
CAS/CNS TR-2002-011 Parsons & Carpenter 1

ARTMAP neural networks for information fusion and data mining:
Map production and target recognition methodologies

Olga Parsons and Gail A. Carpenter

Department of Cognitive and Neural Systems
Boston University

Boston, Massachusetts 02215

oparsons@bu.edu, gail@bu.edu

Neural Networks, in press
Submitted: September, 2002

Revised: December, 2002

Technical Report CAS/CNS TR-2002-011
Boston, MA: Boston University

Running title: Map production methodologies

Acknowledgements: This research was supported by grants from the Air Force Office of
Scientific Research (AFOSR F49620-01-1-0397 and AFOSR F49620-01-1-0423) and the Office
of Naval Research (ONR N00014-01-1-0624).

Address correspondence to: Professor Gail A. Carpenter, Department of Cognitive and Neural
Systems, 677 Beacon Street, Boston University, Boston, MA 02215. gail@bu.edu

CAS/CNS TR-2002-011 Parsons & Carpenter 2

ARTMAP neural networks for information fusion and data mining:
Map production and target recognition methodologies

Abstract
The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the
ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data
mining of registered geospatial images. The Lincoln Lab system has been successfully fielded,
but is limited to target / non-target identifications and does not produce whole maps. Procedures
defined here extend these capabilities by means of a mapping method that learns to identify and
distribute arbitrarily many target classes. This new spatial data mining system is designed
particularly to cope with the highly skewed class distributions of typical mapping problems.
Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of
candidate recognition networks as well as pre- and post-processing and feature selection options.
The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In
particular, training pixels are drawn from a region that is spatially distinct from the mapped
region, which could feature an output class mix that is substantially different from that of the
training set. The system recognition component, default ARTMAP, with its fully specified set of
canonical parameter values, has become the a priori system of choice among this family of
neural networks for a wide variety of applications.

Keywords: ARTMAP; Adaptive Resonance Theory (ART); Information fusion; Data mining;
Remote sensing; Mapping; Image analysis; Pattern recognition

1. Introduction
Neural network models for vision, learning, and recognition form the foundation of a system for
multisensor image fusion and data mining developed by Allen Waxman and colleagues, first in
the Sensor Exploitation Group at MIT Lincoln Laboratory (Ross et al., 2000; Streilein et al.,
2000; Waxman et al., 2001) and recently in the Boston University CNS Technology Lab
(Waxman et al., 2002). While the primary domain of the Lincoln Lab (LL) system is geospatial
image analysis, it has also been tested for other spatially defined applications, including medical
imaging (Aguilar & Garrett, 2001).

Fuzzy ARTMAP was chosen to perform category recognition and output class prediction in the
LL fusion system because of its computational capabilities for incremental training, fast stable
learning, and visualization. ARTMAP networks learn to predict specified output classes from
critical patterns of input features, with the system creating as many of these internally defined
categories as needed to meet accuracy criteria. The interpretability of the learned category
structure with respect to input features suggests straightforward feature selection methods, which
are often important for efficient on-line image processing and search of large images.

Despite extensive development of other functions, the LL system still relies on the originally
implemented simplified ARTMAP algorithm (Kasuba, 1993). Meanwhile, new ARTMAP
systems that have been developed over the past decade include ART-EMAP (Carpenter & Ross,
1995), ARTMAP-IC (Carpenter & Markuzon, 1998), and distributed ARTMAP (Carpenter,

CAS/CNS TR-2002-011 Parsons & Carpenter 3

Milenova, & Noeske, 1998). Network capabilities and design options have been tested, and
system performance has been compared with that of other neural and statistical algorithms, on
many application domains, including remote sensing, data mining, and visualization (e.g.,
Carpenter et al., 1997, 1999; Gopal, Liu, & Woodcock, 2000; Gopal, Woodcock, & Strahler,
1999).

