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Absrrucr - Fuzzy LAPART (laterally primed 
adaptive resonance theory), a neural network 
architecture for supervised learning through logical 
inferencing, is inaoduced with fast and slow learning 
algorithms and match tracking capability. Based on 
the original architectme developed by Healy, et al., the 
enhancedarchitectureconsistsofintetconnectedfuzzy 
adaptive resonance theory (fuzzy ART) modules 
originated by Carpenter, et al. The interconnections 
enable fuzzy LAPART to infm one pattem class from 
another to form a predictive pattern class. Slow 
learning capability has been incorporated into the 
neural network with fast commit and slow recode 
options. The problem of separation of spirals is used 
to perform benchmark tests far fuzzy LAPART. Also, 
based on fuzzy set theory, geometric interpretations 
are presented in 2 and 3 dimensional spaces using 
fuzzy LAPART. Performance results for both test 
cases are compared to results obtained from a 
counterpropagation clustering network. Fuzzy 
LAPART shows outstanding performance in the 
benchmark tests, with more efficient ability of 
clustering than cwnmpropagation. Slow learning 
(fastcommit and slow-recode) was used for fuzzy 
LAPART for 3-dimensional category space 
interpretations. 

I. INTRODUCTION 

ART (adaptive resonance theory), developed by 
Carpenter and Grossberg [l], has gained much 
attention for solving the stability-plasticity dilemma. 
Successively, ART2 [2] and fuzzy ART [3] were 
developed to address the problem of handling both 
binary and analog inputs. Recently, Carpenter, et al. 
[41 developed a new supervised coupled fuzzy ART 
network, called fuzzy ARTMAP, which is capable of 
self-organizing recognition categories to arbitrary 
sequences of the input patterns. More recently, Healy, 
et al. [5] developed the new architecture, LAPART 
(laterally primed adaptive resonance theory), for 
logical inferenchg and supenrised learning, which is 
easier to implement than fuzzy ARTMAP [4]. In 
addition,WARTcan be used torecognize sequences 
of input data. However, LAPART has been resaicted 
to binary inputs because of the two coupled ARTl 
modules. In this work, a new LAPART architecture 
has been developed, fuzzy LAPART, which 

oveccomes this problem. With the ARTl modules in 
LAPART replaced with two fuzzy ART systems, 
fuzzy LAPART can be used for more general classes 
of problems. In addition to the incorporation of the 
coupled fuzzy ART modules, match tracking 
capability has been included in the fuzzy LAPART 
architecture, which increases the ART vigilance 
parameter by the minimum amount necessary to 
c m t  a predictive error. Thus, fuzzy LAPART can 
realize a minimax learning rule that conjointly 
minimizes predictive error and maximizes code 
compression, or generalization. Slow learning with 
fastcommit and slow-recode options have also been 
inuxporated into the neural network architecture. For 
efficient coding of noisy input sets, it is useful to use 
fast commitment and slow remding training capability. 
The problem of separation of spirals is used to perform 
benchmark tests for fuzzy LAPART. Also, based on 
fuzzy set theory, geometric interpretations are 
presented in 2 and 3 dimensional spaces using fuzzy 
LAPART. Performance results for both test cases are 
compared to results obtained from a 
counterpropagation clustering m o r k .  Two types of 
counterplopslgaton networks are compared. The only 
difference in the two types is that one utilizes a 
topological update and the other does n o t  

II. FUZZY SET THEORY AND FUZZY ART 

The fuzzy ART system performs computations 
based on fuzzy set theory [6] using the ARTl 
architecture. ’Iht fuzzy ART model was developed by 
Caqmter, et al. [3] by generalizing ARTl such that it 
is capable of learning stable recognition categories in 
response to both anabg and binary input patterns. For 
the special case of binary inputs and fast learning, the 
computations of fuzzy ART are identical to those of 
the ARTl neural network. The leaning algorithm for 
fuzzy ART [7] can be described as follows. The 
weight vector WJ is updated acceding to the equation 

Fast learning corresponds to setting B = 1 . 
Complement coding establishes a connection between 
on-cell/off-cell representations and fuzzy set theory 
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operations. For definiteness, let the input set consist 
of two-dimensional vectors a prepmessed into four- 
dimensional Unnplement coding form [q. Thus, 

In this case , each category j has a geometric 
representation as a rectangle Rj, as follows. 
Following Eq. 2. the weight vector wj can be written 
in complement coding form as 

wi = (Ui,Vi') (3) 

where uj and vi are two-dimensional vectors. Let 
the vector ui define one comer of a rectangle Rj and 
let vi define another comer of Rj (see Fig. 1 (a)). 

