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Abstract

Purpose ~ Outcome with a novel methodology for online recognition and classification of pieces in robotic assembly tasks and its application into an
intelligent manufacturing cell.

Design/methodology/approach — The performance of industrial robots working in unstructured environments can be improved using visual
perception and learning techniques. The object recognition is accomplished using an artificial neural network (ANN) architecture which receives a
descriptive vector called CFD&POSE as the input. Experimental results were done within a manufacturing cell and assembly parts.

Findings - Find this vector represents an innovative methodology for classification and identification of pieces in robotic tasks, obtaining fast
recognition and pose estimation information in real time. The vector compresses 3D object data from assembly parts and it is invariant to scale, rotation
and orientation, and it also supports a wide range of illumination levels.

Research limitations/implications — Provides vision guidance in assembly tasks, current work addresses the use of ANN's for assembly and object
recognition separately, future work is oriented to use the same neural controller for all different sensorial modes.

Practical implications - Intelligent manufacturing cells developed with multimodal sensor capabilities, might use this methodology for future
industrial applications including robotics fixtureless assembty. The approach in combination with the fast learning capability of ART networks indicates
the suitability for industrial robot applications as it is demonstrated through experimental results.

Originality/value — This paper introduces a novel method which uses collections of 2D images to obtain a very fast feature data — “current frame

descriptor vector” — of an object by using image projections and canonical forms geometry grouping for invariant object recognition.

Keywords Robotics, Assembly, Neural nets

Paper type Research paper

1. Introduction

Robotics field has grown considerably with new technologies,
industrial robots today, needs sensorial capabilities to achieve
non-structured and more sophisticated tasks; vision systems
as a sensorial mode for robots have a growing demand
requiring more complex and faster image processing functions
in order to implement more sophisticated industrial
applications, like assembly automation.

In this sense, vision recognition systems must be capable of
perceiving and detecting images and objects, as close as the
human vision does; this fact has encouraged research activity
to design artificial vision systems based on the neural
morphology of the biological human vision system. Now
scientists understand better about how computational neural
structures and artificial vision systems must be designed
following neural paradigms, mathematical models and
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computational architectures. When a system involves these
aspects, it can be referred to as a “Neuro-Vision System”
(Gupta and Knopf, 1993; Pena-Cabrera er al., 2004) which
can be defined as an artificial machine with ability to see our
environment and provide visual formatted information for
real time applications.

This document, reports research progress of a novel neural-
based architecture method for invariant object recognition
and applied to self-adapting industrial robots which can
perform assembly tasks. It has been shown by psychological
and clinical studies that visual object recognition involves a
large activity area on the cerebral cortex when objects are seen
the first time and the region’s activity is reduced when familiar
objects are perceived (Gupta and Knopf, 1993) New objects
can also be learned quickly if certain clues are given to the
learner. Following this psychological evidence a novel
architecture called SIRIO (Sistema Inteligente de
Reconocimiento Invariante de Objetos) was designed. The
architecture is firstly trained with clues representing
different objects that the robot is likely to encounter within
the working space to form its initial knowledge base. This
information then triggers the online learning subsystem based
on an artificial neural network (ANN), the new image vector
descriptors override initial clues, and the robot learns to
identify familiar objects and to learn new ones.

The above ideas suggested that it was possible to get fast
and reliable information from a simple but focused analysis of
what an object might show. The very important aspects of the
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scene (we have called “clues”), can be used later to retrieve
memorized aspects of the object without having to recall
detailed features. By using neural networks it is possible to
learn manipulative skills, which can be used by an industrial
manipulator (Lopez-Juarez and Howarth, 2000). In someway
we humans do that process once an object has been seen and
learned for the first time.

The article describes a methodology for online object
recognition, based on ANN for identification and
classification purposes. A robust algorithm for perimeter and
centroid calculations, object functions and pose estimation is
presented.

