strategies, studies of particle 
composition, sources, and transportation are needed. 
Receptor models based on single-particle classification 
have proven to have high specificity for source identifica- 
tion and airborne particle mass apportionment ( I ,  2). 
However, these models depend directly on the ability to 
classify particles into well-defined classes. Thus, particle 
classification is a critical first step in the use of single- 
particle receptor models. 

The computer-controlled scanning electron microscope 
(CCSEM) is a powerful tool to analyze individual particles. 
I t  can automatically scan a portion of a sample filter for 
individual particles and provide fluoresced X-ray and 
image at  the same time. Currently, particle classification 
has been performed based only on the chemical informa- 
tion obtained from the fluoresced X-rays. However, some 
particles may share very similar chemical composition but 
come from different sources. For example, Figures 1 and 
2 show the X-ray fluorescence spectra and the images of 
a clay mineral particle and a fly ash particle, respectively. 
From the X-ray spectra, it can be seen that the two particles 
have very similar chemical compositions. However, their 
images show that their shapes are quite different. In order 
to develop effective pollution control strategies, it is 
important to distinguish between these two sources. The 
fly ash particles are from combustion processes. The clay 
mineral particles are crustal material from natural sources. 
Thus, there is a need to combine a shape index with the 
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chemical compositions so that more accurate particle 
classification can be achieved. 

There are many kinds of classification models. Basically, 
the classification models are divided into two groups. One 
includes supervised methods, and the other encompasses 
unsupervised methods. Supervised methods develop a 
set of rules for each well-defined class using objects whose 
classification are known (training set). The particles are 
then assigned to the classes according to their rules. Once 
the rules are built, they are fixed. There is no way to 
change them without reanalyzing the original training set. 
In unsupervised methods, there are no prefixed rules for 
each classes. Particles are divided into clusters based on 
a similarity matrix and a clustering criterion. The 
similarity measures are mainly based on a distance matrix 
or correlation matrix. 

The particle class balance (PCB) model is one of the 
well-developed supervised model. The PCB model was 
developed by Hopke and Kim (I). In the PCB model, an 
expert system had to be developed to provide classification. 
The expert system is a system with a set of well-defined 
rules that define all the possible clusters. Then all of the 
particles are assigned to the corresponding clusters. 
However, this model cannot classify the particles that do 
not belong to any of the known classes. A dynamic system 
that could identify and establish rules for new clusters 
would make single-particle methods much more effective 
as well as easier to use. 

Artificial neural networks are models that simulate the 
human pattern recognition system and perform pattern 
recognition for multiple complex signals or data. In this 
study, an adaptive resonance theory (ART) neural network 
was applied to perform the particle classification. ART 
is one kind of a neural network that can perform fast 
category learning and recognition. ART2 was first de- 
scribed by Grossberg ( 3 , 4 ) .  A series of further develop- 
ments were obtained by Carpenter, Grossberg, and co- 
workers (5-10). An application of ART to automated 
character interpretation has been accomplished by Gan 
and Lua (11). The first application in chemistry was by 
Wienke and Kateman (12). A modified algorithm, ARTBA, 
was developed by Carpenter and co-workers (13) in 1991. 
ART2A algorithm, a variation with only one weight matrix, 
performs as well as the ART2 method but runs two to 
three times faster. I t  has been applied in the particle 
shape classification (14). ART2A can perform recognition 
well, and most importantly, ART2A can generate new 
clusters for particles with unfamiliar patterns and incor- 
porate the rules for this new cluster in its knowledge base 
for the further use. 

The significance of this study is that both the chemical 
composition information and shape index were included 
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Flgure 1. X-ray s p m m  and image of a clay mineral particle. 

in the particle classification scheme. Secondly, the newly 
developed artificial neural network ARTZA was used so 
that new clusters can be dynamically generated for the 
particles that do not belong to the initially known classes. 

Principles of the ART2A Model 

The ART2 system can simulate human pattern recog- 
nition and has some of the advanced properties that a 
human brain has. It is self-organizing. It has a plasticity 
and stability balance in building rules for the pattern 
recognition. Plasticity means that the system keeps 
learning from the input information until it discovers 
critical feature patterns or prototypes that represent an 
invariant of the set of all experienced input patterns. 
Stability means that the system reaches a steady state 
while the learned codes are dynamically buffered against 
relentless recording by irrelevant inputs. There is a trade 
offbetween plasticityandstability. Plasticity is important 
in order to learn about significant new events. However, 
the system must remain stable in response to irrelevant 
or often-repeated events. This system can preserve its 
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plasticity-stability balance even with substantial and 
highly complex input patterns. 

