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Abstract

We suggest a simple spiking model—resonate-and-fire neuron, which is similar to the integrate-and-fire neuron except that the state
variable is complex. The model provides geometric illustrations to many interesting phenomena occurring in biological neurons having
subthreshold damped oscillations of membrane potential. For example, such neurons prefer a certain resonant frequency of the input that is
nearly equal to their eigenfrequency, they can be excited or inhibited by a doublet (two pulses) depending on its interspike interval, and they
can fire in response to an inhibitory input. All these properties could be observed in Hodgkin—Huxley-type models. We use the resonate-and-
fire model to illustrate possible sensitivity of biological neurons to the fine temporal structure of the input spike train. Being an analogue of
the integrate-and-fire model, the resonate-and-fire model is computationally efficient and suitable for simulations of large networks of spiking

neurons. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Damped or sustained fast subthreshold oscillations of
membrane potential (see Fig. 1) have been observed in
many biological neurons (see e.g. Hutcheon, Miura, &
Puil, 1996a; Llinas, 1988; Llinas, Grace, & Yarom, 1991;
Pedroarena & Llinas, 1997, and references therein) and in
almost all biophysically detailed Hodgkin—Huxley-type
neural models (see e.g. FitzHugh, 1969; Hodgkin & Huxley,
1952; Hutcheon & Yarom, 2000; Hutcheon, Miura, & Puil
1996b; Manor, Rinzel, Segev, & Yarom, 1997; Morris &
Lecar, 1981; Pike, Goddard, Suckling, Ganter, Kasthuri, &
Paulsen, 2000).

This dynamic property makes neurons sensitive to the
timing of a stimulus. Indeed, during the oscillation the
distance between the membrane potential and the threshold
changes. A strong stimulus may or may not elicit a spike
depending on its timing relative to the phase of oscillation,
as we illustrate in Fig. 2b. This leads to many interesting
nonlinear phenomena, such as oscillation of spiking prob-
ability, sensitivity to the interspike period of incoming
doublets, triplets and bursts, selective communication, reso-
nance, FM interactions, etc. All these phenomena are rela-
tively simple, but they are obscured by the complexity of the
Hodgkin—Huxley-type models. As a result, they may be
difficult to understand and simulate, especially in a network
of many neurons. Moreover, some scientists believe that
such phenomena are peculiar only to the Hodgkin—

Huxley-like models and cannot be seen in simple spiking
neurons (Luk & Aihara, 2000).

In this short paper, we introduce a biologically inspired,
but simple, resonate-and-fire model that illustrates how
subthreshold oscillations may affect a neuron’s spiking
dynamics. The resonate-and-fire model is the simplest
possible model to exhibit damped oscillation of membrane
potential, and it makes many non-trivial ideas easy to under-
stand and illustrate. Its computational efficiency is compar-
able with that of the integrate-and-fire model, which makes
it suitable for simulations of large networks of spiking
neurons.

2. Integrators versus resonators

Neurons generate action potentials because their
membranes have voltage dependent ionic channels (John-
ston & Wu, 1995). Since there are many types of such
channels, there could be thousands of different conduc-
tance-based mechanisms for excitability and spiking, and,
hence, thousands of biophysically accurate models of spik-
ing neurons. Most such models can be studied using dyna-
mical systems theory. For example, a rest state corresponds
to an equilibrium attractor, and repetitive spiking to a limit
cycle attractor. An important observation is that neurons are
excitable because they reside near a bifurcation from equi-
librium to a limit cycle attractor (Rinzel & Ermentrout,
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Fig. 1. Examples of damped subthreshold oscillations of membrane poten-
tial in the Hodgkin—Huxley model (compare the voltage scales).

1989). Despite the huge number of biophysical mechanisms,
there are only two major dynamic mechanisms of excitabil-
ity: via saddle-node or Andronov—Hopf bifurcations (see
review by Izhikevich, 2000).

The two bifurcations frequently result in different
subthreshold behavior of the voltage variable after a short
pulse of current is applied, see Fig. 2. Voltage exhibits
exponential convergence to the rest state in the saddle-
node case, and damped oscillatory convergence in the
Andronov—Hopf case. This results in different neuro-
computational properties, as we illustrate in Fig. 3 and
discuss below.