The size of Rj is given by 

Learning increases the size of each Ri, in fact, the size 
of Rj grows as the size of wj shrinks during leaming, 

and the maximum size of Rj is determined by the 
vigilance parameter p.  During each fast-learning 
trial, R j  expands to Rj  @ a (see Fig. 1 (b)). The 
cornersof R,@aaregivenbyr A U, anda V V J ,  

where 
( x  v Y ) i  = " ( X i , Y i )  ( 5 )  

Hence, by Eq. 4, the sue of Rj  @ a is given by 

1 

a v v, 1 

a I a A v J  
0 

(b) 
Figure 1. (a) A geometric interpretation as a 

rectangle Rj, (b) Fast learning with expanding Rj  to 

A geometric interpretation in 3 dimensions of 
fuzzy ART with fast-commit slow-recode can now be 
illustrated. Fuzzy ART was trained with 8 input 
pattems (shown in Table I), 4 cluster units were 
assigned to the network, and a vigilance parameter of 
0.8 was used. After 34 iterations, the weights of the 
network converged. Figure 2 illustrates the fast- 
commit and slow-recode procedures. With pd.5 in 
Eq. 1 , the network training is designed to stop when 
the change in the weights remains within 

3-D Training Pattems for Fuzzy ART 

Rj  @ U .  

TABLE I 

pattem 1 = (0.13 0.24 0.76) 
pattem 2 = (0.42 0.35 0.2) 
pattem 3 =  (0.33 0.26 0.54) 
pa" 4 =  (0.29 0.16 0.57) 
pattem 5 =  (0.73 0.86 0.24) 
pattem 6 =  (0.66 0.29 0.71) 
pattem 7 = (0.19 0.47 0.26) 
Dattem 8 =  10.86 0.240.791 

(a) 
Figure 2. Training paaems in 3 dimensional space. 
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(d) 

Figure 2. (conrinued)Training pattems in 3 
dimensional space. (a) training patterns, (b) after 2 
iterations, (c) a f t a  10 iterations, (d) aftex 34 iterations. 

III. FUZZY LAPART 

The LAPART architecture includes two ART 
modules (ARTa and ARTb,) that create stable 
recognition categories in response to sequences of 

input pattems. Binary LAPART employs ART1 
systems for the ARTa and ARTb modules, whereas 
fuzzy LAPART substitutes fuzzy ART systems for 
these modules ( see Fig. 3). During supervised 
learning, ARTa receives a stream {a@)) of input 
patterns, and ARTb receives a stream { bb)) of input 
pauerns, where b@) is the correct prediction given 
ab).  he basis for the recognition function of fuzzy 
LAPART is the coupling of two pattem classifier 
networks through a system of interconnects. In the 
simplest version of fuzzy LAPART, the two classifier 
networks are fuzzy ART systems. The interconnects 
implement a dual system of inference rules. 
Recognition of a member of a familiar pattem class by 
one net A triggers a rule infemng that a member of a 
familiar class will be recognized by net B. 'Ihe second 
rule enables the other network to veto the prediction if 
it is not consistent with available data causing march 
rracking in net A. Fuzzy LAPART learns the 
inferences during presentation of training pairs of 
patterns, through 1) fuzzy ART pattem classification, 
involving synaptic learning within each network, and 
2) synaptic learning of the class-toclass inferences 
through intemmnects (see Fig. 3). 

ART(a) 

1 
a 

input field A 

(+) matchtracking 
Figure 3. Fuzzy LAPART architecture. 

IV. SIMULATION RESULTS: 
TWO SPIRAL PROBLEM 

Training a neural network to distinguish two 
spirals is a benchmark task proposed by Lang and 
Witbrock [8]. 'Ihe main purpose of this simulation is to 
compare the benchmark test performance results for 
fuzzy LAPART to a counterpropagaton [91 clustering 
network, using the m e  training and test sets. Two 
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different counterpropagation networks are compared, 
one utilizes a topological update [lo] and the other 
does not. Both counterpropagation networks were 
trained after lo00 epochs. The total number of FLOPS 
for the network without topological update was 
2,328,002. the network with topological update 
required 11,640,002 FLOPs. Fuzzy LAPART was 
trained with three different baseline vigilance 
parameters, i.e., 0.9, 0.95 and 1.0. With the baseline 
vigilance parameter set to 0.9 and 0.95, fuzzy 
LAPART trained after 5 epochs, and the required 
number of FLOPs for the two different baseline 
vigilance parameters was 49,845 and 79,543, 
respectively. When the baseline vigilance parameter 
was set to 1.0, only one training epoch was required 
and 38,412 FLOPs. The fuzzy LAPART simulation 
results are depicted in Fig. 4, where the black dots 
indicate the category regions for a two-spiral training 
pattern with the baseline vigilance parameter 
pa = 1 .o. Since pa = 1 .O , the points in the figure 
also represent- each training pattern. Since only 1 
epoch is required to train the network, each input 
established its own category, thus creating a nearest 
neighbor classifier that is 10096 correct for the 194 
point spiral training set. 
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Figure 4. Black dots represent clusters with 
vigilance 1.0. (a) clusters with vigilance 0.95.(b) 
clusters with vigilance 0.9. 