The ART2 system is self-scaling to help identify critical 
feature patterns. Thus, important features can be identi- 
fied even though the signal might be very small. It can 
self-adjust the search order. The ART2 system is capable 
of a parallel memory search that adaptively updates its 
search order to maintain efficiency as its recognition code 
becomes arbitrarily complex because of prior learning. It 
canadjustthesearchorder suchthatit can remainoptimal 
in many kinds of knowledge domains. 
Inaddition,theART2systemcandirectlyaccessfamiliar 

patterns without going through the whole "rules" library. 
Finally, the ART2 system can get the environment involved 
in the whole processing procedure. This means that the 
whole processing procedure is not isolated; a vigilance 
parameter can be adjusted by the user depending on 
whether a coarse discrimination or a fine discrimination 
is needed in different environments. The ARTZA system 
allows a fixed set of feature detectors to function suc- 
cessfully in an environment that imposes variable per- 
formance demands. 



FLY ASH PARTlCLEiZ 
I I 

1 0 0 8 6 ~  - 2.0 urn 

Li i 2 3 4 5 6 i 9 10 
Fbure 2. X-ray Spectrum and Image of a fly ash palticle. 

Figure 3 shows the structure of an ART2 system. 
Basically, the systemcontains two large parts. One portion 
is the attentional subsystem composed of the input field, 
F~,andacategoryfield,Fz. Theother part is the orienting 
subsystem. The attentional subsystem processes the 
familiar objects while the orienting subsystem resets the 
attentional subsystem when an unfamiliar object is 
encountered. Theorienting subsystem is to judgewhether 
an object has a familiar pattern and can fall into a known 
cluster, or on the other hand, if it has an unknown pattern 
and needs to create a new recognition code. The two 
subsystems are connected through a hottom-up F1-F2 
adaptivefilter and a up-bottomFz-FI adaptive filter shown 
in Figure 3. 

An input vector generates a set of virtual outputs via a 
bottom-up adaptive filter. Thesevirtual outputs describe 
the membership of the input vector to every distinct 
training class. The virtual output with the highest 
response(winner) is fed hackviaaup-hottomfiltercreating 
itsindividualvirtualinputvector inFl. Thisvirtual input Input 
vector is then compared with the original input vector 
using a similarity measure. If these two input vectors are 

Orienting Subsystem Attentional Subsystem 

Fbure 3. Diagram of me ART2A system. 
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similar within predefined limits, the network is in reso- 
nance with the original input vector. The network answers 
with a real output for the corresponding class. Simulta- 
neously, the network learns this input vector by weights 
adaption for the corresponding class. 

If no resonance occurred, this situation means that the 
neural network has discovered a novelty. The input vector 
does not fit into any of the currently known classes. The 
network then decides to open a new class box by an 
extension of the number of possible outputs (classes) and 
by an extension of the dimensions of the weight matrices. 
The network learned the detected novelty by structure 
adaption. This idea of "resonance" and "adaption" is very 
close to the reality of learning in human brains. This new 
concept promises to make the ART classifier even robust 
like the human brain under unexpected pattern recognition 
situations. 

ART2A is a modified version of ART2. It  emulates the 
self-organize recognition property of the ART2 neural 
network, but with a speed that is two or three times faster 
than the ART2 system (13). The improved speed of the 
ART2A algorithm is due to the explicit specification of 
steady-state variables as a composition of a small number 
of nonlinear operations (13). The steady-state equations 
replace a time-consuming multilayer iterative component 
of ARTB. The algorithm used in this study is presented 
as follows. 

Initialization of the Network. Suppose the raw data 
matrix, X, consists of n row vectors, Xi. Each sample is 
characterized by m features. A typical artificial neural 
network works in a way that c weight vectors, wl, of the 
same length as the input sample, m, are repeatedly 
compared with the input sample xm. During the com- 
parison, a winner, wt, among c weight vectors can be found 
that has the minimum distance to the ltth input vector, 
xk. Then the j = 1-.m elements Wtj,old of the winning 
weight vector t become adapted a small step closer to the 
elements X i j  of xL using a given learning rule: 

where wk0ldis the old weight vector; wknew is the new weight 
vector; ri is the thresholded and scaled input vector; and 
7 is the learning rate. After this adaption, the subset of 
the weight vectors becomes slightly closer to the original 
sample input vector. After N ( N  > 500c) repetitions of 
comparison and adaption, a set of weight vectors are 
obtained with each weight vector representing one cluster 
of input samples. 