The studies described in this paper have examined the performance of several ARTMAP
networks in the context of the LL image mining system. To test candidate general-purpose
algorithms, a challenge problem was constructed that specifies eight target classes and identifies
a corresponding ground truth data set for an image on which the LL system had previously been
demonstrated (Streilein et al., 2000). A systematic mapping methodology, alternative labeling
protocols, post-classification adjustment techniques, and feature selection were also defined and
tested. This standardized procedure assumes that training pixels come from an area that is
spatially separate from the test region to be mapped, and that the training and testing regions
typically contain different output class distributions. These methods extend the capabilities of the
LL system, which is designed for one-class (target / non-target) labeling, to allow on-line
learning of an arbitrary number of target classes and to produce whole maps.

This investigation has identified a system, called default ARTMAP, that has produced accurate
results on difficult recognition tasks while featuring comparative simplicity of design and robust
performance in many application domains. An important aspect of this algorithm is its
continuous-valued distributed predictions across target classes. Labels are chosen based on the
sum of these distributions across a set of network voters, which learn with different orderings of
a shared training set. ARTMAP variants with winner-take-all coding and discrete target class
predictions, including the one implemented in the LL system, showed consistent deficits in
labeling accuracy and post-classification map adjustment capabilities. The default ARTMAP
algorithm and parameter values specified here define a ready-to-use general-purpose system for
supervised learning and recognition.

The paper is organized as follows. Section!2 introduces a prototype map containing three target
classes, defines a protocol for systematic assessment of map creation methods, and defines the
default ARTMAP algorithm. Section!3 illustrates alternative mapping methods on the prototype
example. Section!4 describes the Monterey benchmark image to be used for evaluation of
mapping methods, and demonstrates default ARTMAP performance and post-classification
adjustment capabilities on this example. Section!5 evaluates the performance of a nested family
of ARTMAP networks on the Monterey benchmark problem, Section!6 shows an eight-class map
produced from the image, and Section 7 describes how feature selection can reduce the number
of input components without loss of accuracy. Sections 8-11 specify algorithms for map
production and classifier evaluation methodologies, default ARTMAP training and testing, and
input feature selection.

2. Map production methodology
A 1.5 million pixel image of the Monterey Naval Postgraduate School (Figure!1a) provided
inputs to the benchmark testbed for classifier comparisons. In order to maintain a valid
comparison of candidate recognition networks within the context of the LL spatial data mining
system, this analysis uses the same feature vectors (produced by Mario Aguilar) as were used in
previously published demonstrations of the Monterey image (Ross et al., 2000; Streilein et al.,
2000; Waxman et al., 2001,2002). Specifically, the LL system describes each pixel as a 20-
dimensional feature vector: contrast-enhanced values (G,R,NIR,B) of the four original color

CAS/CNS TR-2002-011 Parsons & Carpenter 4

bands (green, red, near infrared, blue); eight single-opponent (G/R, R/G, NIR/B, B/NIR, G/NIR,
G/B, R/NIR, R/B) and four double-opponent (G/R, R/G, NIR/B, B/NIR) measures of local color
contrasts; three selected linear combinations of the four contrast-enhanced bands (G+R, NIR+B,
G+R+NIR+B); and one height measure, obtained from low-level Digital Terrain Elevation Data.
The contrast-enhanced color bands were computed by shunting center-surround processing
(Grossberg, 1973) within each color layer. Measures of single- and double-opponent processing
in the visual system (Lennie, 2000) were also modeled by center-surround networks, with
contrast enhancement between bands (e.g., R center, G surround). In the LL system, surrounds
are represented by a 7x7 matrix of pixels, and centers by the pixel at the center of this matrix.

