SOARD files description
Datasets

All datasets used in SOARD simulations are available in DataFiles.zip, which can be downloaded from the SOARD Datasets page. It contains five matlab files (.mat) that contain data for all five datasets: Letter and Number, Small Boston, Complete Boston, Fenway, and Voices Datasets.

LettersData.mat: Contains both the complete dataset and the one that does not include A (Capital ay). As in all datasets, it includes sets ready for SOARD: train (for Stage 1) and test (for Stage 2).

SmallBostonData.mat: Contains the small Boston dataset.

BostonData.mat: Contains the complete Boston dataset. Data is already divided in four strips (St1 to St4), and include the full dataset (FULL) and labeled vectors (GT) in different variables.

FenwayData.mat: Contains the Fenway dataset. It includes original (lowest hierarchy level) and extended (higher hierarchy levels) classes for the four quadrants and original data and ground truth subdivided in 16 quadrants which can be used to reorganize class distribution.

Voices dataset: Contains the original audio clips and preprocessed data files.

Algorithm
All required files to run the SOARD algorithm are available in SOARDcode.zip. The system uses Matlab and has been extensively tested in Windows systems.

The main file is soard.m. It takes two datasets: a labeled one for Stage 1 learning, and another for Stage two. Additionally, a flag (first) allows creating and saving a new data ordering or using a previously saved one.

So, the whole algorithm will run with a simple instruction:


soard(labeledDataset, stage2Dataset, flag)

Datasets must consist of feature vectors, one per row, the first column reserved for vector labels when required. Data used in SOARD simulations, in its required format, can be found in DataFiles.zip. Using flag=1 will create and save a new input vector ordering, while using flag=0 will used a previously saved one.
SOARD requires the following files to be in the same directory: ordenes.m (creates input vector orderings), fabso.m (implements rule self-organization), ppf.m (implements per-pixel filtering), rigido.m (sets the structure of differential equations for rule-based inference), and doSelfSupLearning.m (implements Self-supervised output learning).