At the initialization stage, several parameters need to 
be set. The threshold, 0, is set according to 0 < 0 C l / ( r r ~ ) ~ / ~ .  
This threshold is to discriminate against the noise. Signals 
smaller than the threshold are set too. Another parameter 
that needs to be set is the learning rate, q. The value of 
q determines the speed with which a weight vector is 
adapted toward a new input vector. q is set to be q < 0.5. 
Still another parameter that needs to be set is the scaling 
factor, a. It  is set as a C l/(m)l/Z. The class box size p 
is set according to 

0 < < 1 (2) 

p is the cosine of the radial angle describing the unit size 
for all class boxes. If the angle between a sample and the 
weight vector is smaller than arccos(p) of a particular class, 
this sample is in resonance. The last important parameter 

that needs to be determined is the number of weight 
vectors. Assume c is the number of classes expected by 
the user in the training and test data sets. The number 
of weight vectors is cmm, a number larger than c. 30 was 
used as Cmax in this study. The mcmax elements of the 
weight matrix W are set as wj& = l /(rn)lI2,  whereby k = 
1"'Cmap 

Training Phase of the Network. 
(1) Randomly select an input vector Xi from X. 
(2) Scale Xi to unit length: 

Pi = Xi/ I /  Xill (3) 

(3) Contrast enhancement: transfer all elements of pij 
through a nonlinear transfer function by thresholding 

pij, if pij > 0 
(4) 

or as one of the possible alternative functions by a sigmoidal 
transfer function 

qij = 1/[1 + exp(-pij)l (5) 

(4) Rescale to unit length: 

ri = qi/ll gill (6) 

(5) Evaluate the competition among all c output neurons: 

C r i j ,  i fh  = c + 1 
Pi = I e riwk, if k < c + 1 

( 7 )  

Pwinner = maxtpi) (8) 
(6) Perform the resonance check and the novelty 

detection: 

(9) 

(7) Network learning by weights adaption and/or 
1 c + 1, ifpwinner < pm, 

c + 0, otherwise c = (  

structure adaption: 

where 

with 

v j k  = 

Test Phase of the Network. 
(1) Examine data row vector of an unknown test sample 

Xunknown, characterized by j = 1.-m features, columnwise 
autoscaled by parameters estimated from training set: set 
threshold 0 < 0 < l / (m)1/2 ,  set learning rate q C 0.5; set 
scaling factor cy < l / (m)1/2;  set desired class box size p 
according to 0 C q < 1. 

(2) For testing objects that belong to known classes: 
use eqs 3-14 with Xunknom as input vector. 

1924 Envlron. Sci. Technol., Vot. 28, No. 11, 1994 



(3) For testing objects that do not belong to known 
classes: use eqs 3-8 with Xunknom as input vector. 

Data Description 

An arbitrary set of particles collected on several ambient 
particle sample filters were examined using a computer- 
controlled scanning electron microscope (CCSEM) (15). 
This system can automatically scan the portion of a filter 
on a stub and provide the chemical composition and image 
of the individual particles. X-ray intensities for 20 
elements for 92 particles were determined. The elements 
were as follows: Na, Mg, Al, Si, P ,  S, C1, K, Ca, Ti, V, Cr, 
Mn, Fe, Co, Ni, Cu, Zn, As, and Pb. 

In order to emphasize the profiles of the particle 
compositions, the first derivative matrix was used instead 
of the raw fluoresced X-ray count matrix. Considering a 
data array as a map, every number in the data array 
indicates the height of that point; thus, the whole data 
array represents the topology. The derivative matrix may 
enhance the features of this map. This technique in image 
processing is called an enhance filter (16). This is the 
theoretical basis for using the derivative matrix. In this 
study, an experiment was also conducted to ensure that 
the use of the derivative matrix would obtain a better 
classification than the use of the raw data matrix. The 
experiment did prove this point, and the model that was 
used to perform this experiment was another neural 
network, the Tree-Map model (17). Suppose X i j  is an 
element of the m X n composition matrix and y i j  is the 
element of t,he first derivative matrix, y i j  = X i j  - x i j + l ,  

then dimension of the derivative matrix is m X (n - 1). 
Thus, in this study, the dimension of the chemical 
information matrix is 92 X 19. 

