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Abstract

The Traveling Salesman Problem (TSP) is a very hard optimization problem in the field of operations research. It has been shown to be NP-

complete, and is an often-used benchmark for new optimization techniques. One of the main challenges with this problem is that standard,

non-AI heuristic approaches such as the Lin–Kernighan algorithm (LK) and the chained LK variant are currently very effective and in wide

use for the common fully connected, Euclidean variant that is considered here. This paper presents an algorithm that uses adaptive resonance

theory (ART) in combination with a variation of the Lin–Kernighan local optimization algorithm to solve very large instances of the TSP.

The primary advantage of this algorithm over traditional LK and chained-LK approaches is the increased scalability and parallelism allowed

by the divide-and-conquer clustering paradigm. Tours obtained by the algorithm are lower quality, but scaling is much better and there is a

high potential for increasing performance using parallel hardware.
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1. Introduction

The Traveling Salesman Problem (TSP) is one of the

most studied problems in computer science literature. It is

an example of the important class of problems known as

NP-complete problems. An NP-complete problem is one

that is solvable in polynomial time by a non-deterministic

algorithm, but not necessarily by a deterministic one.

Another way of considering this class of problems is to say

that a correct solution may be checked in polynomial time,

but no known algorithm can solve the problem in that time.

These problems are interesting because it is possible to draw

parallels between any two NP-complete problems and show

that finding an algorithm to solve one in polynomial time

gives you an algorithm to solve the other. They are also

interesting because it has never been proven that NP-

complete problems cannot be solved in polynomial time, so

it remains as an open question. The most general form of the

TSP is to find a Hamiltonian cycle given an arbitrary graph.

All known algorithms to solve this problem take greater

than polynomial time, but if we have a solution we can

check it in OðnÞ time. The more specific case of the TSP

considered in this paper is also NP-complete, but is more

complicated to check.

The traveling salesman family of problems is an area in

which neural networks have previously been unable to

compete with the best non-neural approaches, in accuracy,

speed, or scaling. (See (Vishwanathan & Wunsch, 2001) for

a critique of the then-state-of-the-art in neural network

approaches to TSP. Improvements in the past 2 years

notwithstanding, accuracy, speed and scaling were signifi-

cant limitations.) Accuracy remains an important limitation.

In fact, it seems doubtful whether neural networks will ever

exceed the accuracy of algorithms like the Lin–Kernighan

solution (Lin & Kernighan, 1973) in solving this class of

problems. Clustering algorithms in general are limited in the

accuracy they can achieve on the TSP Table 1. If highly

accurate tours are required, then Lin–Kernighan and

variants (Applegate, Cook, & Rohe, 2000) seem likely to

remain the algorithms of choice. In situations where

accuracy is not the primary determinant, however, neural

networks may show some promise. This is especially

relevant for situations where significant modifications to

(Lin & Kernighan, 1973) and (Applegate et al., 2000) may

be required, as opposed to minor modifications and

retraining, which is often all that is needed for a neural

network.
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Our goal then is to evaluate what advantages a neural

clustering algorithm can bring to bear on the problem and

decide how to best exploit those advantages. Adaptive

resonance theory (ART) provides a very rapid and effective

neural clustering model. Functionally, it operates similarly

to k-means clustering, with an optimal k determined

dynamically by the vigilance factor. The divide and conquer

paradigm gives us the flexibility to hierarchically break

large problems into arbitrarily small clusters depending on

what trade-off between accuracy and speed is desired. In

addition, the sub-problems provide an excellent opportunity

to take advantage of parallel systems for further optimiz-

ation. Even without parallel processing, the algorithm

developed in this paper has demonstrated that better scaling

is possible using a divide and conquer approach.

1.1. Traveling salesman problem

Given a complete undirected graph G ¼ ðV ;EÞ; where V

is a set of vertices and E is a set of edges each relating two

vertices with an associated non-negative integer costs

cðu; vÞ; the most general form of the TSP is equivalent to

finding any Hamiltonian cycle over G where such a cycle is

known as a tour. The more common form of the problem is

the optimization problem of trying to find the shortest

Hamiltonian cycle. Both of these problems have been

proven to be NP-complete in (Cormen, Leiserson, & Rivest,

1996). These problems are very useful to consider because

they map so easily to many real-world applications in a wide

range of fields from network routing to cryptography

(Agarwala, Applegate, Maglott, Schuler, & Schaffler,

2000; Bailey, McLain, & Beard, 2003; Turino, 2002).

