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BURSTING PHENOMENA IN EXCITABLE MEMBRANES* 

GAIL A.  CARPENTER? 

Abstract. A generalized Hodgkin-Huxley model of excitable membranes is defined, and traveling wave 
solutions of the model are analyzed using singular perturbation methods in phase space. A complete 
classification determines whether a system exhibits finite wave train and periodic bursting behavior or only 
single pulse and regular periodic behavior. Qualitative properties of the bursts are deduced and used to 
suggest underlying membrane mechanisms. The conclusions shed new light on the mechanisms of bursting in 
the epileptogenic focus and Aplysia ganglia. 

While periodic bursting is shown to be possible in a large class of membranes, a membrane which satisfies 
a special additional condition is shown to embody an infinite-dimensional temporal code in the form of 
arbitrary sequences of bursts. Other examples exhibit nonuniqueness and chaos. 

1. Introduction. In this paper we show that the mechanisms of ordinary single 
pulse transmission possess built-in capability for periodic bursting. That is, the 
membrane permeability to sodium and potassium allows the transmission of bursts of 
spikes which are separated by quiet spells. The analysis of a generalized Hodgkin- 
Huxley [ l l ]  model which yields this result also gives information about the qualitative 
properties of each burst. Membranes with one or more additional ionic processes, such 
as K+ inactivation or C1- activation, transmit bursts with different qualitative proper- 
ties. Thus, the fine structure of spikes within a burst provides information concerning 
the underlying membrane processes, regardless of whether the source of stimulus is 
synaptic or endogenous. 

We shall classify bursting phenomena according to the structure of the spike 
patterns, as follows. 

F I G .  1 .  Bursting patterns ofTYPE I (A,B,C) ,I1 (D) ,and I11 (E) .Only the rising phase ofeach spike is 
shown. 

Type I (Fig. 1(A, B, C)) is exemplified by a bursting neuron of the frog optic nerve, 
as described by Chung, Raymond; and Lettvin. "One type generated bursts of 10-15 
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spikes. Each burst had a distinct form wherein the longer pulse intervals occurred at the 
beginning. Progressively shorter intervals followed the first few spikes, and the burst 
terminated at a relatively high frequency." [6, p. 761 In the model, too, maximum and 
minimum values of membrane potential during a given spike often increase during the 
burst (Fig. l(A)), but this is not a necessary property of Type I bursting (Fig. l(B)). The 
shoulder of the falling phase of each spike may lengthen during the burst, but this is not 
necessary either. We include as Type I those bursts with so few spikes that the spiking 
frequency cannot be said to increase or decrease during the burst. 

Type II (Fig. l(D)) is exemplified by the much-studied abdominal ganglia of the 
sea slug Aplysia [9], [14], [17]. During a burst, the spiking frequency first increases, 
as in Type I, but then decreases. Because of this a plot of spike order vs, interspike 
interval is parabolic, and the cells are known as parabolic bursters. The maximum 
and minimum values of membrane potential in a Type I1 burst first increase 
and then decrease somewhat. The shoulder of the falling phase becomes elongated 
during the burst. 

Type III (Fig. 1(E)) bursting appears in pyramidal cells of the cat hippocampus, as 
recorded by Kandel and Spencer [13]. After one normal spike, the spike amplitude 
aecreases until membrane potential fluctuates near a mean excited state before 
returning near rest. 

We shall show that a large class of generalized Hodgkin-Huxley neurons, obeying 
the classical rules of ~ a +  activation, are capable of activation and inactivation and K' 
propagating Type I bursts. Type I1 bursts appear in models with one or more additional 
ionic processes, such as a slow K' and/or C1- current or K+ accumulation around the 
membrane or else in a system with some other inhibitory feedback. Type I11 bursts are 
not within the scope of the models discussed here and seem to depend upon the 
interactive properties of the cells in which they appear. 

It is important to note that many Hodgkin-Huxley neurons contain within them 
the capability of Type I bursting. An application of this observation may be seen in the 
following example, in which a Type I burst was interpreted by an experimenter as 
anomalous and thus in need of a special theoretical explanation. 

Autonomous bursting in the cerebral cortex is a salient characteristic of epileptic 
seizures. A.  Ward [I81 describes the epileptogenic focus as a damaged portion of the 
cortex from which bursts of activity travel to normal cells, disrupting activity. He 
describes neurons in the focus "which fire in stereotyped bursts where the timing 
pattern within bursts reveals an unusually long interval between the first and second 
spikes of each burst, with the later spikes time-locked to the second spike, not to the first 
spike." [18, p. 2791. Ward proceeds to base his theory upon this observation, under the 
assumption that "the presence of the long first intervals. . .places certain constraints on 
hypotheses utilized to explain the genesis of such bursts. It is most difficult to see how 
ordinary synaptic input could account for them either with regenerative [endogenous] 
firing mechanisms or ones which follow a synaptic depolarization." [18, p. 2801. He 
suggests, therefore, that the first spike moves away from the focus and excites a distant 
cell body, which returns a volley of evenly-spaced spikes in return. 

Inspection of the original data [I]  reveals, however, that the bursts are Type I, with 
spiking frequency increasing continuously throughout the burst. The spacing of spikes 
within the burst is not as described by Ward. Thus his proposed explanation would 
require further evidence. Our analysis suggests that the activity observed at the 
epileptogenic focus is precisely that which would be expected in a normal neuron 
lacking such inhibitory mechanisms as feedback from other cells or the ability to 
maintain the proper external K+ concentration. 
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The results presented in this paper continue the analysis begin in [2], [3], [4], where 
we prove the existence of single pulse and periodic solutions; elongated plateau 
solutions; and finite wave train solutions for the generalized Hodgkin-Huxley system 
(HH). The notion of singular solution developed in those papers is here applied to prove 
the existence of burst solutions. 

In § 2 we rigorously define the model and prove that the system exhibits finite wave 
train and periodic bursting solutions if and only if a certain hypothesis is satisfied. This 
hypothesis is satisfied by "half of the systems" in a sense made precise in Theorem 1. 

In § 3 we discuss the predicted qualitative properties of bursts. 
Bursting in Aplysia abdominal ganglia is discussed in § 4 and the basic model of § 2 

is expanded and analyzed. In particular, we show that the principal features of bursts 
from Aplysia are present in a model which adds K' inactivation to the other membrane 
processes of § 2. This model is compared with others in which a fast outward potassium 
current IA is added to the ionic current. 

In 4 5 we prove that an excitable membrane which satisfies a very restrictive 
hypothesis could embody an infinite-dimensional temporal code. That is, if a low- 
dimensional system, with processes which correspond to Naf activation and inactiva- 
tion and K' activation, satisfies the hypothesis, then, given any sequence of positive 
integers N1,N2,N3,. . . the system admits solutions with N, spikes in the ith bursting 
interval. Moreover, the sequence of bursts is uniquely characterized by wave speed with 
a lexicographic order: a sequence N1, N2 + is transmitted more rapidly than a+ + 

sequenceM I ,  M2, . . . iff Ni =Mi (i = 1,  . . . ,K - 1) and NK>MK,for some K. Thus the 
system can transmit an arbitrary sequence of signals. 

Section 6 contains a nonuniqueness result, showing that a specially-constructed 
system may admit any number of solutions with precisely N spikes; other systems are 
constructed to exhibit chaotic solutions. However, a conjecture about local uniqueness 
may be made. 

An explicit example of a system which admits bursting solutions is computed in § 7. 
Proofs are contained in § 8. 
The model defined in § 2 contains three positive parameters, E ,  6, and 8. E is the 

order of magnitude of the rate at which Na' inactivation and K' activation occur; 6-' is 
the order of magnitude of the rate at which Na' activation occurs; and 8 is the speed of 
wave propagation. Throughout, the existence of solutions is proved for E and 6 near 
zero. Examples 1and 2 in § 2 illustrate that the analysis of the model may be carried out 
for widely varying values of 8. In fact, these examples answer, for special cases, the 
general question: How is a periodic solution deformed as system parameters vary? An 
open problem is to analyze the behavior, as E and 6 increase, of the families of solutions 
described in this paper for small E and 6. 

The existence of single pulse solutions of (HH) has also been proved by Hastings 
[lo], and single pulse and regular periodic solutions of the model have been the subject 
of extensive numerical analysis. The conditions which imply bursting, however, could 
not be discovered using numerical examples. Previous mathematical analyses have not 
included bursting phenomena. At most, the regular periodic subthreshold potassium 
current is discussed, that is, the endogenous mechanism which underlies bursting in 
Aplysia when normal sodium activation is blocked by TTX [16]. 

2. Existence of periodic bursts. The model under consideration here is a general- 
ization of the classical Hodgkin-Huxley [ I  11model of nerve impulse transmission in the 
squid axon. Like Hodgkin and Huxley, we postulate only the transmembrane currents 
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of sodium and potassium, but allow the statistics governing their activation and 
inactivation to vary. 

The Hodgkin-Huxley model has the form: 

where x is the distance from the stimulus; t is the time since the stimulus; (1/R) 
(a2v/ax2) is the total membrane current; C(av/at) is the capacitance current; 
g(v, m, h, n )  is the total ionic current; and m, h, n represent local changes in membrane 
permeability to Na+ and K+ in response to changes in v. In [ l l ]  

the sum of sodium, potassium, and leakage currents. Since VK <0 < VL < ON,; g ~ ,  
g,>O; and 0 <  m, h, n, <1; the inward Na+ current and outward K+ current are 
represented, respectively, by negative and positive contributions to g when vK < v < 
VNa. 

The fact that Na+ is turned on much more rapidly than it is turned off and K' turned 
on is represented by: 

(3 ~m >> Yn, ?'he 

In the original Hodgkin-Huxley model, ym"- 10yn, 10yh. This rate difference is 
physiologically reasonable. For example, if K+ exited as rapidly as Na+ entered, there 
would be no net change in voltage and hence no impulse. 

FIG.  2 .  A single pulse traveling to the left with speed 8. v (x ,  t )  ='v(x + Bt, 0) = v ( s ) .  

An impulse transmitted at a constant speed, 8, is represented by a traveling wave 
solution of (1); that is v(x, t), m(x, t), h(x, t), and n(x, t) are functions of a single 
variable, s = x + Bt, as in Fig. 2. By the chain rule, alax = dlds and slat = B(d/ds), and 
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( 1 )becomes: 

(4) 	 O m = ym(v)(m,(v)-m) 

Oh = yh(v)(h,(v)-h) 

6% = ~ ~ ( ~ ) ( n m ( ~ ) - n ) ,  

where . = dlds.  If we set R = C = 1, for simplicity, and introduce the small parameters 
E ,  8 >0 ,  to emphasize the fast and slow time scales, (4) becomes: 

On = ~ y ~ ( v ) ( n , ( v ) -n ) .  

We now introduce the fundamental hypothesis, which abstracts the essential 
properties from the original Hodgkin-Huxley system. When variables other than 
m ,  h,  n are needed, this hypothesis is modified as appropriate. 

Let m,(O)= mo,  h,(O)= ho, n,(O)= no,and g(v,  m,(v), h,  n ) =  G ( v ,  n,  h ) .  
HYPOTHESIS such that (A) - (G)  hold for every m ,  h,  n E1. There exist v~ <0 <v ~ ,  

(0 ,  1). 
( A )  g, ym, yh, yn, m a ,  h a ,  nm are twice continuously diflerentiable. 
(B) 0, E,8, y,, yh, Yn >0 ,  and 0 <m,, ha, n ,  < 1. 

FIG. 3. Typical functions G(v,n, h). 
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(C) (Unique rest point) g(v, m,(v), h,(v), n,(v)) = 0 iff v = 0. 
(D) (Maximal and minimal values of v) g(vK, m, h, n)  <0 <g(v~ , ,  m, h, n )  

(Fig. 3). 
(E) (Cubic-like G )  For each fixed n, h there exist a t  most three v E (VK, VAT,) such that 

G(v, n, h )  = 0 (counting multiplicities). Moreover, if G(v, n, h ) = aG/av (v, n, h )  = 0, 
then a 2 ~ / a v 2 ( v ,  n, h )#  0 (Fig. 3). 