The shape index was obtained using the newly developed 
chain code histogram method (18). As stated in the 
Introduction, the major purpose of including the shape 
index in the model was to distinguish spherical particles 
from nonspherical particles. The chain code histogram 
method sets acriterion on the chain code histogram pattern 
for spherical particles and uses this criterion to examine 
each particle to determine if the particle is spherical. In 
the initial study, the frequencies of chain codes were 
attempted to be used to code shapes. However, the result 
was not satisfactory. The reason for this poor performance 
was that when the chain code histogram method was used 
to discriminate spherical particles from nonspherical ones, 
it is the zig-zag pattern of the histogram that has the 
discriminating power, not the frequencies themselves. For 
example, histogram vector 0.1, 0.4, 0.3, 0.5, 0.2, 0.3, 0.1 
represents a spherical shape. On the other hand, vector 
0.4, 0.5, 0.1, 0.3, 0.1, 0.4, 0.3 also represents a spherical 
shape because both of them have a zig-zag pattern. 
However, if these two vectors were used in the model, the 
result may imply that these two objects do not belong to 
thesame group. Thus, the finalchoice was touse arbitrary 
vectors or numbers to code the shape. 

One direct option was to code all the spherical particles 
as 1 and to code all the nonspherical particles as 0. 
However, if only one variable was used as the shape index, 
this single variable will be downweighted compared with 
the other 19 chemical variables because the shape index 
has too small a weight relative to the other 19 variables. 
Test studies also demonstrated that if only one shape 
variable was used, fly ash particles could not be distin- 

guished from the clay mineral particles because their 
similarity in the chemical composition still dominated the 
classification process. Therefore, the final choice for 
coding the shape was to use six variables instead of using 
just one variable. The spherical particles were coded as 
0.2, -0.2, -0.2, 0.0, 0.0, 0.2; all the nonspherical particles 
were coded as -0.2, 0.0, 0.2, -0.2, 0.2, 0.0. 

Thus, the data matrix used in this study was 92 particles 
by 25 featurevariables. Eachrow was scaled to unit length 
by eq 15: 

Yij 

Application of the  ART2A Neural Network 

Parameters of Neural Network. The threshold, 8,  
was set to be 0.9 X l/(rn)lP. The learning rate, 1, was set 
as 0.1. The parameter, p ,  that defines the class box size 
was set as 0.2. The maximum class number was set to be 
30. This number is not the fixed number of classes, but 
only provides the maximum number of classes. The real 
number of classes is determined by the model itself based 
on the class box size, p .  In this way, objects may be 
reasonably classified. Although sometimes a group of 
particles might be divided into two classes. Later, they 
still can be considered as belonging to one group based on 
the diagnostic matrix. 

Particle Classification Based Only on Chemical 
Compositions. To begin this study, only the chemical 
compositions were included in the analysis (run I). This 
analysis was performed by taking all the 92 particles as 
the training data. After the training, the system developed 
a set of rules for the different clusters and stored these 
rules. Then, these 92 particles were used as the test data, 
and each particle was assigned to a known class. The 
results are shown in Table 1. Eight classes were identified. 
Cluster 1 is corresponding to the Mg-Si particles. Class 
2 is for the Pb  particles. Fly ash and the clay mineral 
particle were grouped together as cluster 3. Ti particles 
were assigned to class 5. Classes 4 and 6-8 were poorly 
defined classes. One particle (no. 34) of the 29 Mg-Si 
particles was classified as an outlier. Two of the 27 Pb  
particles (nos. 54 and 58) were identified as outliers. There 
was some classification noise in the fly ash and clay mineral 
cluster. I t  should be noted that there was no clear 
separation between fly ash and clay mineral particles. 

Particle Classification Based on both Chemical 
Compositions and Shape Index. The second run (run 
11) was conducted by taking all 92 particles with both 
chemical compositions and the shape index as the training 
data. The results are shown in Table 2. Eight classes 
were again identified. Class 1 corresponds to the Pb 
particles. Class 2 contains the Mg-Si particles. Classes 
3 and 5 are the clay mineral particles. Class 6 is the fly 
ash particles. Ti particles were assigned to class 4. Classes 
7 and 8 were the poorly defined classes. All of the 12 Ti 
particles and the 11 fly ash particles were correctly 
classified. One particle (no. 34) of the 29 Mg-Si particles 
was again an outlier of this cluster. Three of the 27 Pb  
particles (nos. 53,54, and 58) were misclassified: one was 
misassigned into the fly ash cluster, and the other two 
were separated from the Pb  cluster as outliers. Almost all 
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Table 1. Results for Run-I- Table 2. Results for Run I1 
particle 

