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Abstract— This paper presents a Fuzzy ARTMAP
(FAM) based modular architecture for multi-class
pattern recognition known as Modular Adaptive
Resonance Theory Map (MARTMAP). The prediction of
class membership is made collectively by combining
outputs from multiple novelty detectors. Distance-based
familiarity discrimination is introduced to improve the
robustness of MARTMAP in the presence of noise. The
effectiveness of the proposed architecture is analyzed
and compared with ARTMAP-FD network, FAM
network, and One-Against-One Support Vector Machine
(OAO-SVM). Experimental results show that
MARTMAP is able to retain effective familiarity
discrimination in noisy environment, and yet less
sensitive to class imbalance problem as compared to its
counterparts.

I. INTRODUCTION

B inary classification refers to the categorization of data
in the feature space into two regions. In contrast, multi-class
pattern recognition is a task to classify the feature space into
more than two regions using a set of discriminate functions,
in which each region corresponds to a pattern class. More
specifically, given n vectors of instances x = (x1, x2, …, xn)
drawn from feature space !, a multi-class classifier has to
classify the inputs into k pre-defined classes C = (C1, C2, …,
Ck), where Ca ! Cb for a ! b and k > 2.

A number of studies have been carried out in the area of
multi-class classification [1][2][3]. At present there are two
main approaches that can be used to extend a binary
classifier for multi-class problems. The first approach is by
assembling several binary classifiers to form a recognition
network. Examples of this type of implementation are one-
against-all, one-against-one, one-against-higher-order, and
P-against-Q, where P and Q are greater than one [1]. Apart
from deploying multiple binary classifiers, another approach
is to optimize a single classifier to recognize multiple
classes. Note that it is computationally more expensive in
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solving a multi-class problem as compared with two-class
problem by using the same amount of data, since multi-class
classification involves an ensemble of several binary
classifiers or more complex optimization. In other words,
multi-class classification is not merely a trivial extension
from binary classification because multi-class classification
may involve more complex boundary formation and
optimization. Typical differences in constructing a multi-
class classifier and binary classifier are the network
architectures, encoding schemes, and training methodologies
[1], where each of them has a high influence to the network
accuracy and computational speed.

This paper proposes a modular ARTMAP (MARTMAP),
an extension of Fuzzy ARTMAP (FAM) [4] neural network
for multi-class pattern recognition. It inherits the unique
features from FAM, such as fast convergence and
incremental learning capability. The proposed network is
based on novelty detection approach, which differs from
conventional approaches, such as one-against-one, one-
against-all and strategies aforementioned. Basically
MARTMAP is built up with multiple novelty detectors that
are modeled independently by using only single class of
information. For each novelty detector, a distance-based
familiarity function is introduced to determine whether an
unknown pattern is “familiar” to the respective pattern class
or not. The outputs from all novelty detectors are then
aggregated to form a collective decision on the class
membership.

In this study, three data sets are employed in the
performance evaluation. Apart from comparing with the
original FAM, the performance of the proposed method is
studied side-by-side with another similar ART-based neural
network known as ARTMAP-FD [5]. The paper also
compared the proposed method with the state-of-the-art
technique, a multi-class SVM that implementing one-
against-one strategy (OAO-SVM). It was chosen because a
number of studies have reported that OAO-SVM gives good
results as compared to other multi-class classification
algorithms [3].

The organization of the paper is as follows. A detail
explanation of the proposed method is provided in Section
II. The data sets used in this study is described in Section III.
The experimental results are reported and discussed in
Section IV. Finally, Section V concludes the paper with
some suggested future works.
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II. METHODOLOGY