(F) G(v, no, ho) admits three zeros, vo(no, ho), vl(n0, ho), and vz(n0, ho). 
Moreover 0 = vo(n0, ho) <v2(no, ho)< vl(no, ho); aG/av (0, no, ho)> 0; and 
J ; I ( ~ o . ~ o )G(v, no, ho) dv <0 (Fig. 3A). 

(G) (Excitatory m, inhibitory n, h )  g, <0, mL >0, gh <0, hL <0, g, >0, and 
nL >0. 

A system which satisfies Hypothesis 1has a unique critical point. Since g,mL is 
negative (G), the variable m represents an excitatory process. To see why this inequality 
represents excitation, consider the space-clamped version of (I), in which vxx =0. Then 
Cur= -g(v, m, n, h), so, as v increases, m increases, g decreases, -g increases, and v 
increases still further. Similarly, since ghhL and g,nL are positive, n and h represent 
inhibitory processes, which tend to drive v down toward the rest state. 

In order to analyze (5) , we shall rely heavily upon the different time scales involved. 
Note first that as 6 +O, m converges rapidly to m,(v). Let us for the moment, set 
m = m,(v) and examine the resulting system: 

w = Ow + G(v, n, h), 

On = ~y,(v)(n,(v)- n), 

Oh = h).E Y ~ ( v ) ( ~ ~ ( u ) -

A regular perturbation argument [2], [4] implies that a bounded solution of (6) 
corresponds to a nearby bounded solution of (5) for all small 6 >0. 

Hypothesis 1(E,F) determines the geometry of the "slow manifold" of (6), the set 
on which v = w = 0. Off the slow manifold, when E is small, solutions of (6) stay near 
solutions of the system when E = 0. If v and w are near zero, however, n and h are 
relatively large, even if E is very small. Hypothesis 1 (E, F) implies that the slow 
manifold contains a two-dimensional surface with three sheets above each point in an 
open subset of (n, h)-space. For each point (n, h )  in this open set, G(v, n, h)  has three 
zeros. Each (n, h )  in the boundary of this set corresponds to a fold in the surface, at a 
point where G(v, n, h )  contains a double zero. 

In order to distinguish the three sheets of the slow manifold, we next define three 
functions vO(n, h), vl(n, h), v2(n, h )  on connected open domains no ,  111, 112 = nofl 111 
such that G(vi(n, h), n, h )  = 0 (i = 0, 1 ,2 )  and, when (n, h )  E IIofl IIl, vo(n, h)<  
v2(n, h )<  vl(n, h). Intuitively, vo(n, h), vl(n, h), and v2(n, h )  represent, respectively, 
the left, right, and middle zeros of G(v, n, h )  (Fig. 3). The slow manifold contains the 
three sets: 

{(v,w,n, h ) :  v = vo(n, h), w = 0, and (n, h )  E no} (lower sheet); 

{(v, w,n, h ) :  v = vl(n, h), w = 0, and (n, h )  E 111} (upper sheet); 

{(v, w,n, h )  : v = v2(n, h), w = 0, and (n, h )  E 112} (middle sheet). 

First, let 112 be the component containing (no, ho) of {(n, h ) ~  [0, 112: G(v, n, h)  
has three zeros}. For (n, h ) ~  112, let vO(n, h )<  v2(n, h)<  vl(n, h)  be those zeros, and 
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extend each v,(n, h )  continuously to an2.Let anl-{(n, h )  E an2: vl(n, h )  = v2(n, h)}. 
Hypothesis 1(D,E) implies that for (n, h )  E a n l ,  G,(vl(n, h), n, h )  = 0, 
G,,(vl(n, h) ,n ,  h)>O,G,(vo(n, h ) ,n ,  h )>O,andG(v ,n ,  h ) < O i f v ~ < v < v 0 ( n ,  h).By 
the implicit function theorem, vo(n, h )  can be extended continuously to a neighbor- 
hood of II, in whose closure G(vo(n, h), n, h )  = 0 and G(v, n, h ) <  0 if v < vo(n, h);  let 
no be the union of that neighborhood and I I2 .  111is defined similarly. Note that 
G,(vo(n,h),n,h)>O if ( n , h ) € I I o ;  G,(vl(n ,h) ,n ,h)>O if ( n , h ) € n l ;  and 
G,(vz(n, h), n, h ) <  0 if (n, h )  E n2 = IIo,n II1. 

The next lemma shows the existence of a function B(n, h )  from I I o n  nl into R. 
When B(n, h )  is positive, the system (6), with B = B(n, h )  and s = 0, admits a solution 
which runs from the lower sheet to the upper sheet, i.e., a jump up. When B(n, h )  is 
negative, the system (6), with B = -B(n, h )  and s = 0, admits a solution which runs from 
the upper sheet to the lower sheet, i.e., a jump down. 

LEMMA1: B(n, h).  Assume Hypothesis 1. Then there exists a function B(n, h):  
non n, + R such that: 

u l ( n . h )(i) if jUo(,,,,G(v, n, h )  dv 5 0, then B(n, h ) 2  0 and  (6; B(n, h), 0) admits a solution 
from (vo(n, h)iffi:,n, h )  to (vl(n, h), 0, n, h);  and  

(ii) if ~,~(,,,, G(v, n, h )  dv 2 0, then B(n, h )  5 0, and  (6; -B(n, h), 0) admits a 
solution from (vl(n, h), 0, n, h )  to (vo(n, h), 0, n, h). 

Let B(no, ho)= g and extend B(n, h )  continuously to cl (ITo fl n l ) .  When B = g and 
s = 0, (6) admits a solution from (vo(no, ho), 0, no, ho) to (vl(n0, ho), 0, no, ho). Let U P  
be the set of all (n, h )  in cl ( n o n I I 1 )  such that (6; g, 0) admits a solution from 
(vo(n, h), 0, n, h )  (lower sheet) to (vl(n, h), 0, n, h )  (upper sheet). By definition, (no, ho) 
is contained in U P  (Fig. 4). Similarly, let DOWN be the set of all (n, h )  such that (6; 6 0 )  
admits a solution from (vl(n, h), 0, n, h )  (upper sheet) to (vo(n, h), 0, n, h )  (lower 
sheet). 

FIG.  4 .  A flow on n,: there is no critical point and all solutions with initial values in UP cross DOWN. 

The next lemma characterizes U P  and DOWN in terms of the function B(n, h). In 
particular, B(n, h )  is positive on U P  and B(n, h )  is negative on DOWN. Portions of U P  
and DOWN may be contained in anoor anl. 

LEMMA2: U P  and DOWN. Assume Hypothesis 1.  
(A) If (n, h )  E ano,  there is a solution of (6; 0, 0) from (vo(n, h), 0, n, h )  up to 

(vl(n, h), 0, n, h )  for all B 2 B(n, h). If (n, h )  E a n l ,  there is a solution of (6; 0, 0) from 
(vl(n, h), 0, n, h )  down to (vo(n, h), 0, n, h )  for 0 2-B(n, h). 
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( B )  For (n ,  h )  E ITo fln l ,  (n ,  h )  E UP i f f  B(n, h )  = Band (n,  h )  E DOWN iff e(n,  h )  = 

-J. For (n ,  h )  E ano, (n,  h )  E UP i f f  B(n, h )  i8. For (n ,  h )  E an l ,  (n,  h )  E DOWN i f f  
-B(n h )  5 8.UP[DOWN] is the graph of an increasing function of n, forn in a subinterval 
of [O, 11. A t  the left endpoint of UP[DOWN], n = 0 orh = 0 ;  at the rightendpoint, n = 1 or 
h = l .  

Consider now the systems defined on no and nl: 

where i = 0 ,  1. (7;  0 )  defines a flow on the lower sheet of the slow manifold and (7;  1 )  
defines a flow on the upper sheet. As shown in [2], [4], Lemma 2 and Hypothesis 1 
(B ,C, G ) imply that any solution of (7; 1) with initial value in UP crosses DOWN in 
finite time (Fig. 4) and any solution of (7;  0 )  with initial value in DOWN either crosses 
UP nanoin finite time or converges to (no, ho) at +a.Also, (no, ho) is a stable node of 
(7 ;  O), and exactly one solution, E, approaches (no, ho) in the set where n >no and 
h <ho (Fig. 5) .  

h 

'(1, h o  ) 

DOWN 

*n
1 

FIG.5.  A flow on II,. X is a separatrix. 

Hypothesis 1 establishes the fundamental properties of the excitable membrane 
model, but a system which satisfies this hypothesis needs to satisfy a further condition in 
order to admit the bursting solutions considered in this paper. Some notation will next 
be introduced to state this condition. 

Notation: Let F1:UP -+ DOWN be the map which sends a point in UP to the first 
point in DOWN on its forward trajectory in cl (nl)(Fig. 6(A)) .Let Fo:DOWN -t UP be 
the map which sends a point in DOWN to the first point (if any) in UP on its forward 
trajectory in cl (no ) ,and let Fo(n, h )  be (no, ho) if the solution converges to (no, ho) 
without first crossing UP. In Fig. 6(B),  Fo(n, h )  = (no, ho) iff (n ,  h )  lies on or below the 
separating solution E. 

If Fo 0 F,(n0, ho) = (no, ho), then (Fo0 ~ l ) ' ( n o ,ho)= (no, ho) for all j 2 1. If 
Fo 0 Fl(no, ho)  E {no<n < 1 and ho5 h < I},Lemma 2 implies that (Fo0 ~ ~ ) ' ( n ~ ,ho)is a 
monotone sequence of points in UP converging to a point (ii,i)E {no< n < 1 and 
ho<h < 1} (Fig. 6).  Similarly if Fo Fl(no, ho) E (0<n <no and 0 <h <ho}, 
( F o o ~ l ) ' ( n o ,ho) converges to a point (ii,i).In any case, lim,+, (Foo ~ ~ ) ' ( n ~ ,ho)= 
(ii,K)exists and is a fixed point of Fo 0 F1. 
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(A) (B) 

FIG.6. (A)F1(UP)has two components. ( B )Points below Z are mapped to (no,  ho) by Fo. 

The system ( 5 )  will be said to be admissible if, for each j = 0, 1, 2, . . . , the flow 
(7; 0) is not tangent to U P  at (Fo0 ~ ~ ) ' ( n ~ ,ho) and the flow (7; 1)  is not tangent to 
DOWN at F1 (Fo ~ ~ ) ' ( n ~ ,  ho). Assume also that solutions of (7; 0) cross DOWN 
transversally (Fig. 5); and solutions of (7; 1)  cross U P  transversally (Fig. 4). Although 

FIG.7 .a, C ,  e, and g go to rest at *a;b, d ,  f ,  and h are periodic solutions which converge to a, c, e and gas 
the period becomes infinite. i goes to rest at -a.a is a single pulse ;c is a pulse plateau ;e is a finite wave train of  
length 3;g is afinite sequence of wave trains of length 2,1,3;  i is an infinite sequence of wave trains with Nibursts 
in the i-th bursting interval, where {N, ,NZ,. . .) =12, 1,3,6,1 ,2 ,  . . .}. 
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F I G .  8 .  Projected p h p e  portrait of a burst solution with four spikes and a periodic solution w E a. The spike 
train approaches w durini a burst and returns to near the critical point during the quiet spell. 

these transversality conditions are not always necessary (compare Example 3 in 8 6), 
they are included to simplify the arguments. 

Condition a :  (ti,6)# ( n o ,  ho). 
Condition P : In no ,  the solution with initial value (ti,6 )converges to (no,  ho) at +a. 

That is, this solution does not run to JIlo. 
Condition a is satisfied by half of all systems (5) in the sense that C separates 

DOWN into two components, and any solution in Ilo with initial value in one of the two 
crosses UP. In Fig. 6(B) for example, Condition a is satisfied iff Fl(no,  ho)  lies above C, 
since a point below C is mapped to (no,  ho) by Fo. Condition /3 is trivially satisfied if all 
points on the boundary of DOWN run to ( n o ,  ho) in no (Fig. 5). 

