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Abstract

Distributed coding at the hidden layer of a multi–layer
perceptron (MLP) endows the network with memory
compression and noise tolerance capabilities. However,
an MLP typically requires slow off–line learning to
avoid catastrophic forgetting in an open input
environment. An adaptive resonance theory (ART) model
is designed to guarantee stable memories even with fast
on–line learning. However, ART stability typically
requires winner–take–all coding, which may cause
category proliferation in a noisy input environment.
Distributed ARTMAP (dARTMAP) seeks to combine the
computational advantages of MLP and ART systems in a
real–time neural network for supervised learning. This
system incorporates elements of the unsupervised dART
model as well as new features, including a content–
addressable memory (CAM) rule. Simulations show that
dARTMAP retains fuzzy ARTMAP accuracy while
significantly improving memory compression. The
model’s computational learning rules correspond to
paradoxical cortical data.

Distributed Coding By Adaptive Resonance
Systems

Adaptive resonance theory (ART) began with an analysis
of human cognitive information processing [19].
Fundamental computational design goals have always
included memory stability with fast or slow learning in an
open and evolving input environment. As a real–time
model of dynamic processes, an ART network is
characterized by a system of ordinary differential
equations, which are approximated by an algorithm for
implementation purposes. In a general ART system, an
input is presumed to generate a characteristic pattern of
activation, or spatial code, that may be distributed across
many nodes in a field representing a brain region such as
the inferior temporal cortex (e.g., Miller, Li, and
Desimone [23]).

While ART code representations may be distributed in
theory, in practice nearly all ART networks feature
winner–take–all (WTA) coding. These systems include
ART 1 [5] and fuzzy ART [8], for unsupervised learning,
and ARTMAP [7] and fuzzy ARTMAP [6], for
supervised learning. The coding field of a supervised
system is analogous to the hidden layer of a multi–layer
perceptron (MLP) [25, 26, 27, 28], where distributed
activation helps the network achieve memory
compression and generalization. However, an MLP
employs slow learning, which limits adaptation for each
input and so requires multiple presentations of the
training set. With fast learning, where dynamic variables
are allowed to converge to asymptote on each input
presentation, MLP memories suffer catastrophic
forgetting. However, features of a fast–learn system, such
as its ability to encode significant rare cases and to learn
quickly in the field, may be essential for a given
application domain. Additional ART capabilities,
including stable coding and scaling to accommodate
large databases, are also essential for many applications,
such as the Boeing parts design retrieval system [12].

An overall aim of the distributed ART (dART) research
program is to combine the computational advantages of
ART and MLP systems. Desirable properties include
code stability when learning is fast and on–line, memory
compression when inputs are noisy and unconstrained,
and real–time system dynamics. Global system design
goals, such as stable fast learning, led to the introduction
of novel rules for learning and synaptic transmission.
These rules, in turn, exhibit dynamics which appear
paradoxical at the synaptic level but which are seen to
support stable coding at the network level. Markram and
Tsodyks [21] have recently discovered similar
paradoxical dynamics in cortical neurons.

Distributed Learning

A key step in the derivation of the first family of dART
models [3, 4] was the specification of dynamic learning
laws for stable distributed coding. These laws generalize
the instar [17] and outstar [15, 16] laws used, for



example, in fuzzy ART. Instar and outstar learning
features a gating operation that permits weight change
only when a coding node is active. This property is
critical to ART stability. With a distributed code and fast
learning, however, instar and outstar dynamics cause
catastrophic forgetting. A system such as Gaussian
ARTMAP [29] includes many features of a distributed
coding network, but retains the instar and outstar learning
laws of earlier ART and ARTMAP models. The weight
update rules in a Gaussian ARTMAP algorithm therefore
approximate a real–time system only in the slow–learn
limit. Other ARTMAP variations, such as ART–EMAP
[11] and ARTMAP–IC [9] acquire some of the
advantages of distributed coding but sidestep the learning
problem by permitting distributed activation during
testing only.