2. Background and related work and
considerations

2.1 Related work
Intelligent manufacturing cells using robots with sensorial
capabilities are being investigated using artificial intelligence
techniques like ANN and Fuzzy Logic among others, since
the mathematical and control models are simplified.
Acquiring information from multiple sensors in
manufacturing systems provides robustness and self-
adaptation capabilities, hence improving the performance in
industrial robot applications. A few researchers have applied
neural networks to assembly operations with manipulators
and force feedback. Vijaykumar er al. (1994) used back
propagation (BP) and reinforcement learning (RL) to control
a zebra robot, its neural controller was based on the location
error reduction beginning from a known location, Enric and
del pobil (1997) employed self-organization map (SOM) and
RL to control a zebra robot, the location of the destination
piece was unknown, Howarth (1998) utilized BP and RL to
control a SCARA robot, without knowing the location of
assembly, Lopez-Juarez (2000) implemented FuzzyARTMAP
to control a PUMA robot also with an unknown location. All
of the above authors considered only constraint motion
control during assembly; however, to complete the autonomy
of the assembly system a machine vision system has also to be
considered. Additionally, a new concept was introduced by
Hoska (1988) called “Robotic Fixtureless Assembly” (RFA)
that eliminates the need of using complex and rigid fixtures,
which involves new technical challenges, but allows very
potential solutions. Ngyuen and Mills (1996) have studied
RFA of flexible parts with a dynamic model of two robots with
a proposed algorithm, which does not require measurements
of the part deflections. Plut and Bone (1996) and Plut and
Bone (1997) presented a grasp planning strategy for RFA.
The goal of RFA is to replace these fixtures with sensor-
guided robots, which can work within RFA workcells. The
development of such vision-guided robots equipped with
programmable grippers might permit holding a wide range of
part shapes without tool changing. Using ANN, an intcgrated
intelligent vision-guided system can be achieved as it is shown
by Langley and D’Eleuterio (2003). This job can be achieved
by using two-dimensional (2D) computer vision in different
manner so that 3D invariant object recognition and POSE
calculation might be used for aligning parts in assembly tasks
if an —“adequate descriptor vector” — is used and interfaced
in real time to a robot. Many authors had come with
descriptor vectors and image transformations, used as general
methods for computer vision applications in order to extract
invariant features from shapes. Aguado er. al (2002)
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developed a new formulation and methodology for including
invariance in general form of the Hough transform, Chin-
Hsiung er al. (2001) designed a technique for computing
shape moments based on the quadtree representation of
images, Best and McKay (1992) describe a method for
registration of 3D shapes in minutes, Torralba and Oliva,
2002 present a method to infer the scale of the scene by
recognizing properties of the scene structure for depth
estimation, Freeman (1961) introduced the first approach
for representing digital curves using chain codes, and showing
classical methods for processing chains in Freeman (1974),
Bribiesca (1999) developed a new chain code for shapes
composed of regular cells, which has recently evolved even to
represent 3D paths and knots.

Some authors use multiple cameras or multiple views to
extract information, performs invariant object recognition and
determine object’s position and motion, Underwood
et al.(1975) developed a visual learning system using
multiple views which requires deterministic description of
the object’s surfaces like measurements and interconnections,
Yong-Sheng Chen ez al. (2001) propose a method to estimate
the 3D cgo-motion of an observer moving in a static
environment, Murase and Navar (1995) have worked in visual
learning and recognition of 3D objects from appearance,
Gonzalez-Galvan er al. (1997) developed a procedure for
precision measure in 3D rigid-body positioning using camera-
space manipulation for assembly. Dickmanns (1998) and
Kollnig and Nagel (1997) have shown solutions to facilitate
the use of vision for real world-interaction, Hager ez al. (1995)
and Papanikolopoulous and Khosla (1993) use markers on
the object to simplify detection and tracking of cues.

Some other authors have contributed with techniques for
invariant pattern classification, like classical methods as the
universal axis of Lin, 1996 and invariant moments of Hu
(1962) or artificial intelligence techniques, as used by Yiiceer
and Oflazer (1993) which describes an hybrid pattern
classification system based on a pattern pre-processor and an
ANN invariant to rotation, scaling and translation, Stavros and
Lisboa (1992) developed a method to reduce and control the
number of weights of a third order network using moment
classifiers and You and Ford (1994) proposed a network for
invariant object recognition of objects in binary images.
Applications of guided vision used for assembly are well
illustrated by Bone and Capson, 2003 which developed a
vision-guide fixtureless assembly system using a 2D computer
vision for robust grasping and a 3D computer vision to align
parts prior to mating, and (Jorg ez al., 2000) designing a flexible
robot-assembly system using a multi-sensory approach and
force feedback in the assembly of moving components.

