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Simple Model of Spiking Neurons

Eugene M. Izhikevich

Abstract—A model is presented that reproduces spiking and bursting
behavior of known types of cortical neurons. The model combines the bi-
ologically plausibility of Hodgkin–Huxley-type dynamics and the compu-
tational efficiency of integrate-and-fire neurons. Using this model, one can
simulate tens of thousands of spiking cortical neurons in real time (1 ms
resolution) using a desktop PC.

Index Terms—Bursting, cortex, Hodgkin–Huxley, PCNN, quadratic in-
tegrate-and-fire, spiking, thalamus.

I. INTRODUCTION

To understand how the brain works, we need to combine experi-
mental studies of animal and human nervous systems with numerical
simulation of large-scale brain models. As we develop such large-scale
brain models consisting of spiking neurons, we must find compromises
between two seemingly mutually exclusive requirements: The model
for a single neuron must be: 1) computationally simple, yet 2) capable
of producing rich firing patterns exhibited by real biological neurons.
Using biophysically accurate Hodgkin–Huxley-type models is compu-
tationally prohibitive, since we can simulate only a handful of neurons
in real time. In contrast, using an integrate-and-fire model is computa-
tionally effective, but the model is unrealistically simple and incapable
of producing rich spiking and bursting dynamics exhibited by cortical
neurons.

In this paper, a simple spiking model (1), (2) is presented that is as
biologically plausible as the Hodgkin–Huxley model, yet as computa-
tionally efficient as the integrate-and-fire model. Depending on four pa-
rameters, the model reproduces spiking and bursting behavior of known
types of cortical neurons, as we illustrate in Fig. 1 and summarize in
Fig. 2.

Mathematical analysis of the model will be published in the mono-
graph by Izhikevich [8]. The derivation of the first (1) is based on bi-
furcation theory and normal form reduction [2], [5], and the partv0 =
v2 + I is sometimes referred to as being a quadratic integrate-and-fire
neuron. The full model was first published in [10, eqns. (4) and (5)
with voltage reset discussed in Sect. 2.3.1 ] in a trigonometric form
more suitable for mathematical analysis. The form presented here is
more suitable for large-scale simulations.

II. THE MODEL

Bifurcation methodologies [8] enable us to reduce many biophysi-
cally accurate Hodgkin–Huxley-type neuronal models to a two-dimen-
sional (2-D) system of ordinary differential equations of the form

v0 =0:04v2 + 5v + 140� u+ I (1)

u0 = a(bv � u) (2)

with the auxiliary after-spike resetting

if v � 30 mV; then
v  c

u u+ d:
(3)

Here,v andu are dimensionless variables, anda, b, c, andd are dimen-
sionless parameters, and0 = d=dt, wheret is the time. The variable
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Fig. 1. The simple model (1), (2) can reproduce firing patters of neurons
recorded from the rat’s motor cortex. Data are kindly shared by N. Desai,
model parameters as in Fig. 2.

v represents the membrane potential of the neuron andu represents a
membrane recovery variable, which accounts for the activation ofK+

ionic currents and inactivation ofNa+ ionic currents, and it provides
negative feedback tov. After the spike reaches its apex (+30 mV), the
membrane voltage and the recovery variable are reset according to the
(3). Synaptic currents or injected dc-currents are delivered via the vari-
ableI .

The part0:04v2+5v+140was obtained by fitting the spike initiation
dynamics of a cortical neuron (other choices also feasible) so that the
membrane potentialv hasmV scale and the timet hasms scale. The
resting potential in the model is between�70 and�60 mV depending
on the value ofb. As most real neurons, the model does not have a fixed
threshold; Depending on the history of the membrane potential prior to
the spike, the threshold potential can be as low as�55 mV or as high
as�40 mV.

• The parametera describes the time scale of the recovery variable
u. Smaller values result in slower recovery. A typical value is
a = 0:02.

• The parameterb describes the sensitivity of the recovery variable
u to the subthreshold fluctuations of the membrane potentialv.
Greater values couplev andu more strongly resulting in possible
subthreshold oscillations and low-threshold spiking dynamics. A
typical value isb = 0:2. The caseb < a(b > a) corresponds
to saddle-node (Andronov–Hopf) bifurcation of the resting state
[10].