no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

type 

Mg-Si 
Ti 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
pb 

classification 

1 
5 
1 
5 
1 
1 
5 
5 
1 
1 
1 
1 
1 
5 
1 
1 
1 
1 
1 
1 
5 
1 
1 
1 
5 
1 
1 
1 
1 
1 
1 
1 
1 
4 
1 
1 
5 
5 
1 
2 
2 
2 
2 
2 
2 
2 

particle 
no. 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

type 

Ti 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Ti 
Ti 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 

classification 

5 
2 
2 
2 
2 
2 
2 
8 
2 
2 
2 
8 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
5 
3 
3 
6 
3 
3 
3 
3 
3 
3 
3 
3 
3 
6 
3 
6 
3 
3 
6 
3 
3 
4 
3 
7 

of the clay particles were found to belong to classes 3 and 
5. Only one particle (no. 90) was classified in cluster 8, 
a poorly defined cluster. Table 3 provides a diagnosis of 
this run. I t  shows the cosine of the angle between the two 
vectors that represent two different clusters. The larger 
the cosine value, the closer the two classes are to one 
another. From Table 3, it can be seen that the cosine 
value between clusters 3 and 5 is 0.36. This value is 
relatively large in such a diagnostic matrix. This result 
implies that all of the clay mineral particles were reasonably 
well grouped together. 

The only difference between run I and run I1 was that 
run I1 not only included the chemical compositions but 
also included the shape index. The results showed that, 
once both the chemical compositions and the shape index 
were included in the analysis, a more accurate classification 
was obtained. 

The third run (run 111) was conducted such that all the 
particles excluding the 27 Pb  particles were taken as the 
training data. Then the whole data set was treated as a 
test data set. After the training process, six classes were 

particle 
no 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

type 

Mg-Si 
Ti 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 

classification 

2 
4 
2 
4 
2 
2 
4 
4 
2 
2 
2 
2 
2 
4 
2 
2 
2 
2 
2 
2 
4 
2 
2 
2 
4 
2 
2 
2 
2 
2 
2 
2 
2 
8 
2 
2 
4 
4 
2 
1 
1 
1 
1 
1 
1 
1 

particle 
no. 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

type 

Ti 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Ti 
Ti 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 

classification 

4 
1 
1 
1 
1 
1 
6 
7 
1 
1 
1 
7 
1 
1 
1 
1 
1 
1 
1 
1 
1 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
3 
5 
3 
5 
3 
3 
5 
5 
3 
8 
5 
5 

Table 3. Diagnosis for Run 11 

class 1 2 3 4 5 

1 1.00 -0.24 -0.17 0.00 -0.74 
2 1.00 -0.25 0.00 -0.23 
3 1.00 -0.002 0.36 
4 1.00 -0.002 
5 1.00 
6 
7 
8 

6 7 8 

0.00 0.007 0.002 
0.00 -0.008 -0.01 

-0.003 -0.002 -0.04 
0.00 -0.006 -0.27 

-0.003 -0.005 0.004 
1.00 -0.01 -0.02 

1.00 -0.003 
1.00 

found. In the testing process, an additional class was 
discovered, and all the 27 Pb particles in the test set fell 
into this new cluster. The results are shown in Table 4. 
There was one Mg-Si particle (no. 34) that was classified 
as an outlier of this cluster. One fly ash particle (no. 73) 
was misassigned to the clay mineral class. Similar to the 
result of run 11, the clay mineral particles were assigned 
to two clusters. The diagnostics in Table 5 show that 
these two clusters are very close with a cosine value of 
0.34. One particle (no. 90) was classified as an outlier of 
this cluster. 
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Table 4. Results for Run I11 

particle 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

type 
Mg-Si 
Ti 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 

Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-SI 
Mg-SI 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 

Mg-Si 

Mg-Si 
Mg-Si 

Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 

Mg-Si 

classification 

1 
2 
1 
2 
1 
1 
2 
2 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
5 
1 
1 
2 
2 
1 
7 
7 
I 
7 
7 
7 
7 

particle 
no. 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

type 

Ti 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Ti  
Ti 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 

~ 

classification 

2 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
2 
2 
6 
6 
6 
3 
6 
6 
6 
6 
6 
6 
6 
3 
4 
3 
4 
3 
3 
3 
3 
3 
5 
4 
4 