A. Modular ARTMAP (MARTMAP)
This section will commence with an overview of the

MARTMAP architecture and followed by more details on
the underlying algorithms. As can be seen from Fig. 1, a
MARTMAP is built up with multiple novelty detectors to
form a recognition network. These novelty detectors are
basically modified version of FAM to perform one class
classification. Each novelty detector should be able to
identify novel patterns that it is not aware of during training
[6]. In the training stage, each novelty detector is trained
separately by using data from single pattern class, i.e., ith

novelty detector is trained with all the instances from ith

class. Therefore, the number of novelty detector is
proportional to the number of pattern class: for a k-class
problem, k novelty detectors are required. In the prediction
stage, the unknown pattern is fed into individual novelty
detector. Each novelty detector then computes a affinity
score to measure how familiar the unknown pattern to the
class it recognized during training. The affinity score of each
novelty detector serves as the inputs to a decision layer
which make the final decision. Note that there is no direct
connectivity between each novelty detector. Thus, new
novelty detector can be added or the existing one can be
removed from the MARTMAP classification module as the
need arises, without affecting other trained novelty
detectors.

The decision layer in MARTMAP plays an important role
as it decides the final classification result based on the
output from individual novelty detector. There are many
different implementations that are suitable for the decision
layer. It can be a simple rule-based classifier (e.g. max-win,
min-win strategy) or neural networks depending on the
complexity and the nature of the applications. For certain
types of applications, the decision layer can make use of
historical prediction results to increase the prediction hits.
For instance, time series prediction such as object
recognition in video stream, the decision layer can make use
of past prediction results to form the final decision. In this
case, the decision layer performs classification based on
estimation from multiple hypotheses [7], whereby outputs
from the novelty detectors are used to construct a decision
histogram that records the classification hypotheses.
Hypotheses are accumulated and averaged over a period of
time and the final classification result is derived from the
histogram. A threshold can be set to prevent the decision
layer of making any meaningless guess before the estimation
achieves certain confidence level. This method is able to
reduce the generalization error by accumulating a classifier’s
predictions over time.

Similar to the architecture of FAM as shown in Fig. 2,
each novelty detector in MARTMAP consists of two fuzzy
Adaptive Resonance Theory (ART) modules designated as
ARTa and ARTb, which create stable recognition categories
in response to arbitrary sequences of input patterns [3]. Both
ART modules are linked together by a map field module,

Fab, an associative learning network to establish an
association between input patterns and target classes C.

Similar to FAM, there are two key parameters that
influence the performance of MARTMAP. The first
parameter is base vigilance parameter a! " [0, 1] which
determine the category formation of the network. Less
categories are formed by using lower a! , which in turn
leads to more generalized boundary. In the contrary, higher

a! will leads to firmer category formation and the close
boundary is tighter. The learning parameter, #a " [0, 1],
determines the learning modes of the network. There are two
learning modes: fast learning (#a = 1 for all times) and fast-
commit slow recode learning (#a = 1 for an uncommitted
node and #a < 1 for a committed node).

The training stage of individual novelty detector in
MARTMAP is identical to FAM. The following is a brief
explanation on the typical operation in ARTa, which also
occurs in ARTb. Initially, in the training stage, the original
M-dimensional input vector a is complement-coded into a
2M-dimensional vector A:

$ % $ %MMc aaaa &&'( ,...,11,,...,, 11
aaA (1)

A is propagated from the input layer F1
a to the dynamic

output layer F2
a through a set of adaptive weights wa.

Activation of the jth F2
a node is determined by the choice

function Tj (A) as defined in Equation (2), with wj
a denoting

the category weight vector of the jth F2
a node.
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According to the winner-take-all strategy, the node with the
highest response value, denoted as node J, is selected as the
winning node, while all other nodes j , J are deactivated.
The winning node J remains active if the match function of
the chosen category meets the vigilance criterion:
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J
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*

A

wA
(3)

Fig. 2 shows the architecture of Fuzzy ARTMAP (FAM)
neural network. Each novelty detector in MARTMAP is
equivalent to a modified FAM. If the vigilance test is
satisfied, the network will proceed to the map field
association. However, if the existing winning node fails to
predict the output class, i.e., c(J) ! C, a match tracking
process is triggered until the best winning node that satisfies
both the ARTa and map field vigilance test is found.
Subsequently, learning takes place by updating the category
weight vector of the winning node J in ARTa according to
Equation (4). The process aforementioned is repeated until
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Fig. 1 – Architecture of modular ARTMAP (MARTMAP)

Fig. 2 – The figure shows the architecture of Fuzzy ARTMAP (FAM) neural network. Each novelty detector in MARTMAP is equivalent to a modified
FAM
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the novelty detector learns all the training instances assign to
it. At the end of the training stage, each novelty detector
would have at least one category that code all the instances
of the respective class C. Sometimes, instances from a class
may be coded by several categories. This is mainly due to
the underlying distribution and internal structure of the
training data space. But again, the number of category
formed can be also controlled by the selection of a! .