2.1. Integrators

Consider Fig. 2a, where the voltage variable exhibits
exponential convergence to the rest state after the first
pulse was applied. If the second pulse arrives right after
the first one, the voltage crosses the threshold and the
neuron fires. The shorter the distance between the pulses
is, the more likely the neuron fires. Such neurons perform
temporal integration of the incoming pulse trains, and they
are termed integrators. They prefer high frequency of the
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Fig. 2. The neuron membrane potential, V(¢), is perturbed by a current pulse
(pulse 1). (a) Systems having exponential convergence to the rest state: the
second pulse (pulse 2) can make the neuron fire if it arrives right after Pulse
1. (b) Systems having damped oscillatory convergence to the rest: to make
the neuron fire, the distance between the pulses 1 and 2 should be near the
period of the subthreshold oscillation.

input: the higher the frequency, the sooner they fire.
Decreasing the frequency of the input delays or even termi-
nates their firing, as one can see in Fig. 3a. Many cortical
neurons are integrators.

2.2. Resonators

In contrast, neurons near an Andronov—Hopf bifurcation
exhibit damped oscillation of the membrane potential,
which changes the distance to the threshold. The effect of
the second pulse depends on its timing relative to the period
of the oscillation. If the timing between the two pulses is
near half the period, the pulses effectively cancel each other,
see Fig. 2b. If the timing is near one period, the pulses add
up. Such neurons prefer inputs having a certain resonant
frequency that is equal to the frequency of the subthreshold
oscillation. That is, in order to evoke a response, one should
stimulate such a neuron at the resonant frequency, as we
illustrate in Fig. 3b using various conductance-based Hodg-
kin—Huxley-type models. This resonant behavior has been
described in thalamic (Hutcheon, Miura, Yarom, & Puil,
1994; Puil, Meiri, & Yarom, 1994) and cortical neurons
(Gutfreund, Yarom, & Segev, 1995; Hutcheon et al.,
1996a,b; Jansen & Karnup, 1994). Such neurons are referred
to as being resonators (Izhikevich, 2000; Llinas, 1988). In
contrast to integrators, increasing the frequency of stimula-
tion may delay or even terminate firing of a resonator
neuron (see middle of Fig. 3b).
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Fig. 3. Neuro-computational properties of neurons depend on whether or not the decay to the rest state is oscillatory. (a) Neurons having exponential (non-
oscillatory) decay to the rest state act as integrators—the higher the frequency of the input (vertical bars below the voltage traces) the sooner they fire. An input
burst of four spikes is more effective when the interspike interval is small. (b) Neurons having damped oscillations to rest act as resonators—they prefer input
having resonant frequency. An input burst of four spikes is more effective when the interspike interval equals the period of the damped oscillation (resonant
burst). Shown are voltage traces of various electrophysiological Hodgkin—Huxley-type models possessing the currents listed in each panel.

This dichotomy, i.e. integrators versus resonators, is
important to keep in mind when studying spiking neurons.
For example, the Hodgkin and Huxley (1952) and FitzHugh
(1969) models exhibit Andronov—Hopf bifurcation, and,
hence, are resonators. In contrast, the Connor (1977)
model exhibits saddle-node bifurcation, and, hence, is an
integrator. Many conductance-based models, such as Morris
and Lecar (1981), can be integrators or resonators depend-
ing on the values of parameters, as we illustrate in Fig. 4.
Thus, spiking neurons having similar ionic mechanisms
may have quite different neuro-computational properties,
and it is important to realize that.