2.2 Original work

Moment invariants are the most popular descriptors for image
regions and boundary segments, but computation of
moments of a 2D image involves a significant amount of
multiplications and additions in a direct method, fast
algorithms have been proposed for these calculations, as it is
the case of Philips (1993) for binary images. The computation
of moments can be simplified since it contains only the
information about the shapec of the image as proposed by
Chen (1990). In many real-time industry applications the
speed of computation is very important, the 2D moment
computation is intensive and involves parallel processing,
which can become the borttleneck of the system when
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moments are used as major features. This paper introduces a
novel method which uses collections of 2D images to obtain a
very fast feature data — “current frame descriptor vector” — of
an object by using image projections and canonical forms
geometry grouping for invariant object recognition, producing
3D POSE information for different pre-defined assembly
parts. A fast algorithm allows calculation of a boundary object
function and centroid which defines and compress 3D object
information, the algorithm wuses a Weight Matrix
Transformation introduced by Pena-Cabrera er al (2004)
to generate a CFD&POSE vector which gives object
recognition and pose estimation information to the robot for
grasping assembly components, which in conjunction with a
FuzzyARTMAP ANN forms the system called SIRIO which
recognize, learns and performs pose estimation of assembly
components in the order of milliseconds, which constitutes a
practical tool for real-world applications.

2.3 Visual behaviour

The problems of modelling and understanding visual
behaviour and their semantics are often regarded as
computationally ill-defined. Cognitive understanding cannot
adequately explain why we associate particular meanings with
observed behaviours. Interpretation of visual behaviour can
rely on simple mappings from recognized patterns of motion
to semantics, but human activity is complex, the same
behaviour may have several different meanings depending
upon the scene and task context. Behaviour interpretation
often also requires real-time performance if it is to be correct
in the relevant dynamic context, by real time, it is not
necessary implied that all computation must be performed at
full video frame-rate, as long as the interpretation of
behaviour proceeds within some required time constraint
(Gong and Buxton, 2002).

Considering that it 1s estimated that 60 per cent of sensory
information in humans is provided by the visual pathway
(Kronauer and Zeevi, 1985), and the biological vision
concerning the pathway is a massively parallel architecture
using basic hierarchical information processing (Uhr, 1980),
it seems logical to look for an alternative approach with less
computational power to better emulate the human visual
system and it is given by connectionist models of the human
cognitive process, we considered this idea to develop a
machine vision system for robotic assembly.

The paper describes the robotic cell architecture with
integrated force sensing and vision capability; however, the
vision mode is emphasized throughout the paper.

2.4 Inspiring ideas and ART models
Knowledge can be built either empirically or by hand as
suggested by Towell and Shavlik (1994). Empirical knowledge
can be thought of as giving examples on how to react to
certain stimuli without any explanation and hand-built
knowledge, where the knowledge is acquired by only giving
explanations but without examples. It was determined that in
robotic systems, a suitable strategy should include a
combination of both methods. Furthermore, this idea is
supported by psychological evidence that suggests that theory
and examples interact closely during human learning
(Feldman, 1993).

Learning in natural cognitive systems, including our own,
follows a sequential process as it is demonstrated in our daily
life. Events are learnt incrementally, for instance, during
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childhood when we start making new friends, we also learn
more faces and this process continues through life. This
learning is also stable because the learning of new faces does
not disrupt our previous knowledge. These premises are the
core for the development of connectionist models of the
human brain and are supported by Psychology, Biology and
Computer Sciences. Psychological studies suggest the
sequential learning of events at different stages or “storage
levels” termed as sensory memory (SM), short term memory
(STM) and long term memory (LTM).

There are different types of ANN, for this research a Fuzzy
ARTMAP network is used. This network was chosen because
of its incremental knowledge capabilities and stability, but
mostly because of the fast recognition and geometrical
classification responses.

The adaptive resonance theory (ART) is a well established
associative brain and competitive model introduced as a
theory of the human cognitive processing developed by
Stephen Grossberg at Boston University. Grossberg resumed
the situations mentioned above in what he called the Stabiliry-
Plasticity Dilemma suggesting that connectionist models
should be able to adaptively switch between its plastic and
stable modes. That is, a system should exhibit plasticity to
accommodate new information regarding unfamiliar events.
But also, it should remain in a stable condition if familiar or
irrelevant information is being presented. He identified the
problem as due to basic properties of associative learning and
lateral inhibition. An analysis of this instability, together with
data of categorisation, conditioning, and attention led to the
introduction of the ART model thart stabilises the memory of
self-organising feature maps in response to an arbitrary stream
of input patterns (Grossberg, 1976). The core principles of
this theory and how STM and LTM interact during network
processes of activation, associative learning and recall were
published in the scientific literature back in the 1960s.

The theory has evolved in a series of real-time architectures
for unsupervised learning, the ART-1 algorithm for binary
input patterns (Carpenter and Grossberg, 1981). Supervised
learning is also possible through ARTMAP (Carpenter and
Grossberg, 1991) that uses two ART-1 modules that can be
trained to learn the correspondence between input patterns
and desired output classes. Different model variations have
been developed to date based on the original ART-1 algorithm,
ART-2, ART-2a, ART-3, Gaussian ART, EMAP, ViewNET,
Fusion ARTMAP, LaminART just to mention but a few.