$ % $ % a(old)
Ja

a(old)
Ja

a(new)
J "" wwAw &)*( 1  (4) 

The prediction phase is divided into two stages: the first
stage is the internal competition of categories within a
novelty detector, whereas the second stage is the
competition among novelty detectors. Initially, an unknown
pattern is presented to every novelty detector. In the first
stage, the response of each category to the unknown pattern
is measured using the Equation (2). The node that has the
highest response, denoted as node J, is selected as the
winning node. All other nodes j , J are deactivated in
accordance with the winner-take-all competition. As a result,
each novelty detector would have a winner category that can
join the subsequent competition.

In the second stage, a familiarity function is used to
measure the familiarity of a novelty detector to the new
input pattern. The familiarity function is basically the
Euclidean distance between the input pattern to the centroid
of the winner categories. The resulting distances are then
transmitted as the affinity scores to the decision layer. If the
input pattern appears more “familiar” to the novelty
detector, the distance value would be smaller. Therefore,
“min-win” strategy is used in the decision layer, the ith

novelty detector with the smallest Euclidean distance will be
selected as winner in the second stage, and the class label Ci

will be assigned to the unknown input pattern. In the case
where two novelty detectors give the same smallest value,
the decision layer is forced to make a decision by selecting
the novelty detector with lower index as the winner.

)( 21
c-a

jM
c-a

j
c-a

j
c-a

j w,w,w ,!(w (5)

Note that the dimension of the centre weight vectors
covers only the original dimension of the input space. At the
beginning, the centre weight vectors are initialised to zero.
When learning takes place, the centre weight vectors of the
Jth winning node are updated as follows, where Ninputs

denotes the number of inputs that the category has coded.
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In order to compute the Euclidean distance, a new set of
weight vectors is introduced in the ARTa module of
MARTMAP called the centre weight vectors,
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There is another ART-based neural network called
ARTMAP-FD which is similar to the novelty detector in
MARTMAP. ARTMAP-FD is an extension of FAM
network with improvement in performing novelty detection.
In contrast to the Euclidean distance-based method proposed
in this paper, the familiarity function in ARTMAP-FD is the
choice function expressed in Equation (2). Although novelty
detector in MARTMAP and ARTMAP-FD are both trained
with local knowledge, using choice function as familiarity
measurement, however, may easier to prone to classification
errors in the presence of noise and outliers, and may face
classification uncertainty in overlapped boundaries.

Fig. 3 gives an example of two decision boundaries
generated from two novelty detectors. A decision boundary
basically is a hyper-rectangular RJ formed in F2

a category to
enclose all the data points fall in that particular class region.

Fig. 3a shows two decision boundaries that are corrupted
with noisy data located at the lower right corner of the
hyper-rectangular. As can be seen from

Fig. 3a, although the unknown pattern X is nearer to the
right hyper-rectangular labeled as Cb, it is however enclosed
by the hyper-rectangular labeled as Ca due to unwanted
noise in the training data. If choice function was used as
familiarity discriminate function, X will be classified as Ca

instead of Cb, which clearly an error in classification. Such
error can be mitigated by measuring the Euclidean distance
between X and the clusters’ centroid as depicted in

Fig. 3a, where the distances are denoted as d1 and d2,
respectively. As a result, pattern X is classified as Cb since
d2 < d1.

Fig. 3b illustrates an unknown pattern X located inside
two overlapped decision boundaries. In this case, more than
one novelty detector will claim the unknown pattern as their
pattern class, which causes classification ambiguity. Again,
by using Euclidean distance, one can easily discriminate the
point X from two overlapping clusters.

