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Abstract--A neural network architecture is outlined that self-organizes invariant pattern recognition codes of 
noisy images. The processing stages are figure-ground separation, boundary segmentation, invariant filtering, 
and self-organization of a pattern recognition code by an A R T  2 network. The article describes a new circuit 
for boundary segmentation, called the CORT-X filter, that detects, regularizes, and completes sharp (even one- 
pixel wide) image boundaries in up to 50% noise, while simultaneously suppressing the noise. The CORT-X 
filter achieves this competence by using nonlinear interactions between multiple spatial scales to resolve a design 
trade-off that exists between the properties of boundary localization, boundary completion, and noise suppression. 
The processing levels of the COR T-X filter are analogous to those of the Grossberg-Mingolla Boundary Contour 
System, but contain only feedforward operations that are easier to implement in hardware. The network nodes 
in these levels are analogous to cortical simple cells, complex cells, hypercomplex cells, and unoriented and 
oriented cooperative cells. 

Keywords--Neural networks, Pattern recognition, Self-organization, Boundary segmentation, Visual cortex, 
Boundary contour system, Competition cooperation. 

1. INTRODUCTION 

This article is the first in a series that develops a self- 
organizing neural network architecture for invariant 
pattern recognition in a cluttered environment.  Car- 
penter and Grossberg (1987a) described this archi- 
tecture (Figure la).  They reported computer  simu- 
lation experiments in which an earlier version of the 
architecture learned to categorize individual image 
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figures in up to 10% noise that were translated, ro- 
tated, or contracted. 

Such an architecture sequentially carries out four 
functionally distinct types of operations: 

Step 1. Detach figure from ground. 
Step 2. Detect,  regularize, and complete figure 

boundary. Suppress interior and exterior image 
noise. 

Step 3. Filter to give invariance under translation, 
rotation, and contraction; for example, use a log- 
polar-Fourier filter (Casasent & Psaltis, 1976; Ca- 
vanagh, 1978, 1984; Szu, 1986). 

Step 4. Let  invariant spectra of the boundary-en- 
hanced, noise-suppressed, detached figures be the 
input patterns to an A R T  2 architecture for stable 
self-organization of recognition categories (Carpen- 
ter & Grossberg, 1987b, 1988). The A R T  2 archi- 
tecture can autonomously learn recognition codes in 
response to arbitrary orderings of arbitrarily chosen 
analog or binary input patterns until its full memory 
capacity is utilized. A vigilance parameter  is adjusted 
to determine how coarse the learned categories will 
be. Thus the vigilance parameter  controls how much 
deformation in the shape of the figure is tolerated, 
after deformations due to translation, rotation, or 
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FIGURE 1. System architecture: (a) functional stages; (b) 
computational realization. 

contraction are compensated by the invariant filter. 
The architecture's recognition learning abilities may 
be augmented by incorporating additional processing 
stages capable of reinforcement learning and recall 
learning (Carpenter & Grossberg, 1988; Grossberg, 
1987, 1988). 

2. A U T O M A T I C  S E P A R A T I O N  OF F I G U R E  
FROM G R O U N D  

The Carpenter and Grossberg (1987a) architecture 
was used to recognize isolated figures on a noisy, 
but otherwise uncluttered, background. To use such 
an architecture, the image figure to be recognized 
must be detached from the image background. Such 
figure-ground separation can be automatically 
achieved, for example, by using laser radar sensors. 
In particular, let a range detector be focused at the 
distance of the figure to extract the figure and a 
contiguous piece of the ground. The figure is then 
detached from contiguous ground by spatially inter- 
secting the range pattern with a pattern from an- 
other detector. A doppler image can be intersected 
with the range image when the figure is moving. 
The intensity of laser return can be intersected 
with the range image when the figure is stationary 
(Gschwendtner, Harney, & Hull, 1983; Harney, 1980, 
1981; Harney & Hull, 1980; Hull & Marcus, 1980; 
Kolodzy, 1987; Sullivan, D. R., 1980; Sullivan, L. 
J., 1980, 1981; Sullivan, Harney, & Martin, 1979). 