The distributed instar [4] and distributed outstar [2] laws
used in dART dynamically apportion learned changes
according to the degree of activation of each coding
node, with fast as well as slow learning. The update rules
in a dARTMAP implementation algorithm represent
exact, closed form solutions of the model differential
equations. These solutions are valid across all time
scales, with fast or slow learning. When coding is WTA,
the distributed learning laws reduce to instar and outstar
equations, and dART reduces to fuzzy ART. Similarly,
with coding that is WTA during training but distributed
during testing, the dARTMAP algorithm reduces to
ARTMAP–IC, and further reduces to fuzzy ARTMAP
with coding that is WTA during both testing and training.

dARTMAP Design Choices

An ART module is embedded as the primary component
of ARTMAP, and similarly an unsupervised dART
module is embedded in a supervised dARTMAP
network. In applications, ARTMAP requires few design
choices:  the number of coding nodes is determined by
on–line performance, and the default network parameters
work well in most settings. In contrast, a general
dARTMAP system presents the user with a far greater
array of choices, due to the new degrees of freedom
afforded by distributed code possibilities. In practice, a
number of the “obvious” design choices have failed to
produce good performance in simulation studies.

A family of dARTMAP networks that have performed
well in pilot studies has been developed as a set of
algorithms for implementation [10]. In particular,
dARTMAP retains fuzzy ARTMAP test set accuracy
while significantly reducing network size. The
dARTMAP algorithm is designed both to expedite ready
implementation and to foster the development of
alternative designs adapted to the demands of new
applications.

dARTMAP Algorithm

A number of computational devices that were not part of
the more general distributed ART theory were found to
be useful in dARTMAP simulations. These include a new
rule characterizing the content–addressable memory
stored at the coding field in response to a given input, an
internal control device that causes the system to alternate
between distributed and winner–take–all coding modes,
and credit assignment and instance counting.

A geometric representation aids the visualization of
distributed ARTMAP computational dynamics. Since the
algorithm reduces to fuzzy ARTMAP when coding is
winner–take–all, the geometric characterization of
dARTMAP builds upon the geometry of fuzzy
ARTMAP, which represents weight vectors as category
boxes in input space. The relationship between these
boxes and a system input determines the order in which
categories are searched, and box expansion represents
weight changes during winner–take–all learning.

Distributed ARTMAP replaces the long–term memory
weights of fuzzy ARTMAP with dynamic weights, which
depend on short–term memory coding node activations as
well as long–term memory. The corresponding geometric
representation replaces each fuzzy ARTMAP category
box with a nested family of boxes, one for each coding
node activation value. Some or all of these coding boxes
may expand during dARTMAP learning, but the
geometry shows how the system preserves dynamic range
with fast as well as slow learning. The rule in the
dARTMAP algorithm that characterizes the signal
transmitted to the coding field in response to a given
input admits a geometric interpretation, as does the rule
characterizing the response of the content–addressable
memory to the incoming signal.

A series of simulations indicate how the dARTMAP
algorithm works [10]. Distributed prediction in the basic
algorithm reduces network size, but this system uses only
binary connections from the coding field to the output
field. Performance can be improved by augmenting the
trained dARTMAP system with a linear output map such
as Adaline. Other simulations analyze the role of
dARTMAP learning that takes place in the distributed
mode, as opposed to the winner–take–all mode. By
varying the degree of pattern contrast in the content–
addressable memory system, dARTMAP performance
can be improved, without increasing network size.
Possible dARTMAP variations point to directions for
future research.



CAM Rules, Coding Modes, and
Credit Assignment

The unsupervised distributed ART network [3,4] features
a number of innovations that differentiate it from
previous ART networks, including a new architecture
configuration and distributed instar and outstar learning
laws. In order to stabilize fast learning with distributed
codes, dART represents the unit of long–term memory
(LTM) as a subtractive threshold rather than a traditional
multiplicative weight. Despite their different
architectures, a dART algorithm reduces to fuzzy ART
when coding is winner–take–all. While a dART module
is the basic component of a supervised dARTMAP
system, the algorithm also employs additional devices not
included in the previous distributed ART description.
These features, including a new rule defining coding field
activation, alternation between WTA and distributed
coding modes, and credit assignment, will now be
described.

Increased Gradient CAM Rule

A neural network field of strongly competitive nodes can,
once activated by an initial input, maintain a short–term
memory (STM) activation pattern even after the input is
removed. A new input then requires some active reset
process before it can instate a different code, or content–
addressable memory (CAM). A CAM rule specifies a
function that characterizes the steady–state STM
response to a given vector of inputs converging upon a
field of neurons.