2.3. Computational efficiency

Biophysically plausible Hodgkin—Huxley-type neural
models have many desirable properties, but they might be
computationally inefficient when one needs to simulate a
huge network of spiking neurons. A reasonable alternative
might be to use the integrate-and-fire model, which is
simple and linear (except at the firing moments). However,
the model is an integrator, and, hence, it is not suitable for
simulations of networks of Hodgkin—Huxley or FitzHugh—
Nagumo neurons, which are resonators (compare Fig. 4a
and c).
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Fig. 4. Top: simulations of the Hodgkin—Huxley-type neural model (Morris & Lecar, 1981) with two sets of parameters corresponding to the integrator (a) and
resonator (b) behavior. Notice the differences in the subthreshold and spiking responses. Bottom: integrate-and-fire (c) and resonate-and-fire (d) models
describe accurately qualitative the behavior of the Morris—Lecar model. Notice that integrators prefer high frequency of the input, whereas resonators respond
to the pulse train having resonant eigenfrequency (middle triplet). Also notice that resonators produce a post-inhibitory spike, while integrators do not.

Below, we introduce an analogue of the integrate-and-fire
model—the resonate-and-fire neuron, which could be used
as a computationally efficient alternative for the Hodgkin—
Huxley-type neural models; see Fig. 4b and d. The inte-
grate- and resonate-and-fire models look similar (compare
Egs. (1) and (2) below), and have similar advantages. They
are simple, linear and pulse-coupled. Both models share the
same drawback. They are extreme caricatures of biological
neurons.

3. The resonate-and-fire neurons

A salient feature of neural models near Andronov—Hopf
bifurcation is the existence of a damped subthreshold oscil-
lation of the membrane potential. This renders a unique
neuro-computational property that is not present in the inte-
grate-and-fire model. Our goal is to make a minimal modi-
fication to the integrate-and-fire model so that it exhibits
damped oscillations.

3.1. Linearization

Any non-linear neuron model exhibiting damped oscilla-
tions of membrane potential can be converted into a linear
model by a local continuous change of variables. (The line-
arity assumption is violated during the brief but large

magnitude action potential.) This mathematical result
follows from the Hartman—Grobman Theorem and Invar-
iant Manifold Reduction Theorem, and it is discussed in the
context of neural systems by Hoppensteadt and Izhikevich
(1997). The resulting linear system

X =bx — wy

y = wx + by
can be written in the equivalent complex form
= (b +iw)z.

Here z=x+1iy € C is a complex-valued variable that
describes oscillatory activity of the neuron. The real part,
x, is the current-like variable. It describes dynamics of
voltage-gated and synaptic currents. The imaginary part,
y, is the voltage-like variable. b + iw € C is a parameter,
where b < 0 is the rate of attraction to the rest and w > 0 is
the frequency of the oscillations. We use b= —1 and
® = 10 in most of our illustrations. The equation above is
the simplest model exhibiting damped oscillations. It
describes subthreshold behavior of a neuron.

3.2. The model

From now on, we model subthreshold dynamics of each
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Fig. 5. The resonate-and-fire neuron fires when the solution crosses the threshold y = 1. To fire, the solution must be pushed into the shaded area.

neuron by the linear model above and say that z fires an
action potential when the voltage variable y = Im z crosses
the threshold value y = 1, which is the horizontal line on the
complex plane that passes through i € C; see Fig. 5. To
make it fire, external perturbations should push z beyond
the bold curve that encompasses the white area in the figure.
The curve is a piece of solution that passes through the point
i € C. Any solution starting in the white area will converge
to the rest state z =0 without crossing the threshold. Any
solution starting outside the white area will cross the thresh-
old before converging to the rest state.
Similarly to the integrate-and-fire model,

i=a;+ by + > 58t — 1) (1)
j=1

the resonate-and-fire model can be written in the form

n
Zi = (b +iwy)z; + Zcija(t — 1), (2)

j=1
where z; € C describes the state of the i-th neuron, b; +
iw; € Cis its internal parameter, each ¢; € C is a synaptic
coefficient, 6 is the Dirac delta function, and t; is the nearest
moment of firing of the j-th neuron. We see that each firing
produces a pulse that displaces activities of the other
neurons by the complex-valued constant c¢; (we use real c;
in our illustrations here; complex c;; are also feasible). After
z; fires an action potential, it is reset to a new value. We reset
ittoi € C (see bottom of Fig. 5), although other reset values
are also feasible. Even though each equation in (2) is linear,
the network behavior is non-linear, due to the connections

between the neurons and the reset dynamics.