Theorem 1states that the solution types admitted by (5) are classified according to 
whether Condition a and/or Condition P holds. Since P must hold if a fails, there are 
only three cases. 

THEOREM1: Single pulse and burstingsolutions. Assume that an admissibleflow (5) 
satisfies Hypothesis 1. Then for suficiently small E and 8, the generalized Hodgkin- 
Huxley model (5) admits single pulse, finite waue train, and periodic bursting solutions 
according to the following rules. 

Case (A).Assume that Conditions a and P both hold. Then (5) admits bursting 
solutions with any number of spikes. That is, for each N 2 1,  (5) admits a finite waue train 

FIG.  9 .  Case ( B )of Theorem 1, with M = 3. 
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with N spikes (Fig. 7a,  e )  and a family of periodic solutions which alternate between N 
spikes and a quiet spell (Fig. 7b ,  f ) .  The periodic bursting solutions converge to a finite 
wave train as the quiet spell becomes infinite. Conditions a and P also imply the existence 
of a family, R, of periodic solutions, each solution having evenly spaced spikes. 

I f  N is large, spikes within a burst approach one of the regular periodic solutions 
in R, but the trajectory returns to near the critical point during the quiet spell. A burst 
with four spikes is illustrated schematically in Fig. 8. The last spike is close to a periodic 
solution in R. 

Case ( B ) .  Assume Condition a holds but Condition P fails. Let M 2 1 be the smallest 
integer such that (Fo ~ ~ ) ~ ( n ~ ,  (Fig.9) .  Then for hO)  does not converge to (no,  ho)  at +co 
each N <M ( 5 )  admits a finite wave train with Nspikes and a family of periodic bursting 
solutions with Nspikes, as in Case ( A ) .  Moreover, ( 5 )  also admits a family, R, of periodic 
solutions with evenly spaced spikes for the parameter values shown in the shaded region of 
Fig. 10(B). 

FIG. 10. (A) Parameter values which yield finite wave trains with 1,2,3 ,  . . . spikes. Periodic bursting 
solutions occur for parameter values in a region to the right of the respective wave train curves. Each region 
extends to include a set such as the shaded area in which 8 5 8 5 8'. In addition, when (8,E )  is in a region which 
includes the shaded area and which extends down to (0, 0), as in (B) ,  the system admits a regular periodic 
solution in S1. 

( B )  Parameter values which yield single pulse solutions (Case ( C ) )  and regular periodic (shaded) 
solutions. The period becomes small in the left of the shaded region. 

Case (C). Assume Condition /3 holds but Condition a fails (e.g., Fig. 6(B) ,  i f  
Fl(no, ho) lies below C).Then (5 )  admits a single pulse solution and a family of periodic 
solutions which converge to the single pulse solution as the period becomes infinite (Fig. 
7a,  b). If yn /yhis large or small, the solutions contain an elongated plateau (Fig. 7c, d).  

More precisely, for each small S >0 ,  there are values of 8, E ,  as shown in Fig. 10, for 
which (5 )  admits the solutions of Cases ( A ) ,  (B) ,  and (C). 

Remarks. The system of equations (5 )  admits a single pulse solution in each case 
except ( B )when M = 1,  where Fo Fl(no, h o ) e  ano. 

The  proof o fTheorem 1 depends upon the notion o f  a singular solution. A singular 
solution of length N consists of  a sequence {a1 . aZN)which satisfies (i)-(iv) below a 

(Fig. 11). 
( i )  azj is a solution segment in noand a2,-l is a solution segment in 

( j =  1 , .  . . N ) .7 

(ii) a1 begins at (no,  ho) and f f 2 N  converges to (no, ho) at +a. 
(iii) For j = 1,  . . . ,N,  the end point o fU Z , - ~is contained in DOWN and is equal to  

the initial point of  a2,. 
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(iv) For j = 1, . . . ,N - 1, the end point of a2jis contained in U P  and is equal to the 
initial point of a 2 j + l .  

When k is odd, a k  is a solution in 111from U P  to DOWN. When k is even, akis a 
solution in lIofrom DOWN to UP. If the solution segments al . . . a z are projected ~ 
into n o n n l ,  the resulting curve looks like the projection of a homoclinic orbit 
approaching (no, ho) at koo (Fig. 11). 

F I G .  1 1 .  Singular solutions of length 2(A) and 1(B). 

The conditions of Theorem 1 establish criteria for the existence of singular 
solutions of any length (Case (A)); of length 1, . . . ,M -1(Case (B)); or of length 1only 
(Case (C)). The proof, then, need only show that the existence of a singular solution of 
length N implies the existence of finite wave train and bursting solutions with N spikes. 
For each singular solution of length N, the set of parameter values for which (5; 8, E, 6 )  
admits a wave train with N spikes contains a continuum in the following sense. For fixed 
small 6 >0, if {(B(s), E (s)) :0 5 s 5 1) is any arc such that 8(0)< 8< 8(1) and ~ ( s )  is 
small, then there is some s such that ( 5 ; 8(s), E (s), 6 )  admits a wave train solution with N 
spikes. 

A singular solution should be thought of as the singular limit of a solution of (6), 
where solution segments in the slow manifold are connected by fast jumps of v up at UP 
and back down at DOWN. During the interval between the jth and ( j  + 1)st spikes, in 
the time scale of T = ES, the finite wave. train solution is near {(u, w, n, h ) :  (n, h )  E uzj, 
v = vo(n, h), and w = 0}, a solution segment in the lower sheet of the slow manifold. 
After N spikes, the solution approaches the rest point (0, 0, no, ho). 

A periodic solution, on the other hand, is determined by a fixed point of a return 
map, where a point in phase space is mapped back to itself in finite time. Like a finite 
wave train solution, a periodic bursting solution with N spikes corresponds to N 
solution segments in the lower sheet of the slow manifold connected by fast jumps to N 
solution segments in the upper sheet. After N spikes, the burst solution, instead of 
returning to the rest point, returns to the point at  which it began and N more spikes 
follow. In general, the jumps up and down for a periodic bursting solution occur for 
8 f 8. Thus, in order to determine the 'location of the periodic solutions of (5), the 
definitions of Foand F1must be extended, as follows. 

If 8(n, h ) >  0, let 

~ ( n ,h )  =sup {T >0 :(n, h )  !T E 111 and B((n, h )  !T)> - 8(n, h)} 
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and 

Fl(n, h )=  (n,  h )  !~ ( n ,h) .  

T o  understand the definitions of T and Fl, fix (n ' ,  h ' )  such that 8(n f ,  h')> 0 and let 
(n", h") 3Fl(n l ,  h ' ) .  Then ~ ( n ' ,h ' )is the time a solution segment in 111takes to go from 
(n ' ,  h ' )  to (n",  h"). By Lemmas 1 and 2, there is a solution of (6)from the upper sheet to 
the lower sheet of the slow manifold when 8 = 8(n f ,  h'),  E = 0 , and (n,  h )  = (n", h"). The 
jump occurs at the boundary of I l l  if -8(nU, h")< 8 (n f ,  h').  The jump occurs in the 
interior of nl if -8(nU, h")= 8 ( n f ,  h').  

Similarly, if 8(n, h)<O, let 

~ ( n ,h)=sup  {T >0 :  (n ,  h )  ? T E 110and 8((n, h )  ? T ) <  -8(n, h) ) ,  

and 

Fo(n, h )  = ~ ( n ,  (! (n ,  h )  h )  if ~ ( n ,h )<a, 
if ~ ( n ,  a.h )= 

If we fix (n ' ,  h ' )  such that 8(n1,  h ' )< 0 andlet (n",  h") =F0(nf ,  h'),  then, if ~ ( n ' ,hl) is  
finite, there is a solution of (6) from the lower sheet to the upper sheet of the slow 
manifold when 8 = -8(n1, h ' ) ,  E = 0,  and (n,  h )  = (n",  h"). The jump occurs at the 
boundary of no if 8(n", h") <-8(n1, h'). The jump occurs in the interior of I Io  if 
@(nu,h")= -8(n1, h ' ) .  If ~ ( n ' ,  =h ' )  co, then (n ' ,  h ' )  9 [0, co) converges to (no, ho) in n o .  

Finally, if 8(n, h )>  0 ,  let 

T ( n ,  h )  = max (720:  (n ,  h )  ? T E noand 8((n,  h )  ? 7 )= 8(n, h ) ) ;  

and, if T ( n ,  h )  is positive, let 

4 ( n ,  h)=(n ,  h )  9 T ( n ,  h) .  

That is, 4 ( n ,  h )  is the last point on (n,  h )  9 [ O ,  co)for which there is a jump up when 
8 = e(n,  h )  and E = 0. If there is no such point on (n,  h )  9 (0, co), then T ( n ,  h )  = 0 and 
4 ( n ,  h )  is not defined. 

In a sense made precise below, a regular periodic solution in the family R 
corresponds to a fixed point of Fo F1. A burst solution with N spikes corresponds to a 
fixed point of 4 (Fo F ~ ) ~ .  fl I l l .TO illustrate, consider Fig. 8 as a projection into no 
On the solution w, the uppermost point is a fixed point of Fo 0 F1.O n  the burst solution 
with four spikes, the left-most corner is a fixed point of 4 (Fo F ~ ) ~ ,and (Fo F ~ ) ~  
evaluated at that point is near the upper right corner of the solution. 

The proof of the existence of periodic bursting solutions depends upon the notion 
of an /-dimensional singular solution, as developed in [3].1 is the number of "slow" 
variables, so, for (S), 1 = 2. The singular solution defined for finite wave trains is 
constructed by following the single point (no, ho) along trajectories in I I o  and nl.The 
union of these trajectories is a one-dimensional singular solution. A two-dimensional 
singular solution is constructed by following an entire interval along trajectories in no 
and IIl .  

Given any 8 ' ) 0 ,  a two-dimensional singular solution of length N is a closed 
connected set I z{(n,  h ) :  8(n, h ) =  8') such that 4 (Fo0 is contained in the F ~ ) ~ ( I )  
interior of I.The results of [3]imply that if I is a two-dimensional singular solution of 
length N then (5; 8', E ,  8 )admits periodic bursting solutions with N spikes for all small 
E ,  S >0.  

A regular two-dimensional singular solution is a closed connected set Ic (UP)'= 
{(n, h )  E no: e(n,  h )  = 8')U {(n,  h )  Eano: 8(n,h )5 8')such that Fo 0 F l ( I )is contained in 
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the interior of I. For example, if 0 <8'< 8, (UP)' is itself a regular two-dimensional 
singular solution. The existence of I implies that (5 ;  8', E ,  6 )  admits a regular periodic 
solution in the class R for all small E ,  S >0.  If Condition a is satisfied, ( 5 )admits regular 
two-dimensional singular solutions for all 8' in some interval [8,81). For example, in 
Fig. 11(A)if 8' = 8, then I={(n,  h )  E UP :n 2 no)is a regular two-dimensional singular 
solution. These regular solutions are the ones studied in [3]. If I is a two-dimensional 
singular solution, I contains a fixed point of q5 (Fo F1lN (or of FO F1). These are the 
fixed points illustrated in Fig. 12(D)and 14(D)below. In those examples, the fixed point 
sets summarize the qualitative behavior of families of solutions as the parameter 8 
varies. 

FIG 12. (A),( B )Phase portrait of a pow which satisfies Conditions a and P. 
(C)  Pl is a fixed point of Fo F, and corresponds to a solution in R. P, is a fixed point of q5 (Fo F,)' and 

corresponds to a burst solution with two spikes. 
( D )  The set offixed points of Fo F1 extends to the right of P, and is labeled "0".For each Nrhe set of fixed 

points of q5 (Fo F , ) ~  =extends from (no, ho) to P3. 7'he fixed points are shown for N 1,2. 