3. Manufacturing cell

Different sensors have been used in manufacturing systems to
achieve specific tasks such as robot guiding, soldering,
sorting, quality control and inspection. Integration of new
architectures and methods using sensorial modalities in
manufacturing cells like vision, force-sensing and voice
recognition becomes an open research field. Most
automated systems integrators and designers had pushed
hard to get faster and more accurate industrial robot systems
but sensorial capabilities have not been developed completely
to provide the required flexibility and autonomy for
manufacturing tasks. Basic requirements within an industrial
production environment have to be satisfied to guarantee an
acceptable manufacturing process; some factors are the tool
or work-piece position uncertainty, which is achieved by using
expensive structured manufacturing cells. Other factors are
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the force-torque and interaction evaluation with the task
environment. By using self-adaptive robots with sensorial
capabilities and skill learning online, great flexibility and
adaptability is given to manufactured processes, so the idea of
giving machines capabilities like humans in learning and
execution tasks becomes real (Wu et al, 1996).

3.1 Workecell architecture

The workcell is formed basically by a 6 DOF KUKA KR15
industrial robot, KRC2 robot controller, KUKA Control
Panel (KCP), PC Master Computer, JR3 F/T sensor attached
to the robot’s wrist, a ceiling mounted CCD camera and a
conveyor belt as it is illustrated in Figure 1. The main units of
the robot system are the KRC2 controller and the robot-arm
itself. The KRC2 controller houses the components that
control and power the robot-arm. The Master Computer host
the DSP-based F/T sensor card and also communicates with
the robot controller at lower level via serial port using the
3964R protocol. The vision system uses an auxiliary
computer — not shown — in which algorithms for POSE
determination (orientation and location) reside. POSE
information about the components on the conveyor belt is
provided by the Auxiliary Computer to the Master Computer,
which in turn issues proper motion commands to the KRC2
controller for component grasping. Once the part (male

Figure 1 Manufacturing cell
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component) is held by the robot, then the vision system also
determines the female location at the Master Assembly Block
and sends the female centroid information to the Master
Computer in order to move the male component above the
female component in readiness for assembly.

3.2 Control architecture

Hardware control architecture is comprised by the elements
depicted in previous section; Figure 2 shows the
communication interaction among modules. Power supply
and data are interconnected by way of two master cables, the
controller houses the power supply and control components
for the robot-arm and connects with vision and force-sensing
controllers using a serial port. Programs are coded in high
level language and robot and vision commands uses low level
language.

3.3 Assembly

The success of assembly operations using industrial robots is
currently based on the accuracy of the robot itself and the
precise knowledge of the environment, i.e., information about
the geometry of the assembly parts and their localisation in
the workspace. Robot manipulators operate in real world
situations with a high degree of uncertainty and require
sensing systems to compensate from potential errors during
operations. Uncertainties come from a wide variety of sources
such as robot positioning errors, gear backlash, arm
deflection, ageing of mechanisms and disturbances.
Controlling all the above aspects would certainly be a very
difficult task; therefore a simpler approach is preferred like
using vision-guided robots for aligning parts in assembly
tasks.

Several tests were carried out to assess the vision-guided
assembly process using aluminium pegs with different cross-
sectional geometry: circular, squared and radiused-square
(termed radiused-square because it was a square peg with one
corner rounded). These components are shown in Figure 3 as
well as the peg-in-hole operation in Plate 1. The diameter of
the circular peg was 25 mm and the side of the square peg was
also 25 mm. The dimensions of the non-symmetric part, the
radiused-square, was the same as the squared peg with one
corner rounded to a radius of 12.5 mm. Clearances between
pegs and mating pairs were 0.1 mm, chamfers were at 45° with
5 mm width. The assembly was ended when 3/4 of the body of

Figure 2 Control architecture
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Figure 3 Assembly components
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Plate 1 Peg-in-hole operation

the peg were inside the hole. This represented 140 motion
steps in the -Z assembly direction.

In our experiments, the robot grasps pieces from a conveyor
belt and performs an assembly task using a force-sensing
system architecture called SIEM (Sistema Inteligente de
Ensamble Mecanico), the vision system gets an image to
recognize and calculates the object’s pose estimation and
sends the information to the robot.

4. Vision system

4.1 Vision workspace

The vision system was implemented with a high speed camera
CCD/B&W, PULNIX 6710, with 640 X 480 resolution;
camera movements over the X and Y axis were implemented
with a computer controlled 2D positioning system as shown
in Plate 2.