Systems (1) and (2) may look similar, but they have quite
different dynamics, which we contrast in Fig. 6. Each

incoming pulse displaces activities of the integrate- and
resonate-and-fire models. Whenever they cross the thresh-
old y =1, the neurons are said to fire a spike. After the
spike, the variables are reset to certain values. Both vari-
ables decay exponentially to the rest state y = — a/b and
z =0, respectively, but the latter exhibits dampened oscilla-
tion. In the rest of the paper, we show how this property
endows the resonate-and-fire model with many features that
cannot exist in the integrate-and-fire model. This empha-
sizes the difference between neuro-computational properties
of integrators and resonators (Izhikevich, 2000).

3.3. Firing probability

In Fig. 7 (top) we perturb a quiescent integrate-and-fire
neuron by an excitatory pulse so that its activity, y(¢), exhi-
bits exponential decay to rest. The minimal amplitude of the
next excitatory pulse, A(?), necessary to excite the cell past
the threshold is depicted in the same figure. Since
A(t) =1 — y(#), it also exhibits exponential decay. One
can see that the larger the distance between the pulses is,
the stronger the second pulse should be to elicit a response.

In the middle of Fig. 7 we perturb a quiescent resonate-
and-fire neuron by an excitatory pulse and plot A(f), which
exhibits damped oscillation with the neuron’s eigenfre-
quency o (eigenperiod 7= 2m/w). The minima of A(?)
correspond to the moments the cell is most vulnerable to
the second pulse. These are the windows of opportunity for
other neurons to elicit response. The first window is right
after the pulse. The next window is eigenperiod T away
from the first one. Thus, the second pulse has the greatest
effect when it arrives with the first one (coincidence detec-
tion) or T units after the first one (resonance detection). It
has the least effect when it arrives 7/2 units after the first
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Fig. 6. Typical response of the integrate-and-fire (top) and the resonate-and-fire (bottom) neurons to an input pulse train.

pulse. This observation will be important when we consider
below the effect of a doublet stimulation.

In the bottom of Fig. 7 we apply an inhibitory pulse. A(?)
first increases, then decreases below the steady state value.
Thus, the inhibitory pulse enhances sensitivity of the reso-
nate-and-fire neuron to subsequent excitatory stimulation
having appropriate timing. This is a prominent property of
resonators which can be observed in Hodgkin—Huxley-type
models (Luk & Aihara, 2000) as well as in simple resonate-
and-fire models.

3.4. Post-inhibitory spikes

Unlike integrators, resonators can easily fire a spike in
response to an inhibitory stimulation. This phenomenon can
be seen in biophysically detailed and simplified models, as
we illustrate in Figs. 4 and 8. The existence of post-inhibi-
tory spikes is a salient property of resonators, and it is
closely related to the rebound or anodal break excitation.
Integrate-and-fire neurons do not exhibit such a neuro-
computational property (Izhikevich, 2000).

3.5. Doublets

Suppose a neuron receives a pair of pulses, which is
frequently referred to as being a doublet. We consider the
effect of such an input geometrically in Fig. 9. We take
¢ =0.8 so that each pulse alone cannot evoke an action
potential, but both can, provided that they have appropriate
timing.

The first spike evokes a damped oscillation, as seen in
Figs. 5 and 7 (middle). Whether the second pulse can push
the solution beyond the threshold depends on its timing
relative to the phase of the oscillation. The neuron oscilla-
tions with the eigenperiod 7'= 27/w. If the interspike inter-
val is infinitesimal, as in Fig. 9a, or near the eigenperiod 7T,
as in Fig. 9c, then the neuron fires. In these cases, the effect
of the second pulse adds to that of the first pulse. If the
interval is significantly less or greater than the eigenperiod,
the neuron may not fire as we illustrate in Fig. 9b and d. In
these cases, the effect of the second pulse cancels that of the
first pulse. We refer to the doublet having interspike interval
equal to the eigenperiod of the postsynaptic neuron as being
resonant for that neuron. The other doublets in Fig. 9 are
non-resonant. This result can easily be generated for triplets
and bursts of pulses (the case of quadruplets is depicted in
Fig. 3).