In the present article, we assume that the figure 
has been separated from the ground by some tech- 
nique, such as the laser scheme described above. The 
article describes details of an improved preprocessor 
stage previously outlined by Carpenter, Grossberg, 
and Mehanian (1988). The preprocessor stage carries 
out boundary segmentation, the second step of the 
architecture (Figure lb). 

3. CORT-X FILTER 

We describe a new image preprocessor that detects, 
regularizes, and completes sharp (even one pixel 

wide) image boundaries in up to 50% noise, while 
simultaneously suppressing the noise. This pre- 
processor is a modified version of the Boundary 
Contour System (BCS) of Grossberg and Mingolla 
(1985). In the Grossberg-Mingolla BCS, nonlinear 
feedback loops are used to generate sharp and co- 
herent boundaries, so that boundaries may be com- 
pleted over regions containing no image contrast; for 
example, where an image figure is partially occluded 
by another object. The present filter uses only feed- 
forward operations that are much simpler to fabricate 
in a real-time analog chip. The filter has a more 
limited capacity for boundary completion, but one 
that is adequate for many practical applications. In 
addition, the present filter employs novel multiple 
scale interactions to achieve its competence. 

This filter is called a CORT-X Filter, both because 
it is motivated by a neurobiological analysis of visual 
cortex, and because it uses the operations of Con- 
trast-Orientation-Ratio-Threshold-maXimum in an 
appropriate combination. 

4. O R I E N T E D  C O N T R A S T  DETECTOR:  
SIMPLE CELLS 

The network operations in the CORT-X Filter par- 
allel those in the Grossberg-Mingolla BCS. The 
model's first stage is an oriented contrast detector 
that is sensitive to the orientation, amount, direction, 
and spatial scale of image contrast at a given image 
location. This type of detector may be compared to 
simple cells in the primate visual cortex. It is modeled 
herein in the simplest possible way (Figure 2a). 

The output of a model simple cell is defined by 

max[Ls(x, k) - e~Rs(x, k) - ~ ,  0], (1) 

where x is the position of the receptive field center; 
k is the receptive field orientation, here chosen to 
be 0 °, 45 °, 90 °, 135°; s indexes the size of the recep- 
tive fields, here chosen in two sizes; as is a contrast 
parameter such that 1 < e~; 13~. is a threshold param- 
eter such that 0 < 13s < 1; L,(x, k) is the total ac- 
tivation of the left half of the receptive field; and 
R~(x, k) is the total activation of the right half of the 
receptive field. In order to write the network in di- 
mensionless form, we define 

l( y) dy 
eft half 

L~(x, k) = (2) 

fleft half dy 

and 

fr I (y)  dy ight half 
Rs(x, k) = , (3) 

fright half dy 
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( a )  SIMPLE CELL: Sensitive to direction of contrast. 

output = max [Ls(x ,k )  - asRs(x,k)  - /~ . ,0 ]  

~l(y)dy 
L . ( x , k )  = ,e. f dy 

x = position of receptive field center 
k = orientation of receptive field ( .--~',,,, ~ ~" ) 
a ,  = contrast parameter (1 < o~,) 
/~, = thresholdparameter  (0 </~, < 1) 
I(y) = !mage luminance at position y (0 < I < 1) 
max[.  • o, O] rectif iesoutput 

f I (y)dy 
R . ( x , k ) -  righ, dy 

right 

(b) SIMPLE CELL: 
These cells respond to the following contrast differences: 
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FIGURE 2. Simple cell oriented contrast detector: (a) defining equation; (b) sensitivity to luminance steps, discrete density 
gradients, and continuous density gradients. 

where I(y) is the image luminance at position y, 
scaled so that 0 -< I (y)  -< 1. The function m a x [ . . .  , 
0] in (1) rectifies the output signal. 