4.2 System integration

The vision system interaction schedule is carried out by a

serial communication link with the robotic assembly module

and a custom interface with the camera positioning system as

it was shown in Figure 2.

The robotic assembly system sends commands to the vision
system as follows:

(1) SSENDINF#1 Send Information of Zone I: zone 1 is the
place where the robot grasps the male components. The
robot can locate different pieces and their characteristics.

(2) S$SENDINF#2 Send information of zone 2: zone 2 is the
place where the robot is performing the assembly task.
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Plate 2 Vision workspace. Overview (top) and close up (bottom)

The assembly system can request information about the
female component such as position and shape.
SRESEND#X Resend information of zone X: This
command will be useful when the information received
by the assembly system coming from the vision system is
incorrect, due to an error in the check sum or any other
error.

3)

The communication protocol is shown in Figure 4.

The response from the vision system is a function of the
request command from the assembly system, which
coordinates the activities of the intelligent manufacturing
cell (Castuera and Lopez-Juarez, 2004).

4.3 Invariant object recognition

The proposed methodology for invariant object recognition is
based on the use of canonic shapes within what we called the
primitive knowledge base (PKB). Once having embedded this
knowledge, the idea is to improve and refine it online, which
compares favourably with Gestalt principles such as grouping,
proximity, similarity and simplicity (Feldman, 1993). To

Figure 4 Communication protocol

i Zone Command C-Sum
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illustrate the methodology, it will be useful to consider the
assembly components used during experiments. The 2D
representation of the working pieces is shown in Figure 5.

These canonical shapes serve as “clues” inserted initially in
the PKB which initialise the grouping process (clustering).
The knowledge is acquired by presenting multiple instances of
the object such as those shown in Figure 6 where and example
of the circular shape and some of the possible views are
illustrated. The following step is to code the object’s
information to get a descriptor vector, so that its description
be invariant to location, scaling and rotation, the algorithm is
explained in the following section.

Having such a descriptor vector, an ANN can be trained
and it is expected to have incremental knowledge to conform
the descriptor wvector families which can be generated online
with the same vision system.

5. Object recognition methodology
The following methodology is employed:

(1) Finding the region of interest (ROI);

(2) Calculate the histogram of the image;

(3) Search for pieces;

(4) Centroid calculation;

(5) Piece orientation;

(6) Calculate boundary object function (BOF);

(7) Descriptor vector generation and normalization
(CFD&POSE); and

(8) Information processing in the neural network.

5.1 Finding the region of interest

It 1s desirable first to segment the region of the whole scene to
have only the workpieces region of interest (ROI). There are
two defined regions of interest in the manufacturing cell. The
assembly workspace (zone 1) and the identification/grasping
workspace (zone 2). The camera has to be positioned in the
vision zone requested by the robot. The 2D positioning
system, which uses feedback vision using an searching
algorithm employing two LED’s in order to reach the exact
reference for the position of the vision system. The original
image is 480 X 640 pixels, eight-bit greyscale resolution.

Figure 5 2D representation of assembly pieces
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Image conditioning 1s carried out avoiding the processing of
small objects and finding the initial position of the desired
zone, (in this example zone 1). The quantized grey level value
of the LEDs in the image is greater than or equal to a specific
value GL, regardless of the amount of light in the zone (see
Figure 7). With this process, most of the objects that can
confuse the system are rejected. Then the ROI is first
extracted by using the 2D histogram information and initial
position reference.

To determine which are the more approximated white blobs
within the image, it has to be considered the mark using the
following criteria:

*  Colour Gl > 245

* 25 = Perimeter = 35 pixels (i.e., the measured size of the
leds)

* The distance between the leds, must be constant at
50 mm * 3 mm.

In the initial position search, only the objects that fulfil all
mentioned characteristics are processed, all others are
rejected. In this way, initial position is found and ROI
defined as showed in Figure 7.

5.2 Image histogram process

An algorithm using 1D and 2D image histograms is used in
order to provide the system of illumination invariance within
some specific range. From these histograms, threshold values
are used for image segmentation of the background and the
picces within the ROI eliminating the noise that may appear.
This dynamic threshold value calculation allows independent
light conditions operation of the system. The 1D histogram
normally has the aspect shown in Figure 8.

Figure 7 Zone 1 vision workspace
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The two peaks in the histogram represent the background and
the pieces in the image. After the histogram calculation, an
image binarization is performed using a threshold operator.