• The parameterc describes the after-spike reset value of the mem-
brane potentialv caused by the fast high-thresholdK+ conduc-
tances. A typical value isc = �65 mV.
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Fig. 2. Known types of neurons correspond to different values of the parametersa, b, c, d in the model described by the (1), (2). RS, IB, and CH are cortical
excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset shows a voltage response of the model neuron to a step of dc-currentI = 10

(bottom). Time resolution is 0.1 ms. This figure is reproduced with permission from www.izhikevich.com. (Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.)

• The parameterd describes after-spike reset of the recovery vari-
ableu caused by slow high-thresholdNa+ andK+ conductances.
A typical value isd = 2.

Various choices of the parameters result in various intrinsic firing pat-
terns, including those exhibited by the known types of neocortical [1],
[3], [4] and thalamic neurons as summarized in Fig. 2. A possible exten-
sion of the model (1), (2) is to treatu, a andb as vectors, and use u

instead ofu in the voltage (1). This accounts for slow conductances
with multiple time scales, but we find such an extension unnecessarily
for cortical neurons.

III. D IFFERENTTYPES OFDYNAMICS

Neocortical neurons in the mammalian brain can be classified into
several types according to the pattern of spiking and bursting seen in
intracellular recordings. All excitatory cortical cells are divided into the
following four classes [1], [3]:

• RS (regular spiking)neurons are the most typical neurons in the
cortex. When presented with a prolonged stimulus (injected step
of dc-current in Fig. 2RS, bottom) the neurons fire a few spikes
with short interspike period and then the period increases. This is
called the spike frequency adaptation. Increasing the strength of
the injected dc-current increases the interspike frequency, though
it never becomes too fast because of large spike-afterhyperpolar-
izations. In the model, this corresponds toc = �65 mV (deep
voltage reset) andd = 8 (large after-spike jump ofu).

• IB (intrinsically bursting)neurons fire a stereotypical burst of
spikes followed by repetitive single spikes (Fig. 2IB). In the
model, this corresponds toc = �55 mV (high voltage reset)
andd = 4 (large after-spike jump ofu). During the initial burst,
variableu builds up and eventually switches the dynamics from
bursting to spiking.

• CH (chattering)neurons can fire stereotypical bursts of closely
spaced spikes. The inter-burst frequency can be as high as 40 Hz.
In the model, this corresponds toc = �50mV (very high voltage
reset) andd = 2 (moderate after-spike jump ofu).

All inhibitory cortical cells are divided into the following two classes
[4]:

• FS (fast spiking)neurons can fire periodic trains of action poten-
tials with extremely high frequency practically without any adap-
tation (slowing down), as one can see in Fig. 2FS. In the model,
this corresponds toa = 0:1 (fast recovery).

• LTS (low-threshold spiking)neurons can also fire high-frequency
trains of action potentials (Fig. 2LTS), but with a noticeable spike
frequency adaptation. These neurons have low firing thresholds,
which is accounted for byb = 0:25 in the model. To achieve a
better quantitative fit with real LTS neurons, other parameters of
the model need to be changed as well.

In addition, our model can easily reproduce behavior of thalamo-cor-
tical neurons, which provide the major input to the cortex

• TC (thalamo-cortical)neurons have two firing regimes: When
at rest (v is around�60 mV) and then depolarized, they exhibit
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Fig. 3. Simulation of a network of 1000 randomly coupled spiking neurons.
Top: spike raster shows episodes of alpha and gamma band rhythms (vertical
lines). Bottom: typical spiking activity of an excitatory neuron. All spikes were
equalized at+30 mV by resettingv first to+30 mV and then toc.

tonic firing as in Fig. 2TC, left voltage trace. However, if a neg-
ative current step is delivered so that the membrane potential is
hyperpolarized (v is around�90 mV), the neurons fire a rebound
burst of action potentials, as in Fig. 2TC, right voltage trace.