In biological analyses of cortical processing, mul- 
tiple preprocessing stages intervene between the im- 
age luminances impinging upon retinal photorecep- 

tors and the cortical simple cells (Hubel & Wiesel, 
1977). Alternative detectors with similar properties 
may also be used, such as a Gabor filter (Daugman, 
1980, 1985; Gabor, 1946; Pollen, Andrews, & Fel- 
don, 1978; Pollen & Ronner, 1975, 1981, 1983). For 
example, in the brightness perception model of 
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VlPLEX CELL: 
;nsitive to direction of contrast. 

Cs(X,k) - -  

ax [Ls(x,k)- asR, (x,k)-  /3~,0] 
+ 

ax [Rs (x ,k )  - asLs (x ,k )  - / 3 ,  ,0] 

FIGURE 3. Complex cell oriented contrast detector. 

Grossberg and Todorovi6 (1988; reprinted in Gross- 
berg, 1988), a shunting on-center off-surround net- 
work preprocesses the image to compensate for vari- 
able illumination sources before the preprocessed 
image activates the simple cell level, and the simple 
cell receptive fields are built up from weighted com- 
binations of oriented difference-of-Gaussian filters. 

The simple cell described here responds to lumi- 
nance steps, dot density differences, gradual changes 
in luminance, and other contrast changes (Figure 2b) 
that are oriented almost parallel to the detector's 
oriented axis. 

5. ORIENTED CONTRAST DETECTOR: 
COMPLEX CELLS 

The next processing step consists of a detector that 
is sensitive to the orientation, amount, and spatial 

scale of contrast at a given image location, but not 
to direction-of-contrast. This type of detector may 
be compared to complex cells in the primate visual 
cortex. 

To generate a complex cell response C~(x, k )  cen- 
tered at position x with orientation k and scale s, the 
activities of a pair of simple cells with the same (x, 
k) coordinates, but opposite direction-of-contrast 
(Figure 3) are rectified and added: 

C~(x, k) = max[L~(x, k )  - ot~Rs(x, k )  - f3~, 0] 

+ max[R~(x, k )  - oLsLs(x, k )  - fJs, 0]. (4) 

Figure 4 is an image of a truck in 25% noise. 
Figures 5a and 5b represent the responses of two 
different sizes of complex cell filters to this image. 
Figure 6 depicts the size of these two filters relative 
to an image feature. We now motivate the use of 
multiple spatial scales in the CORT-X filter. 

• B • 

n I 

FIGURE 4. Truck Image in 25% noise. The receptive field of each simple cell or complex cell is centered at the upper left-hand 
corner of a pixel. 
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(b) 
FIGURE 5. Simulated complex cell responses of (a) smaller scale filter; (b) larger scale filter. At each pJxel, the grey scale 
intensity represents the activity of the maximally activated complex cell centered at the pixers upper left-hand corner. The 
orientation of this cell Is not shown. 

6. TRADE-OFF BETWEEN BOUNDARY 
LOCALIZATION, NOISE SUPPRESSION, 

AND BOUNDARY COMPLETION 

Figure 5 illustrates that the boundaries detected by 
both filters are incomplete. The smaller filter (Figure 
5a) does a better job of boundary localization than 

the larger filter (Figure 5b), especially at positions 
where the boundary has a rapidly changing cur- 
vature. On the other hand, the larger filter does a 
better job of noise suppression and boundary com- 
pletion. 

The better localization by the smaller filter is due 
to the fact that it estimates boundary location based 

MULTIPLE SCALES 
TWO DIFFERENT RECEPTIVE FIELD SIZES: 
Accurate boundary segmentation requires multiple spatial 
scales. 

 m@|E 

C, (x ,k ) C2 (x ,k ) 

s c a l e  1 s c a l e  2 
RGURE 6. Receptive field sizes of two filters relative to pixel size (individual squares) and an illustrative feature. 
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upon more local contrast estimates than the larger 
filter. Although all such oriented filters tend to sup- 
press unoriented, or close to unoriented, spatial dis- 
tributions of noise pixels, the smaller filters may more 
easily be activated by local fluctuations in the spatial 
distribution of noise pixels. A larger oriented filter 
suppresses noise better because it samples the noise 
distribution more completely. On the other hand, 
this very property of broader spatial sampling causes 
poorer boundary localization in regions of high 
boundary curvature. Thus there exists a trade-off 
between boundary localization and noise suppres- 
sion. 