Example 1. 
Consider the system depicted in Fig. 12(A,B) (Case (A)of Theorem 1).For each 

N, the set of fixed points of q5 0 ( F ~ O F ~ ) ~meets the set of fixed points of FooFl at a point 
P3, where 8(n,  h ) =  e l .  In Fig. 12(D), the fixed point sets of q5 0 (Fo0 F1)' and 
q5 o (Fo F112 are shown and are labeled "1" and "2", respectively. The fixed point set of 
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Fo FI is labeled "0".The point P2 (Fig. 12(C))is a fixed point of C$ (Fo F~) ' .If0 


(n,  h )  =P2 then ~ ( n ,h ) is the time the solution segment in 111(upper sheet) takes to go 
from (n ,  h )  to Fl(n, n ) ;  r(Fl(n, h ) )  is the time the solution segment in I Io  (lower sheet) 
takes to go from Fl(n, h )  to Fo 0 Fl(n, h ) ;  T(FO Fl(n, h ) )  is the time the solution 
segment in Ill takes to go from Foe Fl(n, h )  to FI (Fo F I ) ( ~ ,  0 (Fo F,)  h ) ;and T ( F ~  
(n, h ) )  is the time the solution segment in I l o  takes to go from F10 (Fo Fl)(n, h )  to 
(Fo ~ 1 ) ' ( n ,  h) .  Finally, the "quiet spell" T((F0 ~ ~ ) ~ ( n ,  h ) ) is the time the solution 
segment in notakes to go from (Fo0 ~ ~ ) ' ( n ,h )  back to the starting point (n,  h )  = 
q5 (Fo ~ ~ ) ' ( n ,  h) .  Since the time a solution spends jumping between the upper and 
lower sheets of the slow manifold is small compared to the time spent on the slow 
manifold, it is reasonable to define the period of the singular solution of length 2 
through P2 to be the sum of the times spent on the slow manifold, i.e., ~ ( n ,h )+  
.r(Fl(n, h))+r(Fo 0 Fl(n, h))+ r(F1 (Fo ~ 1 ) ' ( n ,  8 = 0 Fl)(n, h))+ ~ ( ( ~ 0 0  h ) ) .  When 
8(P2)and E and 6 are small, there is a periodic bursting solution with two spikes near 
this singular solution and, in the time scale of T = ES,its period is close to the period of 
the singular solution and the length of its quiet spell is close to T((Fo ~ 1 ) ' ( n ,h)) .0 


More generally, if (n,  h )  is a fixed point of C$ (Fo F I ) ~ ,  define the period of the 
singular solution through (n ,  h )  to be ~ ( n ,  Fl)(n, h ) ) + .  . . +h)+  r(F1(n, h ) )+  ~ ( ( F o  
r(F1 (Fo ~ 1 ) ~ - ' ( n ,  h) ) .  Ifh))+ T((F0 ~ , ) ~ ( n ,  (n,  h )  is a fixed point of (Fo Fl), 
define the period of the singular solution through (a ,  h )  to be ~ ( n ,h)+ .r(Fl(n, h)) .  The 
relationship between the period of the singular solution through (n,  h )  and e(n, h )  is 
shown in Fig. 13(A). 

F I G .  13. (A )Example 1: period of a singular solution us. B(n, h). As 818 ,  the solutions with N bursts 
converge to the singular solutions of length N. 

( B )  Period vs. B(n, h )  for other examples which satisfy Conditions a and P. The curve R either extends to 
+a2 or is finite. 

Figure 12(D) and 13(A) summarize the qualitative properties of a family of 
periodic bursting solutions with N spikes. The family begins at a finite wave train 
solution with N spikes, that is, a solution whose quiet spell is infinite. As the wave speed 
8 increases, the length of the quiet spell decreases from infinity (8= 8)to zero (8=e l ) .  
Where the quiet spell goes to zero, the family of bursting solutions merges with the 
family 0 of regular periodic solutions. At that point, the period of the regular periodic 
solution is relatively large (low frequency); as 8 then decreases (along the curves labeled 
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R in Figs. 12(D)and 13(A)),the period decreases to near zero. Note, in particular, that 
for 8<8 < el, the curve labeled "1" in Figure 13(A)corresponds to a family of periodic 
solutions with evenly-spaced spikes of low frequency. Following that curve from 0 = 8 
to 8 = el and then following the curve R, the period of the singular solution decreases 
from infinity to zero (Fig. 13(A)). 

FIG. 14. (A),( B )Phase portrait of an example of Case ( B )of Theorem 1 ,  M = 4.  
(C)  When O(n, h )  = 03, the singular solution of length 3 touches anoat P I .  
( D )  Singular solutions of length 3 persist for 8< f3 < 8,. The curves of fixed points of 4 (Fo F , ) ~  

( N  = 1,2,  3 )  all end at the trajectory in nothrough P I .  There is some 0, such that P2 is afixedpoint of Fo F, for 
f32 02. 

Example 2. 
The system depicted in Fig. 14(A),(B) is an example of Theorem 1(B)with M = 4. 

The system admits wave train and burst solutions with 1, 2, or 3 spikes. The curves of 
8(n, h) vs. period of a singular solution are similar to those of Fig. 13(B)for N = 1,2,or 
3. The value of 8(n, h) for the family R extends from 0 to +a. 

Examples 1 and 2 indicate the wealth of information to be derived from a singular 
phase plane analysis. One might conjecture that any system which satisfies Conditions a 
and /3 has a fixed point set like that of Fig. 12(D),but this is false. Even if the solution in 
no with initial value (f i ,  h)goes to (no, ho) at +a,a solution beginning at another fixed 
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point of Fo Fl may go to a l l o .  Suppose ( f f ,  K )  is such a point. In that case, the curve (0) 
of fixed points of Fo Fl extends to a l l 0  and each of the curves of fixed points of 
q!~ (Fo0 F ~ ) "(N = 1 ,2 ,3 ,  . .) ends at a point on the trajectory in llothrough (6; K ) .  
The curves B(n, h )  vs, period of the singular solution have the properties shown in Fig. 
13(B). 

3. Properties of bursts. The proof of Theorem 1 (8 8) implies that a singular 
solution, along with its connecting jumps between UP and DOWN, is close to the 
corresponding solutions of the full system (5). Thus, qualitative information about the 
true solutions may be obtained by analysis of the singular phase portraits. 

PROPOSITION1:  Properties of Type I bursts. The finite wave train and bursting 
solutions of § 2 have properties (i)-(vi) below. These properties are characteristic of the 
Type I bursts described in § 1. 

(i) If  the rate of onset K+ activation ( n )  is about the same as the rate of onset of Na' 
inactivation ( h ) ,  either the membrane does not sustain bursts (Case (C) of Theorem 1)or 
the interval between the first and second spike of the burst is so long that the burst looks like 
a single spike. Thus some skewing of the n-h rates is the principal membrane property to 
cause bursting. In terms of the system (5), n-h rates are skewed if y,/ y h  is not too near 1. 
This also implies that the shoulder of the falling phase is longer than it is in single spikes. 

(ii) During each burst, the interspike interval decreases; i.e., the spiking frequency 
increases. After a few spikes, the frequency becomes nearly constant (Fig. 1(A), ( B ) ) .  

(iii) The maximum and the minimum values of  v tend to increase or decrease during 
a burst (Fig. 1(A),(B), (C)). 

(iv) Spikes are separated by intervals of hyperpolarization ( v  < O )  which end 
abruptly when the membrane jumps, almost instantly, into the excited state at the onset of 
the spike. 

(v) Sometimes the length of the shoulder of the falling phase increases or decreases 
during the burst. 

(vi) Bursts are separated by quiet spells. The length of the quiet spell increases with 
the number of spikes in the previous burst. For a given membrane, the length of the quiet 
spell approaches an upper bound as the number of  spikes in the previous burst becomes 
large. 

The important point of Proposition 1 is that properties (i)-(vi) are to be expected 
in a single membrane with fast ~ a +  inactivation and K+ activation and slow ~ a +  
activation. Deviations from these properties imply the presence of additional 
membrane processes. 

4. Aplysia. The most carefully studied examples of bursting pacemaker cells are 
the abdominal ganglia of Aplysia, which appear to be activated by an endogenous 
depolarizing substance [17]. Several qualitative properties of these Type I1 bursts 
indicate that more membrane processes are active than was the Case for the bursts of D 2 
and § 3. These include: 

(i) the increase and subsequent decrease of spiking frequency during the 
bursts; 

(ii) the increase and subsequent decrease of the maximum and minimum values of 
v during most of the bursts (Fig. l(D)); 

(iii) the elongated shoulder of the falling phase; 
(iv) the presence of a fast subthreshold outward current near the beginning of each 

burst 191; and 
(v) the elongated N-shape of the graph of v between bursts (post-burst hyper- 

polarization), as shown in Fig. 15. 
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FIG. 15. Zntracellular recording from Aplysia spikes, redrawn from [17, p. 2951. The time course of p is 
traced during the burst and quiet spell. 

It is important to note that microelectrode measurements in Aplysia ganglia are 
taken at the cell body, whereas the models discussed in this paper are of the propagated 
action potential. An interesting theoretical and experimental question is: What is the 
relationship between spikes measured at the cell body and the signals transmitted along 
the axon to other cells? 

The principal feature of recent models of bursting cells in Aplysia is the addition of 
a term, IA, to the total ionic current [9], [16]: 

Faber and Klee [9] also state that K+ inactivation and anaomalous rectification (the 
decrease of resistance with hyperpolarization) are likely to account for certain proper- 
ties of the burst which IA alone does not explain. They conclude with the remark that 
experiments indicate that IA, anomalous rectification, and K' inactivation may be 
linked processes. 

A singular perturbation analysis such as that of § 2 and § 3 reveals that properties 
of bursting in Aplysia may be explained in terms of KC inactivation alone. IA was added 
to the models because the fast outward current was observed, not because of the 
discovery of a new membrane process; but the outward current would be an expected 
result of K+ inactivation. 

An example of a model which includes Kf inactivation is ( 5 )with: 

where K >0 is small and p& <0. (See Fig. 16.) 

FIG.  16. A typical p,(v) must increase sharply for v <0 since the extra outward current is seen only if the 
membrane has been hyperpolarized before depolarization [9]. 
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An example of a model with IAis: 

As (8) and (9) illustrate, the main difference between the two theories is that in (8) 
multiplies the potassium permeability, gKn4, of (5) and in (9) gAp is added to gKn4. 

Steps (A)-(F) below (see Figs. 15, 17) outline the qualitative analysis of (8), where 
slow K+ inactivation multiplies the potassium current in (5); in other respects the model 
remains the same as in § 2. Hypothesis 1 and Conditions a and P are assumed in the 
appropriate modified form. 

F I G .  17. Singular phase portrait of a burst with K +  inactivation. 

(A) Near the beginning of a burst, p is near po and the spiking frequency decreases 
as in the model of § 2 (Figs. 1(A) and (D), 15(A)). Repeated depolarization makes p 
begin to decrease. 

(B) A s p  decreases (less Kf inactivation) the phase portrait of Fig. 15(A) is altered, 
so that the solutions in noand 111begin to be dragged back down (Fig. 17). The 
maximum and minimum values of v level out and then decrease. 

(C) Singular solutions in ITo slow down as they get closer to the critical point, 
increasing the interspike interval, during which the cell is hyperpolarized. p thus begins 
to increase again. 

(D) The singular solution is now in the component of IIo where UP is never 
reached. The system is hyperpolarized and is slowly approaching the critical point, with 
v increasing. p has enough time to begin to increase. 

(E) p approaches pm(v) >po, while n -nm(v) and h =hm(v) and v decreases. 
(F) When p =pm(v), the entire system slowly moves back toward the critical level. 

v increases slowly until the point where step (A) is begun again. 

5. An infinite dimensional temporal code. In this section we introduce Condition 
y, which is much more difficult to satisfy than Condition a or Condition P of § 2. The 
result of imposing Condition y upon the model (5) is the existence of solutions with 
arbitrary burst sequences. The significance of this result lies in the fact that the model is 
deterministic and still relies upon the usual mechanisms of Na+ and KC activation and 
Na+ inactivation. In a more general context, Theorem 2 says that a simple system which 
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relies only upor1 local, statistically-defined on-off mechanisms (here, m, n, h )  can 
process inputs to yield arbitrarily complex signals. 

Condition y: In no,the solution with initial value Fl(no, ho) crosses UP at least 
twice. 