Traditional CAM rules include McCulloch–Pitts
activation, which makes STM proportional to input [22];
a power rule, which makes STM proportional to input
raised to a power p; and a WTA rule, which concentrates
all activation at the node receiving the largest net input.
Other CAM rules include Gaussian activation functions,
as used, for example, in radial basis function networks
[24]. A power rule reduces to a McCulloch–Pitts rule
when p=1 and converges to a WTA rule as p→∞.
Moving p from 0 toward infinity produces a stored STM
pattern that is a progressively contrast–enhanced
transformation of the input vector. In many examples,
however, a power rule is problematic because differences
among input components are small. A CAM system may
then require unreasonably large powers p to produce
significant differences among STM activations.

The CAM rule used in the dARTMAP algorithm is
designed to enhance input differences as represented in

the distributed internal code without raising input
components to high powers. It is therefore called the
increased gradient CAM rule. Beyond its role in the
present system, this rule is useful for defining the steady–
state activation function in other neural networks. The
increased gradient rule includes a power p for contrast
control. The role of p is analogous to the role of variance
in Gaussian activation functions [20, 24]. A geometric
representation of dARTMAP provides a natural
interpretation of the increased gradient CAM rule.

Distributed and Winner–take–all
Coding Modes

The increased gradient CAM rule solves a pattern
separation problem that often arises in neural systems,
where each element has a limited dynamic range. A
second common problem is how to choose the size of a
neural network. In a multi–layer perceptron, for example,
deciding on the number of hidden units is a critical
design choice. With WTA coding, ARTMAP determines
network size by adding category nodes incrementally, to
meet the demands of on–line predictive accuracy. Some
types of MLP networks have also been designed to add
hidden units incrementally. A cascade correlation
architecture, for example, creates a hierarchy of single–
unit hidden layers until the error criterion is met [14], but
weights in all lower layers are frozen during learning
associated with the top layer.

With distributed coding, a dARTMAP network could, in
principle, operate with a field of coding nodes that are
fixed a priori. In practice, this type of network did not
produce satisfactory results in simulation studies, where
fast learning tended to make the learned representations
too uniform. To solve this problem, the dARTMAP
algorithm alternates between distributed and winner–
take–all coding modes, as follows.

Each dARTMAP input first activates a distributed code.
If this code produces a correct prediction, learning
proceeds in the distributed coding mode. If the prediction
is incorrect, the network resets the active code via
ARTMAP match tracking feedback [7]. In ARTMAP
networks, the reset process triggers a search for a
category node that can successfully code the current
input. In dARTMAP, reset also places the system in a
WTA coding mode for the duration of the search. The
switch from a distributed mode to a WTA mode could be
implemented in a competitive network by means of a
nonspecific signal that increases the strength of intrafield
inhibition [13, 18]. Such an arousal signal might be
interpreted as an increase in overall attentiveness in
response to an error signal or alarm, the computational
result being a sharpened focus on the most salient input
features.



In WTA mode, dARTMAP can, like ARTMAP, add
nodes incrementally as needed. When a coding node is
added to the network, it becomes permanently associated
with the output class that is active at the time. From then
on, the network predicts this class whenever the same
coding node is chosen in WTA mode. In distributed
mode, STM activations across all nodes that project to a
given output class provide evidence in favor of that
outcome. Despite its computational advantages, the
winner–take–all possibility implies that dARTMAP
coding is not fully distributed all the time, indicating one
possible direction for future system modifications.

Credit Assignment, Instance Counting, and
Match Tracking

When a dARTMAP network makes a distributed
prediction, some of the active coding nodes may be
linked to an incorrect outcome. In a real–time network, a
feedback loop for credit assignment would suppress
activation in these nodes during training. Credit
assignment allows learning to enhance only those
portions of an active code that are associated with the
correct outcome. This procedure is similar to credit
assignment algorithms widely used in other neural
networks (e.g., [29]) and genetic algorithms (e.g., [1]).

The current simulations were also found to benefit from
design features used in the ARTMAP–IC network. These
include instance counting of category exemplars and the
MT– match tracking search rule. Instance counting biases
output predictions according to previous coding node
activations summed over training set inputs. The MT–
search rule generally improves memory compression
compared to the original ARTMAP match tracking
algorithm (MT+). It also permits a system to encode
inconsistent cases, where two identical training set inputs
are associated with different outcomes. Inconsistent cases
are common in medical databases, for example.

Aspects of the dARTMAP algorithm such as the
increased gradient CAM rule, the combination of WTA
with distributed coding during training, credit
assignment, and instance counting are not necessarily
fundamental principles intrinsic to the class of all
dARTMAP networks. Rather, they are developed for the
pragmatic purpose of defining one set of dARTMAP
systems with the desired computational properties.
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