0.5

0.4

0.3

0.2

0.1

0

0       0.1     0.2     0.3      0.4     0.5     0.6 
(a)

2408 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 10, 2009 at 16:47 from IEEE Xplore.  Restrictions apply. 



Fig. 3 – Classification ambiguities caused by outliers in training data

III. DATA USED
In this study, three data set were used, namely, Gaussian

data set, Gaussian dataset corrupted with noise and shape
dataset. The three data sets were used to evaluate the
performance of the classifiers.

The synthetic data (hereafter called as Gaussian data set)
as depicted in Fig. 4 was drawn from four overlapping
Gaussian distributions centered at different mean but with
the same standard deviation ! = 0.2, resulting a total of 250
data points for each distribution. The main purpose of
generating the Gaussian data set was to simulate a data
space with four classes, so as to examine the ability of a
classifier in separating the classes during prediction. The
second data set was derived from the original Gaussian data
set with 15% of the training data corrupted with zero-mean
Gaussian noise with a variance of 1.0.

Fig. 4 – Synthetic data generated from four Gaussian distributions

The third data set consists of 193 shapes in eight
categories. The dataset were selected from [8] and the
MPEG-7 test database. Six simple features were extracted

from the images in this study, namely dispersedness,
compactness, axis ratio of a fitted ellipse, roughness,
occupancy, and ratio of squared hull perimeter to hull area.
The data set was characterized as imbalanced data set
because some of the classes are represented by significantly
more number of instances compared with other classes. For
instance, the number of instances in class 1 (bird) was four
times more than the number of instances in class 4 (car).

Fig. 5 – The figure shows some sample shapes in the shape data set

III. RESULTS AND DISCUSSION

A. Comparison with FAM and ARTMAP-FD

The objective of the experiments is to compare the
performance of MARTMAP with ARTMAP-FD and FAM.
Random sample cross-validation was employed in this
study, whereby a hundred random partitions were generated
by partitioning the original data set into 80%/20%
training/testing sets randomly. Bootstrapping method was
implemented to compute the confidence intervals (CI) for
the performance metrics. The accuracies obtained in each
sub-experiment were bootstrapped into 1000 samples. The
average of the estimated accuracy along with the 95% CI
was then reported. Fast learning approach (#a = 1) was
adopted throughout the experiments. Base vigilance
parameter a! was changed from low value ( a! = 0.00) to
high value ( a! = 0.90) in order to examine the effect of this
parameter. Note that a! = 1.00 is not applicable in this
study as this value causes the classifier to assume each input
is essentially from different classes.

The results obtained by using the data set are shown in
Fig. 6. As can be seen from Fig. 6, the performance of
ARTMAP-FD and FAM remained stable across different
values of a! . Although MARTMAP had a sudden drop in
accuracy at a! = 0.50 and degraded gradually when a! was
further increased to 0.9, MARTMAP generally is
significantly superior than ARTMAP-FD and FAM at lower
values of a! , with the highest accuracy at 97.99% [CI =
97.83, 98.16] for a! = 0.10.
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Fig. 6 – This figure shows the results averaged over 1000 bootstrap accuracies along with 95% confidence intervals.

Fig. 7 – Confusion matrices for shape classification by using MARTMAP and OAO-SVM. Each row represents the probabilities of that class being confused
with all the other class averaged over 100 runs
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B. Comparison with Multi-Class SVM

In this study, the approach used for multi-class SVM was
“One-Against-One” (OAO-SVM) approach, with a
Gaussian radial basis kernel. The classifier was implemented
by using LIBSVM library [9]. In OAO-SVM, k(k–1)/2
binary classifiers were trained for a k-class problem. Each
binary classifier is trained with data from two classes, Ca

and Cb (1 " a, b " k). In the prediction stage, a binary
classifier produces a vote indicating whether a feature vector
a belongs to class Ca or Cb. A voting scheme is used to
select the class with the most votes and assign it to the
feature vector a.