The model can exhibit other interesting types of dynamics.

• RZ (resonator)neurons have damped or sustained subthreshold
oscillations, as in Fig. 2RZ. They resonate to rhythmic inputs
having appropriate frequency (as the resonate-and-fire model
[9]). This behavior corresponds toa = 0:1 and b = 0:26.
Notice that there is a bistability of resting and repetitive spiking
states: The neuron can be switched between the states by an
appropriately timed brief stimuli.

Dynamics of other neuronal types, including those in brainstem, hip-
pocampus, basal ganglia, and olfactory bulb, can also be described by
our model.

Our “one-fits-all” choice of the function0:04v2+5v+140 in (1) is
justified when large-scale networks of spiking neurons are simulated,
as we discuss below. However, if one is interested in the behavior of
a single neuron, then other choices of the function are available, and
sometimes more preferable. For example, the function0:04v2+4:1v+
108with b = �0:1 is a better choice for the RS neuron, since it leads to
the saddle-node on invariant circle bifurcation and Class 1 excitability
[10].

IV. PULSE-COUPLED IMPLEMENTATION

We have used this model to simulate a sparse network of 10 000
spiking cortical neurons with 1 000 000 synaptic connections in real
time (resolution 1 ms) using a 1 GHz desktop PC and C++ program-
ming language. The following MATLAB program (also available on
author’s webpage) simulates a network of randomly connected 1000
neurons in real time. Motivated by the anatomy of a mammalian cortex,

we choose the ratio of excitatory to inhibitory neurons to be 4 to 1, and
we make inhibitory synaptic connections stronger. Besides the synaptic
input, each neuron receives a noisy thalamic input.

In principle, one can use RS cells to model all excitatory neurons
and FS cells to model all inhibitory neurons. The best way to achieve
heterogeneity (so that different neurons have different dynamics), is
to assign each excitatory cell(ai; bi) = (0:02;0:2) and (ci; di) =
(�65;8) + (15;�6)r2i , whereri is a random variable uniformly dis-
tributed on the interval [0,1], andi is the neuron index. Thus,ri = 0
corresponds to regular spiking (RS) cell, andri = 1 corresponds to
the chattering (CH) cell. We user2i to bias the distribution toward RS
cells. Similarly, each inhibitory cell has(ai; bi) = (0:02;0:25) +
(0:08;�0:05)ri and(ci; di) = (�65;2).

The model belongs to the class of pulse-coupled neural networks
(PCNN): The synaptic connection weights between the neurons are
given by the matrixS = (sij), so that firing of thejth neuron in-
stantaneously changes variablevi by sij .

% Created by Eugene M. Izhikevich, February 25, 2003

% Excitatory neurons Inhibitory neurons

Ne=800; Ni=200;

re=rand(Ne,1); ri=rand(Ni,1);

a=[0.02*ones(Ne,1); 0.02+0.08*ri];

b=[0.2*ones(Ne,1); 0.25-0.05*ri];

c=[-65+15*re.^2; -65*ones(Ni,1)];

d=[8-6*re.^2; 2*ones(Ni,1)];

S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];

v=-65*ones(Ne+Ni,1); % Initial values of v

u=b.*v; % Initial values of u

firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms

I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input

fired=find(v>=30); % indices of spikes

firings=[firings; t+0*fired,fired];

v(fired)=c(fired);

u(fired)=u(fired)+d(fired);

I=I+sum(S(:,fired),2);

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % step 0.5 ms

v=v+0.5*(0.04*v.^2+5*v+140-u+I); % for numerical

u=u+a.*(b.*v-u); % stability

end;

plot(firings(:,1),firings(:,2),’.’);

One can see in Fig. 3 that the network exhibits cortical-like asyn-
chronous dynamics; that is, neurons fire Poisson spike trains with mean
firing rates around 8 Hz. Dark vertical lines indicate that there are oc-
casional episodes of synchronized firings in the alpha and gamma fre-
quency range (10 and 40 Hz, respectively). Although the network is
connected randomly and there is no synaptic plasticity, the neurons
self-organize into assemblies and they exhibit collective rhythmic be-
havior in the frequency range corresponding to that of the mammalian
cortex in the awake state. Changing the relative strength of synaptic
connections and the strength of the thalamic drive can produce other
types of collective behavior, including spindle waves and sleep oscilla-
tions. We can easily observe and study these cortical states because our
simple spiking model describesaccuratelydynamics of known types
of cortical neurons. Thus,there is no longer a contradiction between
biological plausibility and computational efficiency of model neural
networks.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on June 25, 2009 at 10:09 from IEEE Xplore.  Restrictions apply.