We see that incoming pulses may add up or cancel each
other depending on whether the input is resonant or not.
Hence, the name resonate-and-fire.

3.6. Multiplexing

The same doublet may be resonant for some neurons and
non-resonant for others. Resonate-and-fire neurons having
eigenfrequency w tend to send doublets, triplets, etc.,
having the same interspike frequency w. (The frequency
may change, though, due to the dispersion properties of
axons.) Such doublets are resonant for neurons having
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Fig. 7. The minimal amplitude, A(f), of the second pulse necessary to discharge the cell as a function of time.

similar eigenfrequencies, and non-resonant for others. This
provides an effective tool for selective communication, see
Fig. 10. In particular, the network can multiplex: send many
message via a single transmission line, as we illustrate in
Fig. 11.

In Figs. 10 and 11 we implicitly assume that axonal
propagation does not alter the timing of spikes. If it does,
then the set of postsynaptic neurons with which a given
neuron can communicate selectively is determined by the

interspike frequency at the axonal terminals, and not at the
axonal hillock.

3.7. Periodic stimulation

We see that if pulses arrive with a wrong interval, they
may cancel each other. Thus, a periodically stimulated
neuron may never fire, as we illustrate in Fig. 12, despite
the fact that the frequency of stimulation is high. To make

Post-inhibitory Spike

i Threshold Threshold

—_

Inhibitory
Pulse

0 0 1

Fig. 8. The resonate-and-fire model illustrates how an inhibitory pulse can lead to an action potential.
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Fig. 9. A doublet may or may not make the postsynaptic neuron fire depending on the interspike interval. (a) The interspike interval is extremely short; the
resonate-and-fire model acts as a coincidence detector. (b) The interspike interval is equal to the half of the cell’s eigenperiod. (c) The interspike interval is

nearly equal to the eigenperiod. (d) It is too long.
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Fig. 10. Selective interaction: a doublet sent by a resonate-and-fire neuron
having eigenfrequency w; is resonant for another neuron having similar
eigenfrequency and non-resonant for the others.

the neuron fire, the input period must be nearly resonant: it
must be nearly equal to, or a multiple of, the eigenperiod. In
Fig. 13 we illustrate the response to the input having slowly
increasing frequencys, i.e. the ZAP input. One can clearly see
the resonance phenomenon when the input frequency passes
the eigenfrequency. Thus, only certain (resonant) frequen-
cies of the input get a super-threshold response. This
phenomenon has been seen in many biological neurons
(see review by Hutcheon & Yarom, 2000).

3.8. Sustained periodic firing

When a dc-current is injected into a neuron, the neuron
may generate a sustained firing. This may occur in both
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Fig. 11. Multiplexing of neural signals via doublets: resonate-and-fire neurons having equal eigenfrequencies can interact selectively without any cross

interference with other neurons.

integrate- and resonate-and-fire neurons. In Fig. 14 we illus-
trate the behavior of the resonate-and-fire neuron

z=(b+iw)z+1,

where I € C is a constant input. The input shifts the equili-
brium (rest state) of the model to a new value zo= —1/
(b + iw). As soon as the current is turned on, the variable
z(t) starts to approach zo. When the value of the current is
small, the resonate-and-fire neuron may fire a single transi-
ent spike, as in the top of Fig. 14. When the current is strong
enough, the neuron becomes a pacemaker. In the bottom of
Fig. 14 we depict a magnified phase portrait of the resonate-

and-fire neuron receiving sufficiently large injected dc-
current. The new rest state z, is still stable, but its basin of
attraction, (white area) is small. Such a neuron is susceptible
to weak perturbations coming from other neurons.