Figure!1 (a) Monterey image (b) Prototype image

To construct a benchmark problem on which to test performance of supervised learning systems,
eight target output classes (red cars, non-red cars, roofs, roads, foot paths, grass, trees, other)
were specified, and ground truth pixel sets located, by observation of the Monterey image
(Section 4). In order first to illustrate map production methodologies, a simplified testbed, called
the prototype image (Figure!1b), with three target classes and 160,000 pixels, is first defined
(Section!2.1). Section!2.2 outlines a cross-validation protocol for training, validation, and testing;
and Section!2.3 characterizes the default ARTMAP system, which is used for classification on
this example. Default ARTMAP will later be compared with other ARTMAP variations on the
Monterey mapping task (Section 5). Section 2.4 describes how continuous-valued outputs are
summed across voting networks to produce class predictions.

2.1. Defining the prototype map
The prototype map was constructed using three of the Monterey class labels: trees, roads, and
cars (non-red). Each pixel was assigned a 20-component feature vector corresponding to a pixel
from the same class in the Monterey image. A majority of feature vectors assigned to contiguous
pixels from a given class were drawn from contiguous pixels in the original image, although this
approximate topography could not be fully preserved throughout the prototype map, especially
for small objects (cars). Note that the prototype testbed retains a challenging feature found in
many mapping problems, namely, an unbalanced distribution of target classes, with fewer than
1% of the pixels labeled car (Table!1).

Table!1 Prototype image pixel distribution

2.2. Map production and classifier evaluation protocols
A cross-validation procedure was defined for systematic assessment of map creation methods,
candidate classifiers, post-processing techniques, and input feature selection. Each image was
divided into four vertical strips. Training set pixels were drawn from two strips; a third strip
provided a validation set for methods that required parameter selection; and pixels from the
remaining strip were used for testing. As is typical for cross validation, training, validation, and
testing sets are disjoint. In addition, the mapping protocol imposes a stricter standard, with
pixels from the three sets drawn from spatially distinct regions. The procedure thus emulates the
task of map production by a system trained and tested in geographically separate locations.

Figure!2 Prototype image cross-validation strips

CAS/CNS TR-2002-011 Parsons & Carpenter 5

Vertical strips in the prototype map measure

†

100 ¥ 400 pixels (Figure!2). Table!1 shows the
pixel distribution in each strip across the three target classes. One hundred pixels from each class
were selected at random from each strip. This fixed set of designated pixels (0.75% of each strip)
produced the training, validation, and testing sets for all prototype simulations.

2.3. The default ARTMAP classifier
The classifier used for the prototype example is a version of the ART-EMAP network (Carpenter
& Ross, 1995). This system, specified as an algorithm in Sections 9 and 10, codes the current
input as a winner-take-all activation pattern during training and as a distributed activation pattern
during testing. For distributed coding, the transformation of the filtered bottom-up input to an
activation pattern across a field of nodes is defined by the increased-gradient CAM rule
(Carpenter, Milenova, & Noeske, 1998). The network also implements the MT– search algorithm
(Carpenter & Markuzon, 1998), with the baseline vigilance parameter set equal to zero, for
maximal code compression. Other ARTMAP design choices for default ARTMAP include fast
learning, whereby weights converge to asymptote on each learning trial; single-epoch training,
which emulates on-line learning; and a choice-by-difference signal function (Carpenter & Gjaja,
1994) from the input field to the coding field.

When a supervised learning problem has more than two output classes, a single system may be
trained to predict all the classes at once. Alternatively, multiple systems, one for each output
class, can each be trained to make a target / non-target decision. In the latter case, test set
predictions pool output activations of all trained networks. Results for the prototype map
reported here are obtained from a single network trained on three output classes. For the
Monterey benchmark problem, results of training on both eight-class networks and groups of
eight target / non-target networks are compared. When, as is generally the case for the mapping
problems considered here, the two training strategies produce similar results, the single-network
strategy has the advantage of simplicity.

2.4. Distributed voting
ARTMAP’s capacity for fast learning implies that the system can incorporate information from
examples that are important but infrequent and can be trained incrementally. Fast learning also
causes each network’s memory to vary with the order of input presentation during training.
Voting across several networks trained with different orderings of a given input set takes
advantage of this feature, typically improving performance and reducing variability as well as
providing a measure of confidence in each prediction (Carpenter et al., 1992). While the number
of voting systems is, in general, a free parameter, five voters have proven to be sufficient for
many applications. This a priori choice of five voting systems (for each training set
combination) was used in all studies described here.