Compare Fig. 18 with Fig. 11. In Fig. 18, any Fl(no, ho) above A satisfies y, and any 
Fl(no, ho) either above A or below C satisfies P. The system in Fig. 11 could not satisfy y 
no matter where Fl(no, ho) is in DOWN. Condition y is seen to require much more 
nonlinearity in the phase portrait noor the set UP than is needed to imply the repetitive 
bursting of Theorem 1. Clearly, Condition y implies Condition a. 

F I G .  18. A system which satisfies Condition y. 

THEOREM2: Arbitrary sequences of bursts. Assume Hypothesis 1 and Conditions P 
and y. Then, give any infinite sequence {Ni : i = 1,2, . . .) ofpositive integers, for all small 
E,S >0 there exists a solution of (5)  which begins at rest (at -co); exhibits N ,  rapid spikes 
followed by an interval of quiet; then N2 spikes followed by an interval of quiet; and so on, 
(Fig. 7(i)). Within each burst, spiking frequency increases. 

Given any finite sequence, N 1 ,  . . . ,NK, there exists a solution which begins and ends 
at rest and which exhibits Ni bursts in the i-th bursting interval (Fig. 7(g)). Moreover, there 
is a family of periodic solutions with sequences of N1,  . . . ,NK bursts separated by longer 
intervals of quiet which become infinite as the period goes to infinity (Fig. 7(h)). 

For fixed s, S >0 each sequence { N i )  has a characteristic wave speed. In fact, if 
ON-{Ni)and OM-{Mi}; Ni=Mi,  i = l , . . . , K - l ;  andNK>MK,  thenON>OM. That 
is, the sequences have a lexicographic order which is reflected in their wave speeds. The first 
bursting interval reflects the principal component of the wave speed. 

6. Nonuniqueness and chaos. In this section we give two examples to illustrate the 
types of complexities which arise in a system (5). Like the system which satisfies 
Condition y of § 5,  these systems must be more nonlinear than those of § 3. 

Example 3 generalizes to the following nonuniqueness result. 
For any K 2 1 there is a class of systems (5)with K singular solutions of length N 

( N =  1 ,2 ,3 ; .  .). Thus, given such a system, for all small s, S>O and N =  1 , 2 , . .  . 
there is a continuum of values of 0 for which (5; 0, s, 8 )admits K distinct burst solutions 
with N spikes each. 

Example 4 combines the idea of § 5 and the nonuniqueness result to show that a 
system (5 )may exhibit chaotic behavior. That is, given any L 2 1, there is a class of 
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systems (5) , each of which admits L disjoint classes fil,. . . ,fiLof regular periodic 
solutions. Moreover, given any sequence of pairs {(N,, Mi): i = 1, 2 , 3 ,  . . .} with N, 2 1 
and 1 S MiS L,for all small s, 6>0 there is a solution of (5)with Nispikes in the ith 
bursting interval, and these N,spikes are close to a solution in the class a,. In addition, 
given any finite sequence {(N,,Mi)) there is a family of periodic bursting solutions which 
repeat the pattern of Ni spikes near fiMi. 

FIG. 19. (A),( B )A POWwhich satisfies Conditions a and P. 
(C)  Three singular solutions of length 1 .  
( D )  ~ e r ~ f  7where O = h )(n,  h )  be thefirstpoint on (n ,  h )  -O(n, h ) ;  if they exist, l e tF f (n ,  h )  a n d ~ F ( n ,  

be the second and third such points for 8< O(n, h )<  Oo. The sets A, B, and Care fixed points of 6 (Fo F;),  
6 (Fo F;), and 6 (Fo FF).  The solution in 111through P1 is tangent to {O(n, h )=  -Oo}. For 00< O <e l ,  
F, =FF, and C joins the fixed point set of Fo Fl at O = 0,. 

Example 3 : Nonuniqueness. 
The example shown in Figure 19(A), (B) has three distinct singular solutions of 

length 1:{a?, a'f),'{u:, u?)  and {uf, u?}. u? is the solution in l71 from (no, ho) to 
(nA, hA) and uf is the solution in nofrom (nA, hA) to (no, ho). Similarly, u? is the 
solution in l71 from (no, ho) to (nB, hB), etc. The proof of Theorem 1implies that the 
wave speeds of the three distinct single pulse speeds increase from A to B to C. All 
nearby flows admit three distinct singular solutions of length one. Each of the three 
singular solutions can be continued to at least one singular solution of length N. The sets 
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of fixed points of appropriately-defined return maps, analogous to 4 (Foo F I ) ,are 
shown in Fig. 19(D). For 8< 0 <00, there are three burst solutions with 1 spike. At 
0 = 00,solutions A and B merge. For O0 < 0 < 81, there is just one burst solution with'l 
spike. 

Analogously, for any L 2 1 the system (5) exhibits at least L singular solutions of 
length N if the solution in n, beginning at (no,  ho) crosses DOWN at least L times. 

CONJECTURE:Local uniqueness. Assume that (5) admits exactly M singular 
solutions of length N a n d  that no solution segment u k  of a singular solution is tangent to 
UP or DOWN. Then for each small E ,  S >0 there are exactly Mvalues of 0 for which (5) 
admits a finite wave train solution of length N .  

F I G .  20. A system with chaotic solutions. 

Example 4:  Chaos. 
In the example illustrated in Fig. 20, there are two classes ill,i l 2  of regular periodic 

solutions. 
Let {(Ni ,  M i ) )  be-a sequence with Ni 2 1and Mi = 1 or 2. Suppose, for example, that 

M I  =2 and M; = 1.The singular solution starts at (no ,  ho) and goes to the point P2.The 
singular solutions then jump up and down near w2 until there are N 1  spikes. The 
solution segment u 2 N 1  runs to a point in UP near (no,  ho),  where another jump up 
occurs. The next singular solution segment jumps down near P1 and continues to jump 
near w1until there are N 2spikes in this burst interval. The solution (+2(Nl+NZ)crosses UP  
near wl and jumps up near (no ,  ho),  and so on. 
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7. An example computed. In general, it is difficult to compute the flow on no,111 
and to determine the location of UP and DOWN. Certain simplifications greatly reduce 
the complexity of computations. 

First, n, and h, are nonlinear, but each is nearly linear in the range of values taken 
on by vo(n, h )  and vl(n,  h) .  Thus, one may assume that n,(v) = av +no for v small and 
n,(v) = bv +c for v large (Fig. 21). A similar approximation may be made to h,(v). 

V,(n,h) V,(n,h) 

F I G .  2 1 .  n,(u) redrawn from [ I l l  and a piecewise-linear approximation. 

For most functions G(v ,  n, h) ,  8(n, h )  needs to be approximated using a computer. 
Hunter, McNaughton and Noble [12]give explicit expressions for 8(n, h )  for certain 
functions G(v ,  n, h) .  They consider the cubic-shaped function 

- - V ~ ) ~ ) ( ( V ~G(v ,  n, h )  = c 2 ( v  vO)((vI vo)k- (v- - vo)k- ( v-v d k ) ,  

where C(n,  h) ,  vo(n, h) ,  v l(n,  h ) ,  v2(n, h )  are defined on (0 ,112, cl (no),cl ( H I ) ,  and 
cl (n0nHI), respectively; C(n,  h ) Z Q ;  and vo(n, h ) 5  v2(n, h ) S  vl(n,  h )  (Fig. 3). Let 

and 

v = w  

w = Ow +G(v ,  n, h) .  

Then there is a solution of (10; 13, n, h )  from (vo(n, h ) ,  0 )  to (v l (n ,  h) ,  0) iff vo(n, h ) <  
v2(n, h )  and 8 = 8(n, h )  2 0 or vo(n, h )  = v2(n, h )  and 82 B(n, h) .  There is a solution of 
(10; 8, n, h )  from (v l (n ,  h ) ,  0 )  to (vo(n, h) ,  0 )  iff v l (n ,  h )>  v2(n, h )  and I3 = 0-8(n, h ) ~  
or vl(n,  h ) =  v2(n, h )  and 8 2 -8(n, h) .  

For example, if k = 1, 

G(v,n, h )= c 2 ( v- vO)(v-v I ) ( v-v2) 

is truly cubic. In this case, 
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as computed in [ 5 ] .  
If 

and 

is a solution of (10; e(n,  h ) ,  n, h )  from vo to  v l . T o  check this, first note that 

For (10; 8, n, h) ,  

= e -J 2  C ( V  - vZ). 

Thus w = w ( v )is a solution of ( l o ;13, n, h )  iff -c& ( v- (vo+v1) /2 )= 8 -fiC ( v- V Z )  

iff 8 =J2 c((v, +v1) /2- 2 4 = e(A, h).  
If vo(n, h )  = vz(n,  h )  and 82 B(n, h ) ,  the existence of the solution w = w ( v )follows 

from Lemma 2. 
In the following example, n,, h, are piecewise linear; G(v ,  n, h )  is a cubic function 

of v ;and vo(n, h) ,  v l(n,  h) ,  vz(n, h )  are linear in n, h. The parameters have been chosen 
to  satisfy inequalities which imply Hypothesis 1. 

Example 5. Assume that: 

y,,(v) = yh(v)=constant, 
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Then: 

U P  = {(n, h )  :129(h-ho)= 130(n-no)), 

DOWN={(n ,  h ) :  129(h - ho)= 130(n - no)- 1.501, 

ano= {(n,  h )  :56(h-ho)=57(n-no)+ 101, 

a I I ,  = {(n,  h ) :  73(h - ho)= 73(n-no)-85). 

Inspection of Fig. 22 reveals that any point of DOWN crosses U P  in noand then 
returns toward (no, ho). Thus Conditions a and P of § 2 are satisfied, so this system 
exhibits finite wave train and bursting solutions with any number of spikes. Condition y 
of § 5 could never be satisfied by a system such as this, where the flows on IIo, II, and 
UP, DOWN are linear. 

FIG. 22.  (A)Slopes of: ano=1.018; UP'= 1.10078; and the eigenvectors = 1.167 and -2. 
(B) Slopesof: an, = 1 and DOWN= 1.0078. Thecriticalpoint (.8991, .0044) of thelinearflow (7; 1) lies 

outside nl. 

8. Proofs. 
Proof of Lemma 1. McKean proves this result in [15].To verify it, note that 

is a Lyapunov function for (6;  8, O), since 

Thus if 8 >0 ,  any nontrivial bounded solution of (6;  8,O) connects two distinct points 
( v ,w, n, h )  where w = G(v ,  n, h )  = 0. That is, the solution runs from (vi(n,  h) ,  0 ,  n, h )  to 
(v,(n, h ) ,  0 ,  n, h ) ,  where i, j = 0, l?or 2. 
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o n n )(i) Assume first that j,$,'h, G (v ,  n, h )  dv < O  and fix E = 0. Let Q ( 8 )  be that 
branch of the unstable manifold of (vo(n, h) ,  0 ,  n, h )  with negative half solution in 

~,(".h)9 = { w  2 0 ,  v  S vl(n, h)).  Since j,,(n,h, G (v ,  n, h)<0,  Q ( 8 )  leaves 9 in {w= 0 )  if 8 is 
small. Since w = 0w + G(v ,  n, h )  and G is bounded in [vo(n, h) ,  v l(n,  h ) ] ,  Q(8)leaves T 
in {v= vl(n, h ) )  if 0 is large. Thus there exists some 8 >0 such that Q ( 0 )never leaves 9, 
and Q ( 0 )runs from (vO(n,h) ,  0 ,  n, h )  to (v l (n ,  h) ,  0 ,  n, h ) .  An argument similar to that 
in the proof of Lemma 2(A)below shows that this value of 8 =8(n, h )  is unique. 

If 8 =0 and ji$;:i G(v ,  n, h )  dv = 0 ,  then F = 0 and F(vo(n, h) ,  0 ,  n, h )  = 

F(vl(n,  h) ,  0 ,  n, h ) =  0.  Thus, if vO(n, h ) <  v < vl(n,  h) ,  

along two solutions of (6; 0 , 0 )connecting (vO(n, h) ,  0 ,  n, h )  and (v l (n ,  h ) ,  0 ,  n, h ) .  
(ii) The second part is Verified similarly. 