Table 5. Diagnosis for Run I11 

class 1 2 3 4 5 6 7 

1 1.00 -0.14 -0.61 -0.35 -0.01 0.21 -0.002 
2 1.00 -0.20 -0.001 -0.26 -0.47 -0.001 
3 1.00 0.34 -0.02 0.47 0.01 
4 1.00 -0.17 0.00 -0.001 
5 1.00 -0.04 0.04 
6 1.00 -0.01 
7 1.00 

The most interesting result obtained from run I11 was 
that the unfamiliar pattern of the lead particles in the test 
set was discovered as a new cluster during the testing 
process. Moreover, the fly ash and clay mineral particles 
were still separated as two classes. 

The fourth run (run IV) was performed such that there 
were 50 particles in the training set, and the other 42 
particles were the test set. In the training set, there were 
a number of particles for every class type except for the 
lead class. In the test set, there were several particles for 
every particle class including the lead particles. Seven 
clusters were found during the training process. After the 

Table 6. Results for Run IV 

particle 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
29 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

type 

Mg-Si 
Ti  
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Ti 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Ti 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Mg-Si 
Ti  
Ti 
Mg-Si 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 

particle 
classification no. 

47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
51 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
IO 
71 
12 
73 
74 
75 
76 
77 
78 
79 
80 

4 81 
4 82 
5 83 
5 84 
4 85 
8 86 
8 87 
8 88 
8 89 
8 90 
8 91 
8 92 

type classification 

Ti 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Pb 
Ti 
Ti 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
fly ash 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 
clay 

5 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
5 
5 
3 
3 
3 
3 

1 

1 

1 

testing process, one additional class was identified, and 
all of the lead particles in the test set were assigned to this 
class. Table 6 shows the results. All of the particles in 
this table with an assignment to a class were in the test 
set, and all of the other particles were in the training set. 
It can be seen that all of the particles were well classified 
and there were no outliers for any class. From the 
diagnostic matrix, it  was found that classes 1 and 4 were 
close to each other with the cosine value of 0.46. This 
result can be explained by the similar pattern of these two 
clusters. From Table 6, it can be seen that class 1 was for 
the clay mineral particles and class 4 was for the Mg-Si 
particles. Because the clay mineral particles also contain 
a high percentage of Si, these two types of particles do 
have similar chemical compositions. Furthermore, both 
of these two types of particles are nonspherical in shape. 
Therefore, these two classes had the strongest correlation 
among all the eight clusters. 

The significance of run IV was that the training data set 
and the test set were independent from each other. The 
ART2A system still was able to identify the new cluster, 
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and all the particles in the test set were correctly assigned 
to their corresponding classes. 

Discussions of the Outliers 
In the results of the first three runs, particle nos. 34 and 

90 were identified as outliers in every run, and they each 
always belonged to a single class. After the original data 
were examined, it was found that particle no. 34 has a 
relatively large Ca value while the other Mg-Si particles 
do not contain Ca. Therefore, particle no. 34 was found 
to be a true outlier. Particle no. 90 also contains a relatively 
high Ca concentration compared to the other clay mineral 
particles. Thus, particle no. 90 was identified as an outlier 
from the clay mineral clusters. Moreover, since clay 
mineral particles also show a high count rate for Si counts 
as Mg-Si particles do, particle nos. 34 and 90 were always 
found in the same class as the outliers of their own clusters. 
The other common outliers were particle nos. 54 and 58. 
They were the outliers from the Pb  cluster. All of the Pb  
particles contained more than 85% Pb with no Zn. 
However, particle nos. 54 and 58 contained Pb  and Zn, 
making them outliers from the Pb  class. 

Conclusions 
This study obtained a more accurate particle classifica- 

tion by combining the chemical compositions and a shape 
index. Fly ash and clay mineral particles that are 
chemically similar were successfully separated. This study 
also demonstrated that the newly developed ART2A 
artificial neural network has a high potential value in 
particle classification. Its advantage lies in the fact that 
the particle class library can be dynamically updated. This 
point has its practical importance because it aids in the 
identification of new sources for the airborne particles. In 
the PCB or most other previously used models, the 
particles that do not belong to the known class will be 
assigned to a miscellaneous class, and no further informa- 
tion can be obtained. However, the ART2A system can 
identify new cluster(s) for the unknown particles and can 
provide the pattern for the new cluster@). Thus, it 
provides a way to both identify and further investigate 
their sources. 
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