Even with the number of voters fixed, other design choices appear in systems where output
activations may be distributed. In particular, default ARTMAP, which produces a continuous-
valued distribution

†

sk across target classes k for each test set item, presents options for
combining weighted predictions across voters to make a final class choice. One strategy sums the

†

sk values of individual networks to produce a net distributed output pattern, which is then used
to determine the predicted class. An alternative strategy first lets each voting network choose its
own winning output class, then assigns the test set inputs on the basis of these individual votes.

CAS/CNS TR-2002-011 Parsons & Carpenter 6

In most applications, the first of these two voting strategies produces better results. This was also
found to be the case in pilot studies for the current mapping problem, with the second strategy
showing poorer performance on under-represented classes. Thus in all simulations reported here
target class decisions are based on the distributed output sum of all voting networks. In fact, the
continuous nature of distributed output class predictions will prove to be an essential
characteristic of the default ARTMAP system.

3. Assigning target class labels
Assume now that voting networks have been trained on different orderings of a given set of
labeled pixels drawn from two vertical strips in an image, and that the output patterns

†

sk have
been summed across voters for each pixel to be labeled. This section!examines methods for using
the summed output activation patterns to produce a map by assigning class labels to each pixel in
the image.

3.1. Three methods for choosing target class labels
A natural method for producing a class label for an input pixel takes the predicted class to be the
one with the largest summed output. However, this method may produce target class
representations in the resulting map that are far from their true proportions. A second class label
selection method imposes a prior class distribution estimate, when this information is available.
A third method uses a validation procedure to bias labeling decisions. Note that, for each test set
input, all three methods operate on the same output class distribution pattern, which is equal to
the summed predictions of the previously trained voting networks.

We now consider the performance of these three class label assignment procedures on the
prototype mapping problem. For each, the training set consists of 200 pixels per class, from two
strips. Reported results (hit and false alarm rates) are averages across the six possible
combinations of two strips that provide training set pixels for each simulation.

In addition to using quantitative measures such as test-set accuracy, maps can be evaluated
qualitatively, in terms of appearance and utility. For this purpose, images of whole labeled
prototype maps are produced by training on the designated pixels subsets from strips!1, 2, and 4.

3.1.1. Baseline method
The baseline method labels each pixel as belonging to the output class k with the largest sum of
predictions

†

sk . This method uses neither prior class distribution estimates nor parameter
selection by validation. Table 2a shows hit and false alarm rates produced by the baseline
method on test set strips of the prototype image, averaged across the six training strip
combinations. These results indicate that the straightforward baseline method for target class
labeling produces reasonable hit and false alarm rates on test set pixels. The statistics are
misleading, however, as is often the case for classification problems with highly skewed class
label distributions. In fact, the baseline method labels 4.9% of test strip pixels as cars, which is
more than six times the fraction of actual car pixels (0.75%) in the true image (Table!1).
Overproduction of labeled car pixels is clearly visible in the baseline map (Figure 3a, upper
row), even without knowledge of their true proportion.

Table!2 Prototype map classes from (a) baseline, (b) prior probabilities, and (c) validation
methods

CAS/CNS TR-2002-011 Parsons & Carpenter 7

Figure!3 Prototype map class labels

A confusion matrix (Table 3) for one typical combination (training on strips 1 and 4, testing on
strip 3) provides additional details about the pattern of class labeling errors. Rows in Table 3a
show the output class predictions for the 100 test set pixels that actually belong to each class.
Diagonal terms, equal to the numbers of correctly labeled pixels, show that the class-specific (98
/ 84 / 95%) and overall (92.3%) accuracy rates on this strip are close to the corresponding
average rates (98.3 / 84.0 / 95.0% and 92.4%) in the first row of Table 2a. Similarly, off-diagonal
terms in the confusion matrix generate false alarm rates. For example, the third column shows
that 18 of the 200 non-car pixels in the test strip are incorrectly labeled car, producing a false
alarm rate of 9% for this class. The false alarm rates for this combination (1 / 1.5 / 9%) are again
close to the corresponding average rates (1.3 / 1.3 / 8.8%) from the six training strip
combinations.