In addition, a larger oriented filter can complete 
a boundary more easily, as a comparison between 
Figures 5b and 5a illustrates. At the same time, this 
type of boundary completion can make serious errors 
in boundary localization in regions of high boundary 
curvature; for example, consider the wheel bound- 
aries in Figure 5b. 

The CORT-X Filter is designed to exploit the good 
noise suppression and boundary completion prop- 
erties of a large oriented filter without losing the 
good positional localization afforded by a small ori- 
ented filter. 

7. FIRST COMPETITIVE STAGE: 
HYPERCOMPLEX CELLS FROM 

SPATIAL COMPETITION 

A large oriented filter can suppress noise far from 
an image boundary. Due to its greater positional 
uncertainty, however, it cannot efficiently suppress 

noise near an image boundary. Thus, neither filter 
size suppresses noise near a boundary. The relatively 
high activity of complex cells at an image boundary 
can be used to suppress the cells near the boundary 
whose lower activity represents noise (Figure 7). The 
mechanism whereby this may be accomplished is a 
variation of the first competitive stage in the Gross- 
berg-Mingolla BCS. The detectors at this first com- 
petitive stage may be compared to the hypercomplex 
cells in the primate visual cortex. 

The first competitive stage is realized by an on- 
center off-surround network (Figure 8a) whereby 
each complex cell activity Cs(x, k) excites that cell 
activity Dr(x, k) at the next network level which 
represents the same position x and orientation k, 
while inhibiting cell activities Ds(y, m) at nearby 
positions y that do not lie on the line through position 
x with orientation k. All orientations m at these po- 
sitions y are equally inhibited. 

The output of the hypercomplex cell at position 
x, orientation k, and scale s is defined by 

Cs(x, k) 
D~(x, k) = 

1 + %E,,~,.C,(y, m)Gs(y,  x, k) " 

(5) 

The oriented competition kernels Gs(y, x, k), de- 
fined in Figure 8b, are 2-dimensional step functions 
normalized so that 

G,(Y, x, k) = 1. (6) 
Y 

Parameters % specify the strength of the competi- 
tion. In Figure 8b, symbol x denotes the pixel at 

NOISE SUPPRESSION NEAR BOUNDARY 
ORIENTED SPATIAL COMPETITION: 
C o m p l e x  cellsC~ (x, k )  output  to an or iented  spat ia l  
competition which inputs to target cells D, (x, k). Target cells: 

at a boundary are activated; 
near a boundary are suppressed; 
far from a boundary may be activated by noise. 

FIGURE 7. Oriented spatial competition inhibits noise pixels near boundary. 
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ORIENTED SPATIAL COMPETITION 
D,(x,k ) 

C,(x,k ) 

COMPETITION KERNELS 
The competition kernels do not inhibit in the direction along 
their orientation, i.e., the shaded pixels are inhibited. 

G,(y ,x , - , )  G,(y ,x ,..,) Gl(y ,x,J. ) G,(y ,x , , / )  

Y Y !Yi 

Y Y Y ~ Y ~ I~ Y:YtYd I~1~1 
y y y x rYi~ ~ x ~ I~ ~ lY:II~Ly;Ix t!~J =J~t 
Y~Y Y Y Y Y Y lY] 

Y Y lY:J lYlYt~;I 

G2(y,x,-~) G2(y,x ,~)  G~(y,x,.~) G~(y,x,,,/) 
FIGURE 8. First competitive stage: (a) network geometry; (b) interaction kernels, 

which the kernel is centered, and y denotes the pixels 
that are inhibited. The kernel shapes are defined by 
drawing a circle of diameter 3 or 6 pixels around the 
kernel center. All pixels which intersect the interior 
of the circle and which are not on the kernel's axis 
of orientation are inhibited (and shown as grey). 