Proof of Lemma 2. 

(A)Fix (n ,  h )  E an0 and assume that {(ni, hi))  G nofl I l l  f l{0(n, h ) >  0 )  is a 

sequence which converges to (n ,  h ) .  Then the sequence of solutions from 
(vo(ni, hi),  0 ,  ni, h i )  to (vl(ni,  hi),  0 ,  ni, h i )  converges to a solution from (vo(n, h ) ,  0 ,  n, h )  
to (v l (n ,  h ) ,  0 ,  n, h )  for 0 = 0(n, h) .  

Next fix 8 >0(n, h )  and let w = w(v) along the solution of (6;  O(n, h) ,  0 )  from 
(vo(n, h) ,  0 ,  n, h )  to (v l (n ,  h) ,  0 ,  n, h )  and let B ={(v,  w, n, h ) :  vo(n, h ) S  v d vl(n,  h )  
and 0 S wiw(v)).B is negatively invariant, that is, no solution of (6;  0,O) leaves B in 
backward time. To check this, note that if vo(n, h )<  v <vl(n,  h )  and w = 0 , then 

If w-w ( v )= 0, then 

Thus the existence of the Lyapunov function F (Lemma 1)implies that any point in B 
converges to (vo(n, h) ,  0 ,  n, h )  at -CO. 

In the v-w plane, the slope of the eigenvector at (v l (n ,  h ) ,  0 ,  n, h )  with negative 
eigenvalue is 

S(0)= i (0  - (0' +4 ~ ~ ) " ~ ) .  

S (0 )<0 since G, >0 , and 

Since S(O(n, h))=(dw/dv)(vl(n,  h)) ,  one branch of the stable manifold of 
(v l (n ,  h) ,  0 ,  n, h )  intersects B whenever 02 O(n, h) .  Thus the entire branch of the stable 
manifold is contained in B and runs from (vO(n,h) ,  0 ,  n, h )  to (v l (n ,  h ) ,  0 ,  n, h ) ,  and (iii) 
is proved. The proof of (iv) is similar. 
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(B) Since aG/an >0 and aG/dh <0 (Hypothesis l(G)), (de/an)(n, h )<  0 and 
(ae/dh)(n, h) >0. Thus for each 8~R, {(n, h) :8(n, h )  = 8)is the graph of an increasing 
function of n, defined on some (possibly empty) subset of [0, 11. 

Hypothesis 1(G) implies, in addition, that anois the graph of an increasing function 
of n defined on a subinterval of (0, 1) (Fig. 6(B)). an1 is, similarly, the graph of an 
increasing function of n (Fig. 6(A)). (Hypothesis 1(C) implies that anl# 4.) 
UP[DOWN] is, therefore, the graph of the minimum of two increasing functions of n. 

Proof of Theorem 1. Assume that {ul . . . ~ 2 ~ )is a singular solution of length N. We 
must show that (6) admits a finite wave train solution with N spikes and a family of 
periodic bursting solutions which converge to the wave train solution as the length of the 
quiet spell becomes infinite. 

The proof of the existence of a finite wave train solution [2], [4] relies upon the 
construction of "blocks" [7] Bl ,  B2, . . . ,B Z N sk14.The exit set of any block B is the set 
of points P E dB such that P . (0, 77)nB = 4 for some q >0. B has the property that the 
map which sends a point PEB to the first point P . t in the exit set of B is continuous 
where defined. For each k = 1,2,  . . . ,2N,  the exit set of Bk contains a set Ak and s:, 
Sk1 c dAk. If q1 is any arc in A, from 6: to S:, ql contains a subarc which is carried 
continuously by the flow (6) into AS. Moreover, the image, q2, of the subarc is an arc from 
8: to 6:. By induction, then, q2 contains a subarc carried by the flow into A3 and running 
from 8: to St, etc. (Fig. 23). Finally, if k is even, the subarc of qkPl between and the 
inverse image of qk contains a point in the stable manifold of (0, 0, no, ho). 

FIG.  23.  Typical Bk- lr  Bk, and Bk+l ( k  even) projected into IW~.The endpoints of uk-land uk+lare 
contained in anl. 
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Details of the construction of B1, B2, . . . are given at the end of the proof. 
Once B1, . . . ,BZN have been constructed, the proof is straightforward. Let 

{(8(s), ~ ( s ) ) :  0 5s 51) be any arc such that 8(s), E(s)> 0; E(S) and 18- 8(s)( are small; 
and 8(0)< 8<8(1). Then there is an arc {qo(s): 0 5 s 5 1) in R~ near (0, 0, no, ho) such 
that qo(s) is in the unstable manifold of (0, 0, no, ho) in the system (6; 8(s), ~ ( s ) ) .  If E(S) 
and (8-8(s)l are small, qo(s) is carried continuously by the flow into B1. Moreover there 
exist 0 <s; <s: <1 such that {qo(s) :s?5s 5s :) is mapped into an arc {ql(s) :s?5 s 5 
s : ) ~Al with q l ( s ? ) ~  S? and q l ( s : ) ~  6:. By induction, then, there is a sequence 

0 1 0s?<  s i < .  . . <S2N< S2N <. . . <S: such that {qo(s): s k  5 s 5 s:) is mapped continu- 
ously by the flow through B 1 .  . . Bk into {qk(s):s: S S ~ S : ) ,  an arc in Ak with 
qk(~Ok)~6: and qk(s:)~ 8:. Finally, if k is even there is sk E (s:-~, s:) such that qk - l (~k )  
is contained in the stable manifold of (0, 0, no, ho). Thus the solution through qO(sk) 
passes through B1, . . . ,Bk and is contained in the intersection of the stable and 
unstable manifolds of (0, 0, no, ho). That is, (6; 6(sk), E ( s~ ) )  admits a finite wave train 
solution with k/2 spikes. Note that s2 <s4<s6<. . . . 

The proof of the existence of a periodic bursting solution with N spikes again relies 
upon the construction of blocks B1, . . ,BZNA certain three-dimensional subset, A*, 
of the exit set of BZN is mapped by the flow through Bl ,  B2, . . . ,BZN and back to the 
exit set of BZN by a return map f. The map f minus the identity has nonzero degree, and 
hence has a zero, P. Since, then, f(P) =P, P lies on a periodic solution which travels 
through the blocks B1, . . . ,B2N and back through A*, which is near the critical point. 
The proof of the existence of a regular periodic solution is similar, with the solution 
passing, alternatively, through blocks B1 and BZ. Details of this construction are given 
in [3]. 

UP 

h-h, = d(n-no) 

FIG.  24.  In Case (A),I is a two-dimensional singular solution of length N for N = 1,2, . . . . 

We now show that, if (5) admits a singular solution of length N, then ( 5 )admits a 
nearby family of two-dimensional singular solutions of length N and hence a family of 
periodic burst solutions with N spikes. For definiteness, assume that f72N approaches 
(no, ho) in {(n, h)  :8(n, h]'> Band n >no) (Figs. 9,11,12,14,19, 22). Choose d >0 such 
that d is larger than the sldpe of UP at (no, ho) and d is less than the slope of VzN at 
(no, ho). For 8' >8,let I ={(n, h): 8(n, h )  = 8' and no 5n 5no+ (h -ho)/d). I is the set of 
points in (UP)' between the line n = no and the line through (no, ho) with slope d (Fig. 
24). 

If (8'- 8) is small, C#J (Fo F ~ ) ~  maps I interior to itself. This fact follows from 
Hypothesis 1, which implies that (no, ho) is a stable node and all solutions in noabove C 
either go to a l lo  or approach (no, ho) with slope greater than d. 
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Construction of B1, . . . ,BZN. Let {al . . . ~ 2 ~ )be a singular solution. Without loss 
of generality, assume that (+2N approaches (no, ho) in {(n, h) :8(n, h )>  8 and n >no). 
Other cases are treated similarly. 

The constants d l  . d5, Dl . D3, el . . e5, Al, A 2  below are all positive. The 
constants di are small; Di are large; and ei and A i  are not necessarily either large or 
small. 

Let @ be a compact neighborhood of ((0, w, n, h) :  (n, h) E U~N,v = vO(n, h), and 
w = 0) in which G, >0. 

Choose Dl ,  d l  >0 such that in @, 

Dl2 G,, G,, -Gh, nk,  -hL, 1, 

and 
d l  IG,, G,, -Gh, nL, -hL, (8+2). 

Henceforth let 10 denote I ( o , o , ~ , ~ ) .  
Let - A 2 < - A l < O  be the eigenvalues of (7; 0) at (no, ho). Al, A 2  satisfy the 

equation: 

det (m(nL(-Gn/G,)- l)+Ai mnk(-Gh/G,) )I =o.  
Y~~L(-G,/G,)  ~h(hL(-Gh/Gv)-l)+Ai 0 

We have here used avo/an = -G,/G, and av0/ah = -Gh/G,. 
Define el, e2, e3 by: 

e2-= ; and e3= 

el is the slope of the eigenvector associated with -A It is, therefore, the slope of U ~ Nat 
(no, ho). Implicit differentiation of h,(vo(n, h))- h = 0 implies that e2 is the slope of 
{(n, h): h0= 0) at (no, ho). Implicit differentiation of n,(vo(n, h))- n = 0 implies that e3 
is the slope of {(n, h) :riO= 0) at (no, ho). 

Choose d2, e4, es such that: 
e2+d2<e4<el -d2<el+d2<e5<e3-d2.  

Let d3, d4 < 1 be small positive constants, to be specified in Steps 1-5 below. Define 
the function C(n) and the sets A 5 noand B E @ as follows (Fig. 25). 

andO<n-nodd3) ;  and 

B ={(v, w, n, h)  :(n, h) EA and 

Iw*(&+2)(v-vo(n, h))l< (8+2)~(n ) ) .  

Step 1. ri < O  and h < O  in B. 
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F I G .  25. (A)The set A Eno. 
( B )  Projection of B in the (v-w)-plane.  

To verify that ri <0 if d3 and d4 are small, note that if (n,  h )  E A, then, for some 
D2>0,  

n,(vo(n, h ) )  -n 5 n,(vo(n, ho +es(n-no>>>-n 

nk  G h  
= (n-no)[-/ d2 +D2(n -no)]

Gu 0 

(D2will be used throughout as a large positive constant multiplying O(n-no)2terms.) 
Let ds=d : d 2 / ( 4 ~ 1 ) .  

Next, ri <0 iff n,(v)- n <0. In B, 

n,(v)- n 5 n,(vo(n, h )  +C ( n ) )-n 

= (n,(vo(n, h)) -  n)+ n1, (vo(n, h>>C(n>+ o ( c ( ~ ) ~ )  
<(n-no)[-2ds+Dld4+ D2d3] 

5 ( n  -no)(-  ds) if d45 d5/(2D1)and d3 5 d5/(2D2). 

The proof that h <0 if d3 and d4 are small is similar. In fact, 

h,(v)- h 5 -ds(n -no) 

if d45 d5/(2D1)and d35 ds/(2D2).Similarly, there is a large constant D3>0 such 
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that, in B, 

n,(v)- n 2 -D3(n -no) and h,(v)- h 2 -D3(n -no). 

d3is also chosen so that the solution segments whose initial portions are u k  ( k even) 
enter A in {(n, h )  :n -no= d3). 

Step 2. The exit set of B. If d3, d4, and s are small and if 8<8+ 1, the exit set of B is 
{(v ,W ,  n, h )  E B : w = -(8+ 2)(v -vo(n, h)* C(n))) .  

T o  prove this, we must check all points on dB and show that solutions enter B on all 
sides except where w = -(8+ 2)(v-vo(n, h ) i  C(n)) .  It suffices to show that, in B, 
inequalities (A)-(G)hold. 