A peculiar feature of the resonate-and-fire model is that it
exhibits a bistability of rest and spiking states. Indeed, the
reset value i € C lies outside the basin of attraction of the
rest state z;. As soon as such a neuron fires its first spike, it
continues to fire periodically, until some perturbation
pushes the solution inside the white area—the basin of
attraction of the rest state. Such a perturbation may be exci-
tatory or inhibitory. It should be relatively weak, and it



892 E.M. Izhikevich / Neural Networks 14 (2001) 883-894

Resonant Stimulation

i Threshold Threshold

—_

Rest

i Threshold Threshald

-

0 0 1

Fig. 12. A periodically stimulated neuron may never fire if the period of stimulation is not resonant, i.e. far from being equal to or a multiple of the eigenperiod.

should have an appropriate timing. This interesting phenom-
enon has been seen in the Hodgkin—Huxley model (Gutt-
man, Lewis, & Rinzel, 1980), but it cannot occur in the
integrate-and-fire model.

Another, simpler way to make the resonate-and-fire
neuron fire periodic spike train is to move the reset point
into the shaded area, e.g. to —2 + 1.

3.9. Sustained subthreshold oscillation

The resonate-and-fire neuron (2) cannot exhibit sustained
subthreshold oscillation of the membrane potential unless
b = 0. However, one can use the topological normal form
for the Andronov—Hopf bifurcation

=+ iwz— |2

to simulate dynamics of each resonate-and-fire neuron in
Eq. (2). When 0 < b < 1, this system exhibits subthreshold
oscillations with the amplitude +/» and the frequency w.

When b <0, this system is equivalent to the linear one
used in Eq. (2).

4. Discussion

We present a simple resonate-and-fire model that illus-
trates how damped subthreshold oscillations of neuron
membrane potential make it sensitive to the fine temporal
structure of the input pulse train. This emphasizes the
importance of the spike timing code as opposed to the
mean firing rate code (Abeles, 1991). How this affects
neuro-computational properties of the brain is still
unknown. There are a number of hypotheses on the signifi-
cance of damped or sustained subthreshold oscillations.

e Resonator (Llinas, 1988). A neuron can respond prefer-
ably to the input having resonant frequency.

e Rhythm coordinator (Hutcheon et al., 1996a; Lampl &
Yarom 1997; Manor, Rinzel, Segev, & Yarom, 1997).
Network interactions amplify damped oscillations lead-

Resonant
Frequency
T

Threshold

-

Im z(t

1
0 5 10

(t
L EEEEEEEEEEEAAR
15 20 25 30 1

ZAP Stimulation

Fig. 13. Response of the resonate-and-fire neuron to a stimulus having slowly increasing frequency.
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Fig. 14. Behavior of the resonate-and-fire model when a dc-current is injected. When the amplitude of the current is small (top figure), the model fires a
transient spike and returns to a new rest state zo. When the amplitude of the injected current is large (middle figure), the model exhibits a pacemaker activity.
The bottom figure is a magnification of the phase portrait near the rest state. Notice the bistability of the rest state and the spiking limit cycle attractor. An
appropriate excitatory stimulus may shut down periodic activity by pushing the solution into the white area, which is the basin of attraction of the rest state.

ing to a sustained synchronized rhythmic activity.
Timing device (Lampl & Yarom, 1993). Neurons are
logical gates ensuring that the information is added to
the system only at a given time.

Logarithmic encoding (Hopfield, 1995). Relative timing
of spikes may be independent of the intensity or scale.
Generalized coincidence detector. Pulses arriving with
the eigenperiod delay may have the same effect as if
they arrived simultaneously.

Selective communications via doublets (Izhikevich,
2000). A neuron innervating thousands of other neurons

can selectively affect a small subset by sending a doublet,
triplet, or burst, having resonant interspike frequency; see
Fig. 10.

e FM interaction and multiplexing (Hoppensteadt & Izhi-
kevich, 1997, 1998). The brain can dynamically rewire
itself by changing the frequencies of neurons without
changing the synaptic connections.

There is a similarity between the well known integrate-and-
fire model and the resonate-and-fire model presented here.
Both models are simple and linear except at the firing
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moments. Both models can be used to speed up simulations
of large networks of spiking neurons. However, the models
do not repeat, but rather complement each other, since the
former is an integrator, and the latter is a resonator.
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