The off-surround interaction in eq (5) is a shunt- 

ing, or divisive, inhibition. The activity Ds(x, k) is 
the ratio in eq (5) and is restricted to the bounded 
interval [0, Cs(x, k)]. 

Figure 9a depicts the hypercomplex activation pat- 
tern Dl(x, k) of the smaller filter; Figure 9b depicts 
the hypercomplex activation pattern D2(x, k) of the 
larger filter. 
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FIGURE 9. Computer simulation of hypercomplex cell response due to oriented spatial competition: (a) smaller filter; (b) larger 
filter, 

8. SELF-SIMILAR COMPETITIVE SCALES 

As illustrated in Figure 8b, the size of the on-center 
off-surround kernels G 1  and G2 was chosen to scale 
with the size of the receptive fields C~ and C2, re- 
spectively. This property of self-similarity generated 
slightly better results than using a single kernel size 
G in both scales. 

The assumption that self-similar scales occur in 
biological vision has proven useful in the analysis by 
Daugman (1985) of image representation by cortical 
simple cells and by Grossberg and Marshall (1989) 
of how cortical simple cells and complex cells help 
to control binocular fusion and rivalry. 

9. SECOND COMPETITIVE STAGE: 
HYPERCOMPLEX CELLS FROM 
ORIENTATIONAL COMPETITION 

The next processing stage is a simplification of the 
second competitive stage in the Grossberg-Mingolla 
BCS. It realizes a competition among the oriented 
activities Ds(x, k) at each position (Figure 10). For 
simplicity, this process is modeled as a winner-take- 
all, or choice, process that selects the maximal ac- 
tivity Ds(x) at each position x. 

Thus, the hypercomplex cell output from the cell 

of position x, orientation k, and scale s at the second 
competitive stage is 

O,(x) = O2(x, K) = max D~(x, k), (7) 
k 

where K denotes the orientation of the maximally 
activated cell. 

10. MULTIPLE SCALE INTERACTION: 
B O U N D A R Y  LOCALIZATION AND 

NOISE SUPPRESSION 

We now combine the responses of both filter sizes 
in a way that selects their desirable properties and 
eliminates their undesirable ones. These properties 
are summarized in Figure 11. When these filters are 
used to activate subsequent processing stages, the 
small scale preserves boundary localization and sup- 
presses noise near the boundary. The large scale sup- 
presses noise away from the boundary and completes 
colinear boundary segments. This interaction is de- 
fined by the equation 

BIz(X) = D,(x) ~ Dz(y)  U(y,  x). (8) 
Y 

The unoriented excitatory kernel U(y, x), defined 
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CONTRAST ENHANCEMENT 
ORIENTATIONAL COMPETITION: 
Competition at each position among the oriented 
hypercomplex cells selects the most strongly activated 
orientation. 

D s ( X , k )  D D ........................... 

Ds (x ) = max Ds (x , k ) 
k 

K 
FIGURE 10. Network geometry of second competitive stage. 

in Figure 12a, is a 2-dimensional step function nor- 
malized so that 

~ ]U(y ,  x) = 1. (9) 
y 

The factor Dl(X) in eq (8) accurately localizes 
boundary segments and suppresses noise near the 
boundary. In other words, D~(x) is generally positive 
on the boundary and zero close to the boundary. The 

BOUNDARY 
LOCALIZATION 

NOISE 
SUPPRESSION 

BOUNDARY 
COMPLETION 

SMALL 
SCALE 

YES 

NO 

NOTAT 
SEGMENTS 

MISSING 
DUE TO NOISE 

LARGE 
SCALE 

NOTAT 
HIGH 

CURVATURE 
BOUNDARIES 

YES 

YES 

SMALL + LARGE 
SCALE 

YES 

YES 

YES 

FIGURE 11. Functional properties of Individual scales and 
their combined action. 

factor D2(y) suppresses noise far from the boundary. 
The product D l(x)D2(y) would simultaneously re- 
alize both constraints, except for one fact: Due to 
its poor spatial localization at boundary segments of 
high curvature, DE(X) may equal zero at such bound- 
ary points x, thereby canceling the good localization 
properties of D~(x) at those boundary segments where 
they are needed most. 