5.3 Search for pieces

For searching purposes, the system calculates the perimeter

obtaining:

*  Number of points around a piece

*  Group of points coordinates X and Y, corresponding to
the perimeter of the picce measured clockwise

* Boundaries of the piece 2D Bounding Box (2D-BB)

The perimeter calculation for every piece in the ROI is
performed after the binarization. Search is always
accomplished from left to right and from top to bottom.

Once a white pixel is found, all the perimeter is calculated
with a scarch function (see Figure 7). The next definitions are
useful to understand the algorithm:(Figure 9)

A nearer pixel to the boundary is any pixel surrounded mostly
by black pixels in connectivity cight.

A farther pixel 1o the boundary is any pixel that is not
surrounded by black pixels in connectivity eight.

The highest and lowest coordinates are the ones that create a
rectangle (Boundary Box).

The search algorithm executes the following procedures
once it has found a white pixel:

(1) Searches for the nearer pixel to the boundary that has
not been already located.

Assigns the label of actual pixel to the nearer pixel to the
boundary recently found.

Paints the last pixel as a visited pixel.

If the new coordinates are higher than the last higher
coordinates, it is assigned the new values to the higher
coordinates.

If the new coordinates arc lower than the last lower
coordinates, it is assigned the new valucs to the lower
coordinates.

Steps 1-5 are repeated until the procedure returns to the
initial point, or no other nearer pixel to the boundary is
found.

(2)

(3
(4

5)

(6)
This technique will surround any irregular shape, and will
not process useless pixels of the image, therefore this is a fast

Figure 9 Perimeter calculation of a workpiece
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algorithm that can perform online classification, and can be
classified as linear:

O(N#8%4)

where N is the size of the perimeter, and 8 and4 are the number
of comparisons the algorithm needs to find the pixel farer to the
boundary, the main difference with the traditional algorithm
consist of making the sweep in an uncertain area which is always
larger than the figure, this turns the algorithm into:

O(N#M)

N M, is the size of the Boundary Box in use, and it does not
obtain the coordinates of the perimeter in the desired order.

5.4 Centroid calculation

The procedure proposed for centroid calculation is performed

at the same time that the coordinates of the perimeter are

calculated without using the N*M pixels box, (Boundary Box).
The coordinates of the centroid (Xc, Y¢) are calculated with
the following procedure:

(1) If a new pixel is found and it has not been added, the
value of 7, j coordinates from pixel to left is added, until a
new black or visited pixel is found.

(2) While a new pixel is found repeat step 1.

Figure 10 demonstrates how the sum is made from right to
left as indicated by the black arrows.

The equation (1) is used for centroid calculation in
binarized images:

&

X o=y, =
A

R (1)

where A is the area or number of pixels of the piece.

5.5 Piece orientation

The projected shadow by the pieces is used to obtain its
oricntation. Within the shadow, the largest straight line is
used to calculate the orientation angle of the piece using the
slope of this line, see Plate 3.

The negative image of the shadow is obtained becoming a
white object, from which, the perimeter is calculated and also
the two most distant points (x; y,, X, v») are determined.
These points define the largest straight line, the equation for
the distance between two points is used to corroborate if is the

Figure 10 Centroid calculation

Plate 3 Shadow for the orientation
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largest straight line, and also if it pass trough the centroid
equation (2).

Yo -y =mXe —x1) (2)
slope is obtained using equation (3):

Y2 T 2
X2 — X1

(3)

"t =

5.6 Boundary object function (BOF)

The boundary object function (BOF), is the function that
describes a specific piece and it will vary according to the
shape (see Figure 11).

The centroid, the coordinates of the perimeter and the
distance from the centroid to the perimeter points are used to
calculate the BOF.

With the coordinates P, (X, Y;) and P> (X,, Y5), the
equation (4) is applied:

APy P = \J(X: - X P+ (Y -1 (@)

Figure 11 BOF (a) circle; (b) square; (c) radiused-square
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5.7 Descriptive vector generation and normalization
Once the information has been processed, a descriptive vector
is generated. This vector is the input for the neural network:

The descriptive vector is called CFD&POSE and it is
conformed by:

Dy
D,

5 &

[CFD & POSE] =

N e X
©

ID
where D, are the distances from the centroid to the perimeter
of the object. X, Yo, are the coordinates of the centroid. ¢, is
the orientation angle. Z is the height of the object ID is a code
number related to the geometry of the components.

5.8 Information processing in the neural network
The vision system extends the BOF data vectors to 180, plus
five more data vectors, centroid (Xe¢, Y¢), orientation, height
and ID as showed in Table L.

And this is the input to the FuzzyARTMAP neural network.

6. Experimental results

The methodology was coded using Visual C++6.0 and a PC
with PIII processor at 800 MHZ and 192 MB RAM.