Since there are four classes in the Gaussian data set, the
value k was set to 4. With the Gaussian data set, the result
obtained using OAO-SVM was 97.63% [CI = 97.46, 97.81].
In the case where Gaussian data was corrupted with noise,
OAO-SVM achieved an accuracy of 97.73% [CI = 97.52,
97.93]. In both cases, there were no obvious difference
between the performance achieved by MARTMAP and
OAO-SVM.

In the experiment based on shape data set, the best
accuracy obtained by using OAO-SVM was 62.17% [CI =
61.10, 63.26], compared with 92.37% [CI = 91.64, 93.08]
achieved by using MARTMAP. As can be seen from the
confusion matrices depicted in Fig. 7a, the shapes were more
likely to be misclassified by OAO-SVM as class 1. Clearly,
the performance deterioration of OAO-SVM was caused by
the imbalance training data. The amount of training data
contributed by minority classes was far less than the amount
in majority class (class 1). As a result, OAO-SVM had a
tendency to produce outputs skewed to the majority class. In
other words, it classified far more patterns as belonging to
majority class than it should. Huang et al. [10] suggested
that the undesirable biasing problem of OAO-SVM might be
due to the equal error penalty of misclassification for all the
classes. In contrast, the same problem did not occur in
MARTMAP. As depicted in Fig. 7b, MARTMAP was less
sensitive to uneven training class size as compared with
OAO-SVM and it was able to classify patterns, that are from
the minority classes.

Another observation in this study was the number of
classifiers needed by both OAO-SVM and MARTMAP. As
can be observed from Fig. 8, the number of classifiers
needed in MARTMAP increases linearly with number of
classes k. On the other hand, the number of binary classifiers
required by OAO-SVM increases in quadratic with k. As a
result, OAO-SVM may computationally be more expensive
since large number of binary classifiers has to be trained to
handle each binary sub-problem when k is large.

C. CONCLUSION AND FUTURE WORK

The paper has presented a new FAM-based modular
architecture known as MARTMAP for multi-class pattern
recognition. The dynamics of the proposed network have

been described in detail to explain how multiple novelty
detectors can be used to draw collective decision. In
MARTMAP, individual novelty detector is employed to
discover and learn the natural groupings of the pattern class
assigned to it by forming hyper-rectangulars to enclose the
pattern region. In the prediction stage, Euclidean distance
was used to measure the familiarity between unknown
patterns with the centroid of the clusters formed in each
novelty detector. Familiarity scores are aggregated to a make
a collective decision in several ways such as min-win
strategy or multiple hypothesis estimation.

By using three data sets, the paper has demonstrated that
the proposed architecture is capable of classifying multi-
class patterns with higher accuracy as compared to
ARTMAP-FD and FAM. In particular, the paper has shown
the capability of MARTMAP in retaining its classification
accuracy when the training data is corrupted with noise.
Although individual novelty detectors in both ARTMAP-FD
and MARTMAP are trained with local knowledge, but
MARTMAP is able to resolve the classification uncertainty
problem faced by ARTMAP-FD in overlapped boundaries
and regions that are not enclosed by hyper boxes.

In the comparison study against OAO-SVM, MARTMAP
was found to be less sensitive in dealing with class
imbalance problem. In addition, it is better in terms of
implementation simplicity and network complexity. The
implementation simplicity arises from the flexibility in
making changes to individual novelty detector including re-
training without affecting the whole classification module.
Besides, MARTMAP is comparatively simpler than OAO-
SVM as it requires less classifiers in solving the same multi-
class problem.

The paper has revealed the potential of MARTMAP as a
multi-class classifier with good robustness to noisy and
imbalance training data. However, there are still a number of
areas that can be enhanced and pursued as further work.
Firstly, some studies have shown that hyper-rectangular may
not be a good geometrical representation for certain types of
data. Therefore, it is worthwhile to investigate other
geometrical representation such as ellipsoid or hyper-sphere,
which may give better generalization and representation of
category. Secondly, instead of using Euclidean distance as
the discrimination function, effectiveness of other distance
metrics such as Mahalanobis distance can be examined.
Finally, the effectiveness of the MARTMAP has to be
vindicated against more data sets.
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