This problem is overcome by making the effect of 
D2(y) on Dl(X) even more spatially diffuse via the 
kernel U(y, x). This simple device works as follows. 
The maximal possible spatial error committed by 
D2(y) in localizing the boundary grows with the size 
of D2(y). Let the size of the kernel U(y, x) scale 
with the size of Dz(y). Then ~,yD2(y)U(y, x) will 
be positive when Dl(x) is positive, even if DE(X) 
equals zero there. Thus, although "iyDE(y)U(y, x) 
localizes the boundary even less accurately than DE(y) 
does, the product Dl(X)~,yDE( y) U(y, x) restores this 
loss of boundary localization. In addition, U(y, x) 
causes no harm at locations y that are far from the 
boundary where DE(y) = 0. 

Figure 12b depicts the activation pattern of B12(x ). 
The Blz(x) pattern provides a significantly less noisy 
representation of the truck boundary than the C~(x) 
pattern in Figure 5a and the D~(x) pattern in Figure 
9a, without a loss of boundary localization. 
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I sr TERM: B O U N D A R Y  LOCALIZATION 
PLUS NOISE S U P P R E S S I O N  

This term uses the small scale (1) to preserve boundary 
detail, while using the large scale (2) to suppress noise away 
from the boundary. 

B,2(x) = D,(x)~y D2(Y) U ( y , x )  

U ( y , x )  = nearest neighbor kernel, 
normalized so that T~ U ( y , x )  -- 1 

Y 

Y Y y  

Y y 

U ( y , x )  

(a) 

P i,~1 

L,,  _r--,:ji:__:, I m % m ~  ~m = 

( b )  

FIGURE 12. Unoriented cooperation B12(x) between both scales: (a) computational properties; (b) computer simulation. 

11. ORIENTED LONG-RANGE 
COOPERATION: BOUNDARY 

COMPLETION 

The boundary representation generated by B12(x) in 
25 % noise captures the entire boundary except that 
a few boundary pixels are missing. Such boundary 
gaps become more and more likely as the noise level 
is increased. An additional processing stage is intro- 
duced to overcome this shortcoming. 

This processing stage for boundary completion is 
a feedforward version of the cooperative-competi- 
tive feedback loop (CC Loop) in the Grossberg-Min- 
golla BCS. In the CC Loop, a long-range oriented 
cooperation initiates the boundary completion pro- 
cess. The cooperative cells are called bipole cells, 
because they are activated only if enough oriented 
activation takes place on both sides, or poles, of the 
cell's receptive field center. 

In the absence of feedback interactions, one ap- 
proach to cooperative boundary completion is to ex- 
ploit the spatial uncertainty of the larger detectors 
D2(x ). Because of this spatial uncertainty, these de- 
tectors are capable of responding at boundary po- 
sitions x whose pixels have been deleted by noise. 
This boundary may, however, be poorly localized. 
Thus there exists a trade-off between the properties 
of boundary completion and of boundary localiza- 
tion. 

A feedforward operation that overcomes this 
problem is defined by the equation 

Bz(x) = D2(x) 

x m a x [ ~ D 2 ( y , K ) O ( y , x , K ) - 6 , 0 ] .  (10) 

The oriented cooperation kernel O(y,  x, k), defined 
in Figure 13a, is a 2-dimensional step function nor- 
malized so that 

O(y, x, k) = 1; (11) 
v 

5 is a cooperation threshold; and K is the orientation 
corresponding to the maximal activity D2(x, K) de- 
fined in eq (7). 