The variation of the TSP that we (and most neural network

approaches to this topic) consider is even more limited. We

look only at graphs that can be mapped to a two-dimensional

Euclidean coordinate system, where the edge weight

between two nodes is the distance between them. This

system implies that the triangle inequality holds: cðu;wÞ #

cðu; vÞ þ cðv;wÞ: We also require that the XY coordinates of

each node be given. This variation can be shown to still be

NP-complete and therefore to map onto the more general

problem (Papadimitriou, 1977). The Euclidean form of the

TSP has been widely studied (Aurora, 1998; Braun &

Buhmann, 2002; Cochrane & Cochrane, 1999).

1.2. Adaptive resonance theory

ART was first introduced by Carpenter and Grossberg

(1988). The unsupervised variants provide a simple,

effective neural clustering algorithm. The original algor-

ithm, designated ART1, used binary input sequences. The

variation developed for this solution uses two-input integer

sequences where the integers are the XY coordinates of a

node. In this form, ART is functionally similar to k-means

clustering except that k is increased dynamically as new

patterns are introduced.

1.3. Local search techniques

By far the most successful algorithms in tackling large-

scale (1000 þ cities) TSPs have been the family of

algorithms known as local search heuristics (Johnson &

McGeoch, 2002). The basic idea of local search is to start

with some tour, either randomly generated or generated by

some fast but low quality method, and make iterative

improvements, hopefully driving it towards the optimal. In

many ways this resembles the neural network technique of

starting with random initial weights and then making

incremental improvements via a technique like steepest

descent, in an attempt to minimize errors. In the case of the

TSP, the error to be minimized may be seen as the tour

length. The local search class of algorithms considers a

series of minor changes to determine whether they reduce

the tour length.

A simple local search technique that has been easy to

implement is to consider the result of swapping any two

edges currently in the tour with two new edges in such a

way that a valid tour still exists. In a permutation

representation of the tour, this change can be seen as the

operation of flipping a segment of the tour. By repeatedly

searching for the flip that minimizes the tour length, and

stopping when no flips can be found that reduce the tour

length, a shorter tour may be discovered. Once no shorter

tour can be found through this method, the tour is said to

be locally optimal. This specific algorithm is referred to in

the literature as 2-Opt. There is a general class of

algorithms of this nature that involve substituting a fixed

number of edges with new edges such that a valid tour is

maintained. These are referred to as k-Opt algorithms. An

ðn þ 1Þ-Opt algorithm, where n is the number of cities in

the problem, will always find the optimal solution, i.e. the

optimal solution is at most n þ 1 edges away from the

current tour (Rego & Glover, 2002)

Considering the time complexity of k-Opt algorithms, it

immediately becomes obvious that large values of k are not

practical. A naı̈ve implementation of 2-Opt requires Oðn2Þ

time, and in general a k-Opt algorithm requires OðnkÞ time.

A number of improvements to this family of algorithms

have been considered to reduce this running time. The

primary improvement in terms of running time has been

the use of bounded neighbor lists. With this modification,

the nearest h neighbors are calculated for each city, and

the search for edges to swap is restricted to this list of

neighbors for each city. This neighbor list may be

generated in a number of different ways, but in the general

case require time Oðn2 log hÞ; which may be reduced to

Oðn log nÞ in the case of Euclidean TSPs using k –d trees

(Johnson & McGeoch, 2002). The main problem with this

improvement is that it limits the quality of tours generated,

since it restricts which edges are considered for improve-

ment. In practice, the speed-up is so large and the

difference in solution is so small that this improvement is
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almost universally applied. Cases may be constructed,

however, where it causes very poor tours to be found.

1.4. The Lin–Kernighan local optimization algorithm

The current best results on large-scale TSP instances

come from variations on an algorithm proposed by Lin and

Kernighan (1973), (Rego & Glover, 2002). This algorithm

takes a randomly selected tour and optimizes it by stages

until a local minimum is found. This result is saved and a

new random tour selected to begin the process again. Given

enough time, the optimal tour can be found for any

instance of the problem, although in practice this is limited

to small instances for an absolute result due to time

constraints. Even with extremely large instances, however,

reasonably short tours can be found (Johnson & McGeoch,

2002).

The optimizations performed by the Lin–Kernighan (LK)

algorithm use the concept of l-optimality. If n is the number

of cities in a TSP, then we know that given any tour we can

reach an optimal tour by swapping at most n edges. Using l-

optimality, we consider the optimal tour that can be reached

by swapping only l edges. As l grows, the chance that the l-

optimal tour is actually optimal increases. Unfortunately, the

processing time required to find l-optimal tours is intractable

for large l:The largest commonly used values for l are 2 and

3, although some attempts have been made with l as 4 or 5

(Lin & Kernighan, 1973).