( A )  If Hl(v,  w, n, h)= w - ( 8 + 2 ) ( ~- vo(n, h)+ C ( n ) )  = 0, then Hl <0. 
( B )  If H2(v, w, n, h )  =w + (8+ 2)(v -vo(n, h ) -  C ( n ) )  = 0, then H2>0. 
(C)  If H3(v, w, n, h )  = w +(8+2)(v-vo(n, h)+ C ( n ) )  = 0, then <0. 
(D) If H4(v, w, n, h )  = w- ( 8+2)(v- vo(n, h ) -  C ( n ) )  =0, then H4>0. 
( E )  If H5(v, W ,  n, h )  -- (n-no)-d3= 0, then <0. 
(F) If H6(v,W ,  n, h )= (h-ho)- e4(n -no)=0, then ti6>0. 
(G)  If H,(zI, W,  n, h )  =(h-ho)-e5(n-no)=0, then fi7 <0. 
(A)In B, when H1=0, vo(n, h ) -  C ( n )  5 v 5 vo(n, h )  and w 2 0. 

<(8 -(8+2))w + G,(vo(n, h) ,  n, h)(v - vo(n, h))+ O(v  - vo(n, h)l2 

Parts (B)-(G) are verified similarly. 
Henceforth, d3 is fixed. 
Step 3. A, ,  A 2 , .  . . ,AzN and A ; ,  A;, . . . ,AhN. 
First, let L2N -- {Pr,2N: i r l ~  and C ~ N  >o such1)be a line segment in no >b2N>a 2 ~  

that: 
(i) L ~ ~ ?  no;[0, m ) ~  

(ii) po,,, 9 (0, m )  contains 1 7 2 ~ ;  

(iii) the flow on 110 is transverse to L Z N ;  

( 1 ~ )L Z N ' U ~ N C ( ( ~ , ~ ) : O < ~ ( ~ , ~ ) < @ ;  


(v) L ~ N  G {(n, h ) :  8(n, h)> 8); and? b 2 ~  
(vi) LZN C 2 N  c {(n, h )  E int (A):d3/25 n -no5 d3). 

0
Let A ~ N=U T E [ O , ~ ~ N ]'7 :( r /  U T~[O,C~N]{P~,ZN {Pr,2~ 5 7 / ~ 2 N ) .Let A ; N ~  ' 7 ;  ( ~ ( 5  

T / C Z N } (Fig. 26(A)). 
A z N - ~ ,. . . ,A1 and ALN-1, . . . ,A: are now defined inductively. Because the 

endpoint of u k  may be contained in dn1if k is odd, the definition of Ak depends upon 
whether k is odd or even. If the endpoint of uk is contained in 111when k is odd, the 
constriction of A k  is similar to that when k is even. 
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Assume that A2N, . . . ,A2N-j+l have been defined. 
If j is odd and if the endpoint of uzN-, is contained in a n l ,  let LZN-,= 

{Pr,2N-j : Ir/5 I} be a line segment in n1and choose b2N-j >a 2 ~ - j>o such that: 
1

(i) LZN-j. [O, a 2 ~ - j ]  G Hi; 
(ii) ? (0, b2N-j) contains uzN-,; 

(iii) the flow on n1is transverse to L2N-j; and 
(iv) L2N-j 1 . a 2 ~ - j  int (A2N-j+l): O >  e(n, h)> -e).G {(n, h ) ~  

(CI 


FIG. 26. (A) A, AZN, and A;, (B) AZN-,. (C) AZN-, and A;,-, when j is even. 

1Let A 2 ~ - j-Ur c [~ ,a2N- j ]{Pr,ZN-j. 7 : lr/5 7 / ~ 2 ~ - j ) .The exit Set of A 2 ~ - j  1s 
L ~ N - j!a 2 ~ - j  (For technical reasons, we shall also (Fig. 26(B)). Let A ; ~ - ~ = A ~ ~ - ~ .  
require, for Step 5(C) below, that L2N-j ? a2N-j be contained in a certain neighborhood 
of the endpoint of U Z ~ V - ~For clarity, that neighborhood is left unspecified until (C).) 

If j is even, let L2N-j"{Pr,2N-j: / r /< I)  be a line segment in no and choose 
0 <U ~ N - ,  <bZN-/<C ~ N - ,  S U C ~that: 

(1) L2N-j ' [O, ~2N-j] no; 
(ii) Po,zN-,0 . (0, bZNPj) contains u2,-,; 
(iii) the flow on nois transverse to LZN-j; 
(iv) L ~ N - j

0 
' C int (AzN-,+I); ~ z N - ~ ]  
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(v) L2NPj a2NPj E{(n, h ) :  o <8(n, h ) <  8); 
(vi) LZN-, 9 b2N-jc{(n, h )  :8(n, h ) >  8); and 

(vii) LZN-,0 . C ~ N - ~c {(n, h )  E int (A): d3/2 5 n -n o d  d3}. 
Let AZN-j UTE[o.bZN-,]{Pr,2N-j '7 :Irl 5 TICZN-j). Let A;N-jz UTE[O,C~~-~] 

{Pr,2N-j0 . r : lrl ST / c ~ ~ - , } .Then A2N-, is contained in AhN-? The exit set of AZN-, is 
contained in LZNPj 9 bZN-,, which is contained in the interior of A ~ ~ - , + ~ .  The exit set of 
AkN-, =L2N-, ? CZN-j, which is contained in the interior of A (Fig. 26(C)). 

Finally, if j is odd and the endpoint of 1 7 ~ N - jis not contained in a n l ,  then A2N-j is 
defined with properties analogous to the previous properties (i)-(vi), and A;N-,= 
A ~ N - ?  

Step 4. B1, B2, . . . ,BZN and B;, Bh, . . . ,B;N. 
If k is even, let Bk ={(v, W, n, h )  :(n, h )  E A k  and 1 wi( 8 +  2)(v -vo(n, h)) lS 

( 8 +  2)d3d4/2} and let B l  ={(v, W, n, h )  :(n, h )  E A l  and / w* ( 8 + 2 ) ( ~-vo(n, h)) lS 
(8+2)d3d4/2}. If k is odd, let 

B k=B;  ={(v, w, n, h ) :  (n, h )  E A k  and I wi( 8 + 2 ) ( ~-vl(n, h ) ) lS  (8+2)d3d4/2}. 

An analysis similar to that of Step 2 and carried out in [2], [4] implies that if d4, F ,  

and 18 -81 are small, the exit set of Bk is {(v, W, n, h )  : 1 w + ( 8 +  2)(v -vi(n, h))i = 

(8+2)d3d4/2 or (n, h )  is contained in the exit set of Ak}; and the exit set of B; is 
{(v, W, n, h )  : 1 w + ( 8 +  2)(v -vi(n, h))l= ( 8 +  2)d3d4/2 or (n, h )  is contained in the exit 
set of A;), where i = 0 if k is even; i = 1if k is odd. In addition, any solution with initial 
value in Bk or B; leaves that block in finite time. 

Step 5. Ak, a:, and 8:. 
If k is odd and the endpoint of akis contained in a n l ,  let 

Ak= {(v, W, n, h )  E Bk :(n, h )  is contained in the exit set of Ak); 

8% {(v, w, n, h) E Ak :w = -(8+2)(v - (vl(n, h)- d3d4/2))}; and 

(See Fig. 23.) In Fig. 25(B), if (n, h )  is contained in the exit set of Ak, the entire diamond 
is contained in Ak; the lower left edge is contained in 8:; and the upper right edge is 
contained in 8;. 

If k is odd and the endpoint of a k  is not contained in a n l ,  let 

Ak-{(v, W, n, h )  E Bk :(n, h )  E Lk  ![ak, bk] and 

8Ok={(v, W, n, h ) € h k : ( n ,  h ) E L k  !ak}; 
and 

Note that if (v, w, n, h )  E 8:, then 0< -8(n, h ) <  8 ;  if (v, w, n, h ) ~  6:, then -8(n, h ) >  8. 
If k is even, let 

hk ={(v, W, n, h )  E ~k :(n, h )  E ~k ? [ak, bk] and 

w = -(8+ 2)(v - (vo(n, h )  +d3d4/2))}; 

8: ~ ( ( 0 ,W, n, h )  E Ak :(n, h )  E Lk  ? bk); 

and 
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Note that if (v, w, n, h ) ~  a:, then 8(n, h)>  8; if (v, w, n, h) E s:, then 8(n, h)<  8. 
Finally, (A)-(D) below show that Ak, a:, and 8: have the required properties if F ,  

/ 8 - 81, and d4 are small. 
First, let 

E i  ={(v, w, n, h) E the exit set of B; : 

and 

EL ={(v, w, n, h) E the exit set of B;: 

where i = 0 if k is even, i = 1 if k is odd. 
(A) If k is even and q is an arc in Bk from EL to E: then q contains a point which 

never leaves B)k U B and which is contained in the stable manifold of (0, 0, no, ho). 
(B) If k is even and q is an arc in Bk from EL to E l ,  then there is a point PEq such 

that P is mapped by the flow to 6: and all points in q beyond P leave Bk in E:. 
(C) If q is an arc in Ak  from 8; to a:, then q contains a subarc mapped by the flow 

into an arc in Bktl from EL+lto El+ , .  Moreover, if k is odd, 8(n, h) <0 in the image of 
q in Bk+, (or else (n, h ) ~  If k is even, 8(n, h)>O in the image of q in Bk+,. no -n , ) .  

(D) Ak, s:, and 8: have the properties used in the proof of Theorem 1. 

Proof of (A)-(D). 

(A) q is contained in B)k,and all points in Bb leave in finite time. Thus q is mapped 

by the flow to an arc in the exit set of B)k. The endpoints of q, already in the exit set, 
remain fixed. Since the image of q joins EL and E i ,  it must contain a subarc Q from EL 
to E l  such that Q is contained in {(v, w, n, h) E BI, :(n, h) E the exit set of A;), which is 
contained in B. Q connects the two components of the exit set of B. If all pointsof Q left 
B in finite time, Q would be mapped to an arc in the exit set of B joining the two 
components, which is impossible. Thus one point in Q never leaves B. Since ri <0 and 
h <0 in B, this point must converge to (0, 0, no, ho) at +co. 

(B) Suppose the arc q is parameterized by q :q ={q(q):0 d q 5 I), so q(0) E EL 
and q ( 1 ) ~  E:. [0, 1] :q(q) leaves Bk in E: for all q E [q', 11) and let Let .Jj =min { q ' ~  
P q ( . J j ) .  Since q ( 0 ) ~  EL, q(3) must be in d~:, which is 8;. 

(C) First suppose that k is even. In s:, 8(n, h)>  8.Thus if 8 = 8and s =0, and if d4 
is small, a point in 8: leaves {w 2 0) in a point where v <v,(n, h)- d3d4/2 (see Lemmas 
1 and 2). The same is true if F and 18 -81are small. Also, in s:, 0 <8(n, h)<  8. Thus if 
8 = 8and F =0, and if d4 is small, a point in 6: leaves {v 5 vlyn, h)) in a point where 
v = vl(n, h) and w > (8+2)d3d4/2. The same is true if F and 18 - 8-)are small. Also, Ak  is 
contained in the set where (n, h) E int (Ak+l) and 8(n, h) >0. Thus if d4, s, and 10-4are 
small, a point in Ak  leaves {(v, w, n, h) :  w 2 0 ,  v 5 vl(n, h), and w2
(e+2)(v - (vl(n, h) -d3d4/2)) in finite time and in the set where (n, h) E int (Ak+i) and 
8(n, h)>O. Therefore q is mapped by the flow to an arc Q in {8(n, h)>O and 
(n, h) E int (Ak+l)) from {w =0) to {v = vl(n, h)  and w 2 (8+ 2)d3d4/2). Q contains a 
subarc in Bk+l from EL+ln {w =0) to E:+, n{v = vl(n, h)}. 

Similarly, if k is odd and the endpoint of uk is not contained in an l ,  q is mapped by 
the flow to an arc Q in {8(n, h)<  0 and (n, h) E int (Ak+l)} from {v = vo(n, h)  and 
w5 -(&+ 2)d3d4/2) to {w =0). Q contains a subarc in Bk+l from EL n {v = vO(n, h)) to 
E: n iw=o>. 