6.1 Object recognition

In order to test the robustness of the ANN, the Fuzzy
ARTMAP Neural Network was trained first with 2,808
different patterns and its learning capability analyzed. Results
regarding the percentage of recognition and the number of
generated neurons are shown in Figure 12. The graph shows

Table | Comp

Data 1-180 Cen 182-180 Orient 183 Height 184 ID 185

Figure 12 Learning of the neural network

Learning convergence
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how the system learned all patterns in three epochs, creating
only 32 neurons to classify 2,808 patterns.

The average time for training is 4.42 ms, and the average for
testing is 1.0 ms.

Results reported in this article employed 216 patterns
corresponding to 72 squarc, 72 circle and 72 radiused-square
components of the same size. The orientation values were 0,
45, 90, 135, 180, 215, 270 and 315°.

With these training patterns set, the system was able to
classified correctly 100 per cent of the pieces presented on- line
even if they were not of the same size, orientation or locations and
for different light conditions. The pieces used to train the neural
network are shown in Figure 13 and 14 shows different graphs
corresponding to different descriptor vectors for different
positions, sizes and illumination conditions of these components.

Several tests with different geometry, positions and light
conditions, were carried out online (Figure 15).

The normalization of the BOF is done using the maximum
value divisor of the distance vector method. This method allows
having very similar patterns as input vectors to the neural

Figure 13 Workpieces used to create the initial knowledge base

Figure 14 (a) circle, (b) square, (¢) radiused-square
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network, getting a significant improvement in the operation
system. Figure 16 shows the generated similar patterns using
totally different size, location and orientation conditions for
working pieces.

In our experiments, the object recognition method used the
above components to demonstrate the assembly process,
however, the SIRIO system can recognize more complex
components as it is shown in Figure 17, where four different
animal shapes were used for testing. Same results for
invariance and object recognition were obtained.

The CFD & POSE vectors were generated and Figure 18
shows their respective BOF functions. The information

Figure 15 Pieces used to test the system

Figure 16 (a) squares (b) Similar patterns
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Figure 17 More complex components Zone 2: peg-in-hole assembly (female) area of vision, here the
visually guided robot approaches the zone where the female
component is located to achieve the assembly task and releasing
the control of the operation to the SIEM assembly system.

The POSE 1 means the location estimation of a workpiece
within the zone 1, and the POSE 2 means the location
estimation within the zone 2 of the workpiece/counterpart.

Grasp testing (zone 1) was done for each geometry; every
one was placed three times within the vision area,
incrementing 10° its orientation and changing the locations
in four defined poses. In the zone 2, the location of the female
component was constant so the angle too, but the robot did
not known the pose previously. The first nine assembly cycles
were done with female chamfered components and the last
nine with chamfer-less components.

The average time of the total cycle is 1:50.6 min and the
minimum time is 1:46 min, the longest time is: 1:58 min.

The average of the error made in both zones is: 0.8625 mm,
the minimum is: 0 mm while the maximum is 3.4 mm.

The average of the error angle is: 4.27°, the minimum is: 0°
and the maximum is 9°.

Figure 19, shows 18 different X and Y points where the robot
might reach the male component showed as error X (mm) and
error Y (mm), and Figure 20 shows the angle error for
orientation grasping purpose using the same notation.

In the Assembly area the robot gets vision guided
capabilities to approach the zone to the centre of the
workpiece/counterpart, Figure 21 shows 18 different X and Y
points where the robot might reach the female and releases
control to force/sensing system.

The 18 assembly cycles were done successfully.

contained within the vector allows the system to remember
even when and where the object was used for the last time.

6.2 Assembly cycles in the manufacturing cell

Table IT shows the results for 18 assembly cycles using the vision
system SIRIO and the assembly system SIEM. This table
contains information regarding the type of piece in use,
presence or absence of chamfer, total operational time (object
recognition, grasping, moving the part from pick up place to

assembly point and assembly), the calculated error based on the
centroid and rotation angle of the pieces for zone 1 and the offset
error in zone 2. Finally, in the last column, the type of geometry
recognized online by the neural network is provided.

The vision system provides the robot with the capability to
approach two zones:

Zone 1: assembly workpiece (male) area of vision, where
robot picks up the pieces after having POSE information of
the object, then grasps and takes them to zone 2.

Figure 18 Descriptor vector for animals

Figures 19-20 show that all the poses given by the SIRIO
are inside the error limits in both areas: zone 1 and zone 2.
This permitted to have a 100 per cent of success in the total

assembly cycle operation.