The algorithm proposed by Lin and Kernighan examines

variable l optimization. In brief, an initial 2-edge swap is

chosen. The algorithm then examines whether it would be

profitable to make a 3-edge swap, and continues increasing

the number of edges as long as the total swap remains an

improvement over the initial tour. This process is repeated

with each node being considered in turn as a starting point

for the initial 2-edge swap until no further improvements

can be found. The original algorithm then started with a

different random tour and worked from the beginning,

always saving the best tour seen. This original algorithm is

what is used in our current algorithm. Applying more

advanced variants of LK will likely yield even better results

(Johnson & McGeoch, 2002).

2. Algorithm-divide and conquer

The algorithm developed in this paper combines ART

and the LK local optimization algorithm to divide and

conquer instances of the TSP. We begin by reading in the

cities, stored in TSP–LIB format (Moscoto, 2002). The

ordering of the cities in memory represents the current tour

at any time. This is known as a permutation representation

and obviously only works with fully connected variants of

the TSP, as an arbitrary permutation of a non-fully

connected graph would not necessarily represent a valid

tour. This permutation representation is chosen because

weight-matrix representations become intractable for large

values of n; i.e. a 250k-city problem would require around

62.5 GB of memory to store an edge-weight matrix. Since

the problem is Euclidean, it is sufficient to store ðX;YÞ

coordinates for each city and calculate distances on the fly.

The first stage of the algorithm involves sorting the cities

into clusters using the ART algorithm described previously.

Our variation of ART uses the vigilance parameter to set a

maximum distance from the current pattern. A vigilance

parameter between 0 and 1 is considered and used as a

percentage of the global space to determine the vigilance

distance. Values were chosen based on the number and size

of individual clusters desired, but typical values ranged

from 0.80 to 0.97. The learning rate was set to 0.02. The

clusters at this point were still in a random order.

The individual clusters were then each passed to a version

of the LK algorithm also described above. Since the size of

the tours was controlled and kept under a thousand cities, we

allowed the LK search depth to be infinite as long as the

total improvement for a given swap series remained

positive. We also did not restrict the neighborhood size as

specified in the original algorithm. This required more time

than a limited depth search, but resulted in better overall

tour quality. After a first pass through the LK algorithm, a

simple intersection removal algorithm was applied. This

algorithm is based on the idea that any tour containing an

intersection between two edges is demonstrably sub-

optimal. Typically after LK is run, few intersections remain,

but those that do remain often involve edges crossing large

distances. Swapping these edges changes the global search

space sufficiently that a new run of LK can often find

additional improvement. In short, the intersection removal

algorithm is capable of making double-bridge swaps that the

LK algorithm is unable to discover. This double-bridge

property is the same as that used in the chained LK

algorithms described in (Applegate et al., 2000).

Now we are faced with the problem of combining a

number of sub-tours back into one complete tour. This may

be accomplished by adding the cluster tours into a combined

tour, one at a time. Obviously the order in which the tours

are added back is important. To minimize the cost added by

inter-tour edges, it is important to add tours that are adjacent

to the current combined tour. Our method for accomplishing

this is to add the tours in order of increasing distance from

Table 1

Algorithm Pseudocode

Read data from file

Apply ART algorithm to cluster data

For each cluster

Apply LK optimization

Apply intersection removal

Apply LK optimization

Merge with final tour

End for

Save final tour and time
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the origin. It is not clear whether this is the optimal solution,

and this is an area for future research. The other major factor

involved with merging the tours is running time. Since this a

potentially global operation, care must be exercised in the

nature of the algorithm. For example, attempting to find an

optimal linking between the two tours could be at least an

Oðn2
gÞ algorithm, which is unacceptable, because the n

involved would be the total number of cities, not just the

cities in a tour. To avoid the Oðn2
gÞ global operation, we first

find the centroid of the cluster to be added. This is just the

average of the X and Y coordinates of each city in the

cluster, and is easily calculated in OðncÞ; where the n

involved is the size of an individual cluster. We then find the

k nearest cities to that centroid in the combined tour.

Clearly, this operation requires OðngÞ time. Next, we

consider each of the k cities from the main tour to determine

the cost of inserting the cluster tour in place of the following

edge. This involves the comparison of k cities to nc cities to

determine the lowest cost matching, yielding a running time

of OðkpncÞ; where k ! ng: Finally, the cluster tour is inserted

into the merged tour at the best location discovered.

3. Results

The results from our experiments were very encouraging.

In all these results, the cities were distributed randomly

(uniform distribution), generated by the generation algor-

ithm provided at the TSPLIB web site (Moscoto, 2002). All

experiments were run on a 2 GHz AMD Athlon MP

processor with 512 M of DDR RAM. In Tables 2 and 3

below, we compare our clustered variation of the LK

algorithm to the original LK algorithm. The LK algorithm

used for these comparisons is that same algorithm that we

implemented and used on the clusters of our main algorithm.