Finally, suppose that k is odd and the endpoint of uk is contained in a n l .  In Ak, 
0 >  8(n, h)>  -8. Thus if 8 = 8 and s =0, and if d4 is small, a point in 8: leaves 
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{v 2 vo(n, h)) in a point where w <-(8+2)d3d4/2. The same is true if 18 -4and F are 
small. Also, if 8 = 8and F =0 a point in 8: leaves {v 5vNa) in a point where {w >0). The 
same is true if 18 -81 and F are small. 

Now let q={P(p):O5p1!) bean  arc in h k  from 8; to 8;. Let 

e ={(v, w, n, h):(n, h)  E int (Ak+l), and 8(n, h)  <0 if (n, h )  E nonn1); 

and 
E ={(v, w, n, h):(n, h)  E no and 

either v = vo(n, h)  and w 5 - (8+2)d3d4/2 

or w = (8 +2)(v - (vo(n, h)  +d3d4/2)) and vo(n, h')9v 9vo(n, h)  +d3d4/2). 

To complete the proof of (C) it suffices to show that, if F >0 and 18 -4are small, there is 
some p1E ( 0 , l )  such that {P(p): 0 5p 9pl} is mapped by the flow to an arc Q -
{Q(p): 0 9  p 5 G E ne such that Q(O)E {v = vo(n, h)} and Q(p1)6 {W =0). For, if 
such a pl 'exists, then Q contains a subarc {Q(p): po5p 5 p l )  c Bk+, with Q(pO)6 
EL+,fl{v = vo(n, h)  and w = -(8+2)d3d4/2} and Q(p1)€E fl{v = vO(n, h ) +  
d3d4/2 and w =0). 

To see that p1exists, we shall construct a block D with properties (C1)-(C4) below. 
(Cl)  Ak  G D.  
-(C2) 11(6, h)  is the endpoint of ukand fi =vl(fi, h), then =(27, 0, 6, h)  E D. 
(C3) The flow carries all points in D to the exit set of D. 
(C4) Any point in dD crosses, in finite time, either E f l  e or {v = vN,) ne. 
To see that (C1)-(C4) complete the proof, for O S p 5 1 ,  let S(P)= 

sup {s :P(p )  . [0, S) fl (E  U {v = vNa))= 4).(Cl), (C3), and (C4) imply that each S(P) is 
finite and Q(p)= P ( p ) .  S ( ~ ) E  = ee fl (E  U {v vNa}). (For comparison, note that if 
were equal to 0 then S(p)  would be infinite if P ( p )  were contained in the stable 
manifold of some point (vl(n, h), 0, n, h).) Let p1=sup {PIE [0, 11 :Q ( ~ ) EE for each 
p E [0, p')}. Since Q ( ~ ) E  E fl{v = vo(n, h)) for p near 0 and Q(p) E {v = vNa) for p 
near 1,O <p1< 1. Since each Q(p)  crosses E (or {v = vNa)) transversally and since E is 
closed, Q ( P ~ ) E  dE, which is contained in {w =01, and {Q(p): 0 5p 5 p l )  is an arc in E. 

Construction of D. Since (0, 0, no, ho) is the only rest point of (6) when e >0, at the 
point P either ri >0 or h <0. For definiteness, say ri >0 at P. 

Let: 

(v, n, h)  E II and a, p = v, n, h); 

z3=E 
-1  

r i l p = p ;  and 

Note that z,, z2, z3 >0, and z4 is the slope of ukat (n, 6). 
Next, construct a triangle d E noas shown in Fig. 27(A), with the properties that, 

for some z5>0: 
* * -

(C5) the triangle PQR llcl (111) = {p ) ,so that G(v, n, h )>  0 if v >vo(n, h)  and 
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(n, h )~d -{ ( r i ,  L)}; 

(C6) the slope of PS is z4; 

(C7) the slope of is - l /z4;  

(C8) the slope of Sd is Z4 + z5; and 

(C9) the slope of Sl? is z4-z5. 


The existence of d follows from the hypothesis that (5) is admissible, so that z4 is not 
equal to the slope of dIIl at ( i i ,i). 

Using continuity, there exists 2 6  E (0,1) such that if Iv - fi(, In -61, (h  -El sz6, 
then: 

(C10) ri > ~ E z ~ ;  
(C11) z4h Z ~ E Z ~ Z ~ ;  
(C12) -i&z3z5 5h -z4n S ~ E Z ~ Z ~ ;  
(C13) 6(n, h) < 0, if (n, h)  E cl ( no  f l  II,); 
(C14) (n, h)  E int (Akcl); and 
(C15) v -vo(n, h )>  0. 
Let 

Next, choose constants zs, z9, z10 SO that if A is the triangle {(n, h ) :n + z4h5 zs; 
-(z4+ z5)n + h 5Z9; and -(z4 -z5)n + h Z zlo), then (fi, fi) E A; A c d f l  {(n, h): In -61, 
(h-h ( 5z: min (1, z2(32e"zl)-I}}; and G(v, n, h )>  0 when (n, h)  E A, n + ~ 4 h= zs, and 
(v-615z6. (See Fig. 27(A).) 

Let: 

z l l  =min {G(v, n, h )  : (n, h )  E A and z7(28)-' 5(v-17153z7(28)-'1; 

and 

D ={(v, w, n, h):(n, h ) ~  A; (w-8(v -U)\ 527;  and \ W ( S ~ Z ~ )  (Fig. 27(B)). 

If ak, Lk, and d4 are now chosen so that Ak  cD, Lemma 3 completes the proof of 
(CIS 

LEMMA 3. Properties of D. 
(C16) In D, IG(v, n, h)(528z7. 
(C17) In D, if z7(28)-' 5(v-1715- 3z7(28)-', then G(v, n, h)> 0, so that z l l  > 0. 
(C18) In D, Iv - fi(, In -61, (h  - h(  526,  SO thatproperties (C1O)-(C15) hold. 
(C19) If E >0 ,  6 >i&and 16-4 <2z11z;', then D is a block for (6) with exit set 

{(v, w, n, h ) ~ a D : n + z ~ h = z ~ ;  or Iw(=iZ7}. or W = ~ ( V - a ) + z 7 ;  
(C20) If P E D then P . s E aDfor some s E [0, a). 
(C2 1) If ( 6  -4 and E 20 are small, any point in dD crosses, in finite time, either 

E n e o r { v = v N a } n e .  

Proof of Lemma 3. 

(C16) The proof of (C16) uses the facts that, in D: 


G(u, n, L)= ~ " ( 6 ,f i, fi) = 0; 

z 7 S  1; and ~ ~ ~ 2 p ( z ~ ( 3 2 e ? - + 2 4 8 + 9 ) ) - ~  
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FIG.27. (A)d is the triangle dk?.A is the projection of D into the n-h plane 
( B )  The projection of D into the o-w plane. 

Taking the Taylor series expansion of G(v,  n, h )  about (17, n, h),we see that, in D:  

IG(v, n, h ) l s  (G(6,  f i ,  K)l+ (G,(ii, ii, h)(v -I?)( 

+ ( G, (ii, 6, h)(n - ii)(+ I G,,(17,f i ,  i ) ( h-h)( 

+ i ~ ~ [ ( v - i i ) ' + ( n - i i ) ~ + ( h -h)2 

+21(n- ii)(h- i ) l+2( (v-E)(n- ii)l 

+2((v-~ ) ( h-h)(] 

5 2z1z:  + i ~ ~ [ 9 ~ : ( 4 8 ~ ) - ' + 4 2 $  +6z%-']  

= z,z:[2 +9(8P)- '+2~:+3278- ']  

d zlz:[4+38-'+9(881)-'] 

= zlz:(881)-'(3283-+ 248+9) 

. 5aez7. 
(C17) The proof of (C17)is similar to that of (C16). 
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(C18) In D, (n- ii(, Ih 2725 2: <z6, since z6 < I .  Because ( w-8(v -G)(Sz7; 
2 -IwI s i t 7 ;  and t 7 s 5 6 t 7 ,  Iv -515 8 -1 (~7++~7)~3 (28 ) -1 (3&6)=z6. 

(C19) The proof of (C19) is similar to the verification carried out in Step 2 above. 
(C20) follows from the fact that ri 23&z3>0 in D. ((C10)) 
(C2 1) (C15) implies that, if n + t 4 h  = z8 in D, then G(v, n, h )>  0. (C17) implies 

that if w = 8(v -6)+ 2 7  in D, then G(v, n, h )>  0. Thus (C19) implies that, at any point P 
in the exit set of D, either d = w # 0 or w = Ow + G(v, n, h )#  0. Therefore (C13) and 
(C14) imply that when 6 = 8 and E = 0, P . [0, oo) crosses, transversally and in finite 
time, either E f' e or {v = vNa)fl e;  and the same is true if 16 -81 and E >0 are small. 

(D) Let ql be an arc in A1. (C) implies that ql contains a subarc mapped into an arc 
(q(77): 0 5 77 5 1) in B2 n{O(n, h) <0 if (n, h)  E noflHI) from E; to E l .  (B) implies that 
there is some ij E ( 0 , l )  such that q(ij) is mapped to 6; and q(7)  is mapped to E2f if 
77 8 i j .  Since q ( l ) ~E l  f l  {B(n, h )<  0 if (n, h)  E nofln l }  and 6(n, h )>  0 in A2, 
{ q ( ~ ) :fj 5 77 5 I} contains a subarc mapped to an arc q2 in A2 from 6; to q:. (A) implies 
that {q(q): 0 5 7 < ij) contains a point in the stable manifold of (0, 0, no, ho). (C) then 
implies that q2 contains a subarc carried by the flow into A3 and running from S! to 6:, 
etc. 

Proof of Proposition 1. (i) A trajectory in noslows down as it approaches the 
critical point (no, ho). Thus, the interval between the first and second spikes of a burst is 
long if u2crosses UP near (no, ho). Skewing of n-h tends to make u2cross UP away from 

h ~ ) .  
(ii) In the singular solution, the duration of cr2, decreases as j increases, since u2, 

moves farther away from the slow area near (no, ho). u2,soon approaches the limiting 
trajectory through ( f i ,  K) and so its duration settles down toward a fixed value. The 
interspike interval in the true solution is near the singular connection u2, ( j =  
l ; . . , N ) .  

(iii) In t h i  singular solution, the maximum value of v is equal to vl(n, h)  at the 
point in UP  where the jump from noto nl  occurs, since this jump corresponds to the 
rising phase of the spike. Thus, if the singular solution is as depicted in Fig. 9 or 11(A), 
the maximum value of v increases during the burst if vl(n, h)  increases along UP and it 
decreases during the burst if vl(n, h)  decreases along UP. Similarly, the minimum value 
of v is equal to vo(n, h)  at the point in DOWN where the jump from n1to nooccurs. 

In practice, computation of this property from membrane data is difficult. The 
point here is that one of the properties (iii) tends to occur and so rising or falling 
maximum or minimum values of v should cause no surprise. 

(iv) Along DOWN vo(n, h) is several mv. negative, corresponding to hyper- 
polarization in the true solution. As (n, h)  approaches UP in no ,  vo(n, h) returns near 
zero. 

(v) An elongated shoulder in the falling phase of the jth spike corresponds to a 
long uzj-, in the I l l  phase portrait. This could occur if, for example, there would be a 
critical point just off anl if the phase portrait were extended to (0, I ) ~ .  

(vi) The quiet spell increases with the distance, in the phase portrait, between 
UP flu 2 ~and (no, ho). This distance increases as N increases, but is never larger than 
the distance between (ii, fi) and (no, ho), which determines the upper bound on the 
length of the quiet spell for fixed 6, E >0. 

Proof of Theorem 2. As in Theorem 1, the proof depends upon the existence of a 
singular solution with Ni jumps in the ith bursting interval. In Fig. 18, the singular 
solution may jump up N, times and then return toward rest at (no, ho). However, before 
reaching (no, ho) the singular solution recrosses UP, and is thus able to jump again, N1 
times. After N2 jumps the solution returns toward rest, but the geometry of the phase 
plane forces this solution also to cross UP, and the jumps begin again. 
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The correspondence between ON and {N,}follows from the construction of the 
actual solutions, as in Theorem 1.This result generalizes the relationship between O and 
the number of spikes depicted in Fig. 10(A). 
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