7. Conclusions and future work

A novel methodology for fast object recognition and POSE
estimation for assembly components in manufacturing cells
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Table I 18 Assembly cycles using the vision system SIRIO and the assembly system SIEM

Zone 1 Error zone 1 Zone 2 Error zone 2
No. Piece Cham Total time (min) X(mm) Y{(mm) RZ° X(mm) Y(mm) RZ° X{mm) Y(mm) X(mm) Y (mm) Neural classific.
1 Square Yes 49 59.85 1422 12 015 -02 -2 828 102 -22 —0.9 square
2 Square Yes 01:58 58.6 44.8 22 1.4 02 -2 83.8 100.2 -1 0.9 square
3 Square Yes 01:46 174.8 458 26 02 0.2 4 849 1011 -01 0.2 square
4 Radius Yes 01:49 177.7 1431 1 1.3 09 -1 84.9 101.1 0.3 0.1 radius
5 Radius Yes 01:47 58.6 142.2 48 1.4 -02 2 849 1011 0.2 0.3 radius
6 Radius Yes 01:54 59.5 42.8 63 0.5 22 -3 86 101.1 2.1 —0.1  radius
7 Circle  Yes 01:47 174.8 458 79 02 02 -9 849 1011 1 —-0.1  circle
8 Circle Yes 01:48 176.7 1431 80 23 0.9 0 86 1011 1.8 —-0.3 circle
9 (Circle Yes 01:46 56.6 1431 98 34 -11 -8 849 1011 11 0 circle
10 Square No 01:53 58.6 42.8 94 1.4 2.2 6 84.9 101.1 04 —0.1  square
11 Square No 01:51 173.8 448 116 1.2 12 -6 849 1011 0.6 —0.3  square
12 Square No 01:47 177.7 143.1 116 1.3 0.9 4 84.9 100.2 04 0.6  square
13  Radius No 01:56 58.6 1431 124 1.4 -1.1 6 838 1011 -0.2 —-0.2 radius
14 Radius No 01:50 59.85 438 143 0.15 1.2 -3 82.8 100.2 -1.4 0.8 radius
15 Radius No 01:53 173.8 438 155 1.2 22 -5 828 1011 —-14 —0.1 radius
16 Cirdle No 01:46 177.7 143.1 157 1.3 0.9 3 84.9 100.2 0.4 0.8 circle
17 Cirde No 01:50 58.6 1431 175 1.4 1.1 -5 83.8 101.1 -0.5 —-03 circle
18 Circle No 01:51 58.6 448 172 14 0.2 8 838 100.2 —-13 0.9 circle

Note: The time showed in fourth column is the total time to achieve a complete assembly cycle in the manufacturing cell, including object recognition time

has results show the
methodology. Issues regarding image processing, centroid
and perimeter calculation are illustrated. The methodology
was tested on a manufacturing cell with assembly
components. Results show the feasibility of the method to
send grasping and morphologic information (coordinates and
classification characteristics) to a robot in real-time. A robust
positioning system that corrected errors due to wheel sliding
was implemented using visual feedback information. The
overall methodology was implemented and integrated in a
prototype cell showing real performance of industrial
processes. Accurate recognition of assembly components
and workpieces identification was successfully carried out

been described. Experimental

Figure 19 Positional error referenced to real centroid in male component

Tolerance Area for Success Grassping
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Error X (mm)
Error Y (mm)
Tolerance {(mm)
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by using a FuzzyARTMAP neural network model.
The performance of this model was satisfactory with
recognition times lower than 5ms. and identification rates
of 100 per cent.

Experimental measurements showed *3 mm of precision
error in the information sent to the robot. The orientation
angle of the pieces had up to *9° error, good enough for the
robot to be able to handle the pieces.

The intelligent manufacturing cell is being developed with
multimodal sensor capabilities, and uses the methodology
presented in this work. Current work addresses the use of
ANN’s for assembly and object recognition separately, future
work is oriented to use the same neural controller for all
different sensorial modes. The SIRIO vision system

Figure 20 Rotational error for orientation grasp
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Figure 21 Positional error referenced to real centroid in female
component
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architecture is being improved for handling complex 3D
objects in manufacturing applications.

8. Glossary

ANN = artificial neural network

ART = adaptive resonance theory

BB = boundary box

BOF = boundary object function

BP = back propagation

CFD = current frame descriptor

GL = grey level value

PKB = primitive knowledge data base
POSE = position and orientation estimation
RFA = robotics fixtureless assembly
RL = reinforcement learning

SIEM = assembly manufacturing intelligent system
SIRIO = invariant object recognition intelligent system
SOM = self organized map
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