Function Bz(x) in eq (10) depends only upon re- 
sponses of the larger detectors D2(x). Taken indi- 
vidually, these detectors would provide poorly lo- 
calized responses along boundary segments of high 
curvature. Due to the oriented cooperation defined 
in eq (10), however, a detector D2(x) can activate 
B2(x) only if it receives cooperative support from 
colinear detectors D2(y) with the same orientational 
preference. Consequently, the detector B2(x) is ac- 
tivated only along those accurately localized bound- 
ary segments that provide enough cooperative sup- 
port, as illustrated in Figure 13b. 
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COOPERATION KERNELS 
Sufficient colinear activity of cells D2(x , k) along a particular 
orientation will complete gaps in B12(x ) along that direction. 

y y~xyy y % Y 
Y 
cY 
Y 
Y 

O(y,x,-,) O(y,x,~,) O(y,x,J.) O(y,x,~') 

O) 

I I 
i I 

I I T- I  , 

FIGURE 13. Oriented cooperation B2(x) within larger scala: (a) cooperation kernels; (b) computer simulation. 

12. THE CORT-X FILTER 

The output of the CORT-X Filter is the rectified sum 
of B12(X ) and B2(x), namely 

B(x) = l[B]2(x) + B2(x)] (12) 

where l(w) is the Heaviside function 

{~ if w > 0 
l(w) = i fw = 0" (13) 

Figure 14 shows how the responses of B12(x) in Fig- 
ure 12b and B2(x) in Figure 13b combine to generate 
the boundary representation, B(x), of the image in 
Figure 4 that was corrupted by 25% noise. 

Figures 15-17 summarize the CORT-X Filter 
boundary representations of four different trucks in 
0%, 20%, and 40% noise that have been translated, 
rotated, and contracted. The parameters used in all 

simulations are listed in Table 1. Boundary recon- 
struction begins to fail at around 50% noise due to 
the fact that increasingly large segments of the 
boundary may be corrupted as the noise level be- 
comes increasingly large. At these very high noise 
levels the vigilance parameter of the ART 2 archi- 

L ~ , m  

r " ( j r j  

FIGURE 14. Computer simulation of CORT-X filter output B(x). 

FIGURE 15. Computer simulation of CORT-X filter output of 
four trucks In 0% noise that have been translated, rotated, 
and contracted. 
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FIGURE 16. Same as Figure 15 in 2 0 %  noise. 

tecture (Carpenter & Grossberg, 1987b) may be set, 
if desired, to accept a degree of image deformation 
that includes the expected degree of boundary dis- 
tortion after CORT-X Filter processing. 

13. CONCLUDING REMARKS 

Subsequent articles in this series will demonstrate 
how CORT-X filtered images may be used to self- 
organize invariant recognition categories using vari- 
ants of the system architecture that is outlined in 

, , ~  ., - - ~  

. ~ '~] ~ ./~-J , ~ - - , J  

J~"-J' <'<'-J I '  i ,- 

, ~  ~- I i I "  , ~  
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F IGURE 17. Same as Figure 15 In 4 0 %  noise. 

G. A. Carpenter, S. Grossberg, and C. Mehanian 

TABLE 1 
Parameters Used In All Simulat ions 

a~ = 1 .4  

a2 = 2 .0  
13, = 132 = 0 .3  
"Yl = "/2 = 0 .3  

~5 = 0 . 0 1 2  

Figure 1. CORT-X filtering may also be useful as a 
preprocessor for other adaptive pattern recognition 
schemes. 

The CORT-X filter is also of interest in its own 
right as a feedforward multiscale version of the 
Grossberg-Mingolla Boundary Contour System. 
From this perspective, the CORT-X filter clarifies 
how boundary contour operations may be used to 
resolve the fundamental design trade-off that exists 
between boundary localization, boundary comple- 
tion, and noise suppression. 
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