Since the focus of these experiments was to determine the

effects of clustering, the LK implementation is not heavily

optimized and the running times reflect are only to be used

in comparison to each other. In this implementation of the

LK algorithm, neighborhoods were not used. Instead, the

algorithm compared all possible swaps at a given level. This

resulted in relatively slow running times. Further below, a

more representative LK implementation is benchmarked

against our technique. However, in Tables 2 and 3 results,

some noteworthy items are already apparent.

Obviously the clustered variation is scaling much better

than the original, and tour quality is remaining within 5% or

so. Also, with the clustered version we can smoothly trade

time for quality in either direction by adjusting the vigilance

factor.

In the second set of experiments, we compare our

algorithm with an improved version of the LK algorithm,

the Concorde software package. This version incorporates

the limited neighborhood structure that most implemen-

tations of the LK algorithm use, as well as additional

optimizations. Concorde is widely regarded as the fastest

TSP solver, for large instances, currently in existence.

Concorde is described in more detail in (Applegate, Bixby,

Chvatal, & Cook, 2001). Essentially, it uses the chained LK

algorithm. Search depth for LK is greatly limited, but high

quality is obtained by repeatedly applying double-bridge

transformations and optimizing. The Concorde (Table 4)

package also applies a simple algorithm to generate an

initial tour of fair quality before beginning that provides a

large speed boost to the LK algorithm. These techniques

could also be implemented in our clustered variation giving

similar speed and quality improvements. For now we are

just interested in the scalability of the relative algorithms.

In Table 5, we can clearly see that while our algorithm is

below the quality of tour that the chained-LK algorithm

produces, it is scaling nicely. Our quality-of-result numbers,

reported in the last column of Table 5, are comparable with

previously published neural net results for much smaller

TSP problems, see (Vishwanathan & Wunsch, 2001). In

fact, our algorithm gives us additional flexibility in terms of

changing the vigilance factor to generate different numbers

of clusters. To illustrate this, Table 6 shows the results of

the 250k city problem as the vigilance parameter is adjusted.

Table 2

original Lin–Kernighan algorithm implemented by author

TSP size Tour length Time (s)

1000 2.63808e7 5

2000 3.64058e7 21

4000 5.07807e7 82

20000 1.12221e8 4814

Table 3

Clustered Lin–Kernighan

TSP size Tour Length Time (s) Off LK (%)

1000 2.69785e7 1 2

2000 3.80334e7 3 4

4000 5.35437e7 8 5

20000 1.17e8 98 4

Table 4

Concorde chained LK

TSP size Tour length Time (s)

10000 7.20532e7 38

20000 1.01468e8 85

250000 3.58274e8 1380

Table 5

Clustered Lin–Kernighan

TSP size Tour length Time (s) Off CLK (%)

10000 8.21277e8 57 14

20000 1.17e8 98 15

250000 4.27169e8 693 19
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As is clear from the table, increasing the vigilance

parameter increases the speed at the expense of tour quality.

We also observe the limit of 0.97 for this particular problem

past, which the time begins to increase instead of decrease.

This is the point where the individual constant factors

involved with processing each cluster begin to outweigh the

advantages of having smaller clusters. The actual vigilance

parameter chosen depends largely on the quality of tour

needed and the time available.

As a further experiment, a version of the program was

developed which used a neighborhood structure similar to

that used in the Concord package, as well as other algorithm

optimizations described in (Johnson & McGeoch, 2002).

This resulted in significant speed and quality increases are

seen in the comparison provided by Tables 7 and 8. It also

gives an opportunity to illustrate the potential scalability of

our technique. At the 1,000,000-city level, our solution is

just 11% off of the Concorde algorithm results, but only

takes 16% as long to run. (Because of the much longer run

time of the Concorde algorithm, some intermediate size

problems are omitted, thus the blank spaces in the last

column of Table 7 and the shorter Table 8.)

4. Conclusions

Our main result is the potential of combining neural

clustering with traditional local search techniques. A

significant speedup was shown by using clustering in

combination with the original Lin–Kernighan algorithm.

This speedup was offset by a 2–5% loss in tour quality that

is the result of the inherent limitations of clustering when

applied to the TSP. Clustering approaches will typically be

unable to locate a global minimum because they assume a

certain structure on the underlying data that may be sub-

optimal. In most real-world situations, however, finding the

absolute global minimum is not a requirement. Most

applications prefer speed to tour quality within limitations.

While our current implementation doesn’t beat the latest

chained-LK techniques, with heavy optimization, devel-

oped over many years of research, it does scale better, and

gives additional flexibility when trading tour quality for

speed. The modified version of the algorithm, incorporating

many of the latest improvements in the LK algorithm,

appears to scale on the order of OðnplgnÞ: Scaling was

shown through one million cities. In addition, since the

number of global operations is limited in our algorithm, it

should scale smoothly with parallel hardware and show

significant improvement over current solutions.
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