1572 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

V. CONCLUSION

In this paper, a simple model that reproduces the rich behavior of
biological neurons, including spiking, bursting, and mixed mode firing
patters, post-inhibitory (rebound) spikes and bursts, continuous spiking
with frequency adaptation, spike threshold variability, bistability of
resting and spiking states, and subthreshold oscillations and resonance
is presented (the latter are discussed in [7] and [9]).

Our model is the simplest possible model that can reproduce these
types of neuronal behavior: It consists of only two equations and has
only one nonlinear term, i.e.,v2. Yet, the model iscanonical in the
sense that the difference between it and a whole class of biophysically
detailed and accurate Hodgkin–Huxley-type models, including those
consisting of enormous number of equations and taking into account all
possible information about ionic currents, is just a matter of coordinate
change [6].

We show how to use the model to build networks of spiking neurons
capable of exhibiting collective dynamics and rhythms similar to those
of the mammalian cortex. Due to the extreme computational simplicity
of the model, we can simulate thalamo-cortical networks consisting of
tens of thousands of spiking neurons in real time with 1 ms resolution
using an old 1-GHz desktop PC.
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Global and Partial Synchronism in
Phase-Locked Loop Networks

L. H. A. Monteiro, N. C. F. Canto, J. G. Chaui-Berlinck, F. M. Orsatti,
and J. R. C. Piqueira

Abstract—We analytically investigate the existence of global and partial
synchronism in neural networks where each node is represented by a phase
oscillator. Partial synchronism, which is important to pattern recognition,
can be caused by increasing the natural frequency of an oscillator and re-
stricting the frequencies of others in certain ranges.

Index Terms—Phase-locked loop (PLL), phase oscillator, synchronism,
visual cortex.

I. INTRODUCTION

Hoppensteadt and Izhikevich [1] and Wang [2] have proposed net-
work models where the neural activity is described by differential equa-
tions. Both architectures can be used for pattern recognition via asso-
ciative memory, which occurs when a group of neurons fires synchro-
nously. These models were inspired on findings and ideas about the
functioning of the mammalian visual cortex.

It is known that different features of an object appearing in a vi-
sual scene, as its color, shape, velocity, and the direction of its mo-
tion, are processed in different cortical areas (e.g., [3]). Several au-
thors have proposed that these features are linked through temporal
correlations of neural activities (e.g., [4]). Thus, each feature is repre-
sented by a neural group oscillating in a synchronized way, and distinct
features of the same object are simultaneously represented by distinct
synchronous groups. Neural groups corresponding to different objects
must be desynchronized from each other, in order to avoid ambiguous
conjunctions. Experimental observations in mammals seem to support
this theory (e.g., [5]).

In the Wang model [2], the activity of a cortical column is described
by two nonlinear differential equations developed by Wilson and
Cowan [6] representing the interactions between two populations of
neurons that are distinguished by the fact that their synapses are either
excitatory or inhibitory.

In the Hoppensteadt-Izhikevich model [1], the activity of a cortical
column is represented by the nonlinear differential equation of a phase-
locked loop (PLL) (e.g., [7], [8]) describing the temporal evolution of
the phase associated to the oscillation.

In both network models, the connectivity among nodes follows
simple laws. In this sense, these networks are classified as regular.
Despite this regularity, both networks are considered intractable
analytically, because it is a very hard task to find expressions relating
the parameter values of the oscillators in order to assure global or
partial synchronism.

We present analytical results about a simple version of the Hoppen-
steadt-Izhikevich network. We try to give some hints for answering the
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