System Description

This implementation of a simple cell is a one-dimensional loop version of a distance-
dependent shunting network with an odd-symmetric difference-of-Gaussians
kernel. The network is solved at equilibrium. The formulation comes from
(Grossberg and Todorovi¢, 1988).

Unpacking this list of descriptors, one-dimensional loop structure means the
network contains a single chain of nodes, arranged in a continuous circle. Thus, the
left edge of the network actually wraps around to the right side of the network. This
is only one method to deal with edge effects. Anther typical method is to pad the
input with zeros or a constant value. Real-world image processing or visual tasks
typically require a two-dimensional geometry, but all of the basic qualitative points
of the network remain identical in higher dimensions.

An odd-symmetric difference-of-Gaussian (DOG) kernel is the element used to
model a cortical simple cell. Such neurons are sensitive to edges of a specific
orientation and contrast polarity. Taking a Gaussian curve, shifting it to one
direction, then subtracting this new curve from the original forms an odd-symmetric
DOG kernel. When used to specify the structure of input connections to a neural
network, such a kernel yields network nodes with properties very similar to cortical
simple cells.
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A distance-dependent shunting network is a specific class of neural network. These
networks have nodes with inputs coming from a limited spatial neighborhood and
are defined by a specific type of differential equation. The most important effect of
the shunting nature of the nodes is bounded output. No matter the intensity of the
input, the nodes cannot generate an output outside the range [-1,1]. The closer the
output of a given node gets to one of these boundaries, the more difficult it becomes
to push the node even closer. This translates to asymptotic behavior at -1 and 1.

When presented with an input constant in time, each node in this class of network
converges to a meaningful steady-state value. As long as the input is constant, it isn’t
necessary to numerically integrate the system of differential equation to find the
steady-state solutions. Instead, one can compute an analytic solution for the steady-
state behavior. This is what it means to say the network is solved at equilibrium.

See the tutorial document or the original paper for more detail on the behavior of
this network.
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