Moreover, 10096 correct prediction was achieved 
using a test set consisting of a double dense spiral, 
each with 385 points. However, the necessary 
number of stored weights for fuzzy LAPART is 776, 
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(b) 
Figure 5. (a) Weight distributions between input 

layer and Kohonen layer after training using 
topological update, (b) weight distributions without 
topological update. 

For the double dense spiral test simulations using 
counterpropagation, 88.4% correct prediction was 
achieved for the topological update network (the mean 
square error of correct prediction for this test case was 
0.36231), and 5% correct prediction was achieved for 
the network without topological update (the mean 
square error of correct prediction for this test case was 
1.33793). The results obtained using topological 
update can be seen in Fig. 5 (a), and the results 
without topological update are shown in Fig. 5 (b). 
The counterpropagation network that was trained with 
topological update, required a topological structure in 
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the Kohonen hycx with aeighborbood mdii. As 

' I h e s i "  - 
~ i g h b a h o d  radii 6rom R=2 to R 4  (neighbodmods 
of radii without "wrap around" was gradually 
&meased as the clustering process progressed with a 
linear &crease of the learning rate a). When 
simulatiaur wcrc run with the initial radii wider than 
two, it was observed that the network performance 
&gradcdrelativeto fhe netwark with initial radii mat 
2. All initial weifits werc initialized with ~ r m  
dishibuthns, by setring all weights to values between 
0.1 and 0.9. As the results show in Fig. 6, using 
topological learning in the Kohonen layer gives 
remarkable impmvement in perfamawe. However, 
the overall perfmance of the counterpmpagation 
network is still below 90%. which is less than that 
achieved with fuzzy LAPART. Results show that the 
performance of the network is heavily dependent on 
the ordering of the input training pattems and 
initialization of the weights. During training, input 
pattems were presented in random order. When the 
input patterns were presented sequentially for 
counterpropagarion, as in the case of fuzzy LAPART. 
the network formed too few cluster units resulting in 
Poorperf-. 

pViously mcntioncd,8 totalof 1 o o o ~ c p o c h s  
wm required wbea the Ikcighbabood radii were two. 

w u t  performed with decrtasing the 
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0 
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FuzzyLAPART Counkqqqguh 

(a) test results with training 
patterns for all vigilance I"eter 
cases (100%). 
(b),(c), and (d) test results with test 
pattansforthcbnselincvigilance 
parameters 1.0.0.95, and 0.9, 
respectively. 
(e),(f) test results with topological 
update (88.4%). 
(g),(h) test nrults without 
topdoeicalwJ-. 

Figrpe 6. Test results for single and -le deme 
spiralsim-. 

V. CONCLUSIONS 

Fuzzy LAPART, based on h e  original v e r s h  of 
LAPART(htemUyprimedadaptive~the0ry) 

multidimensioarl maps, has btcn introduced. The 
incorporation of fuzzy ART modules in the 

to the neural network. In addition, a match-tracking 
mechanism has also been incorporated in the 
architacnuc, which is based on thecoupled fuzzy ART 
modules. With the match tracking capability, fuzzy 
LAPART functions similar to fuzzy ARTMAP, 
however, then are significant dif€erenca between the 
two networks due to the mapping fields and match 
tracking channels of each architecture. In fuzzy 
LAPART, the intermediate layer (the so called map 
field) is simplified as compared to fuzzy ARTMAP, 
and is therefore easier to implement without losing 
training flexibility. Also developed in this work is the 
capability of slow leaming for fuzzy LAPART, with 
fast-commit and slow-recode options. For efficient 
coding of noisy input data, it is useful to use fast 
commitment and slow recoding training. With these 
upgraded features included in the LAPART 
architecture, the fuzzy LAPART neural network is 
capable of handling a wider class of problems not 
addres&le with LAPART. 

To illustrate the enhanced capability of fuzzy 
LAPART, a standanj benchmark test was used which 
involved separation of spirals. The performance 
results were compared to two different 
counterpropagation networks. For every case run, the 
results showed that fuzzy LAPART outperformed 
counterprojqation . In the case of fuzzy LAPART, 
performance levels of loo%, 99.22% and 91.4% were 
achieved for baseline vigilance parameters of 1,0.95 
and 0.9, respectively. Fuzzy LAPART conjoins 
LAPART and fuzzy ARTMAP, however, for 
sequenced analog inputs to the neural networlts, fuzzy 
LAPART is a preferred architecture. An extended 
investigation of an enhanced weight update methods 
between fuzzy LAPARTS A and B fields could 
provide a basis for extensions to multi-module 
architectures for dara fusion pmblems. 

for supervised barning of recognition categorim and 

architecture allows for analog as well as binary inputs 
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