Table!3 Baseline method confusion matrix

Although entries in the

†

3¥ 3 confusion matrix show cross-class error patterns only on the 300
test set pixels in strip 3, this information can be combined with knowledge of actual class
distributions to estimate the fractions of each output class that this trained system would produce
on all 40,000 pixels in the strip. Namely, multiplying the row vector of a priori class
distributions (78.47 / 21.11 / 0.42%) for strip 3 (Table 1) by the confusion matrix produces an
estimate of this strip’s predicted whole-map class distribution pattern (76.4 / 17.7 / 5.9%), which
is close to the average class distribution pattern (77.6 / 17.6 / 4.9%) predicted by the baseline
method, as shown in the last row of Table 2a.

3.1.2. Prior probabilities method
Where a known or estimated distribution of target classes in the whole map is available, a prior
probabilities method may be used to bias class label assignments to match the specified output
class distribution. At each step in this map labeling process, a target class is selected at random
according to the a priori distribution. The still-unlabeled pixel with maximum activation for the
selected class is assigned that class label. Compared to the baseline method, labeling with prior
probabilities misses more true car pixels in the prototype map, reducing the hit rate to 75.0%
(Table!2b). However, the represented proportion (0.76%) of the class cars is now correct. The
improved appearance of the whole map, visible in Figure!3b, must be attributed in part to the fact
that this method supplies more information to the classifier, in the form of the true class
distribution.

Even when it is not possible to estimate in advance an approximate target class distribution, a
user can still make use of the prior probabilities method to improve the appearance of a labeled
map. Suppose, for example, that a map produced by the baseline method appears, upon visual
inspection, to have too many car pixels. The user can then adjust the pixel distribution initially
produced by that method (as in Table!2a) to specify a new distribution for the prior probabilities
method, and can continue to balance a priori target classes until the appearance of the map
becomes satisfactory. A graphics tool that overlays the labeled map on the original image one
class at a time assists the estimation process, especially for sparsely represented classes. Since all
labeling methods begin with the same summed output patterns from the already trained
networks, iterations of the final labeling methods are rapid and straightforward.

CAS/CNS TR-2002-011 Parsons & Carpenter 8

3.1.3. Validation method
The validation method adjusts class label percentages without requiring a priori estimation of
their true distribution in the map. Rather, this method allows the user to bias the labeling process
by checking outcome statistics on a validation set. The method used here introduces output class
decision thresholds as new free parameters, and estimates their values from the validation strip,
which was not used by the baseline and prior probabilities methods. An alternative method could
adapt ARTMAP output class weights

†

W jk by gradient descent, as in Carpenter, Milenova, and
Noeske (1998).

All three methods begin with the same output distribution across target classes computed by the
trained voting system. For a given pixel, let

†

sf denote the fraction of this distribution assigned
to the class label

†

f . Whereas the baseline and prior probabilities methods assign class labels
according to values of

†

sf , the validation method assigns the label so as to maximize the amount
by which

†

sf exceeds a class-specific decision threshold

†

gf . Decision thresholds are computed
one class at a time, as follows.

The baseline method assigns a pixel to a target class

†

f whenever

†

sf is maximal. This
corresponds to the validation method with all decision thresholds set equal to zero. Imagine,
now, biasing the system against choosing one particular class

†

f by replacing

†

sf with

†

s f -g() .

Increasing

†

g reduces the fraction of validation set pixels

†

HitRateg() correctly predicting class

†

f , but it also reduces the fraction of pixels

†

FalseAlarmg() predicting

†

f that actually belong to a
different class. As

†

g increases parametrically from 0 to 1, the graph of

†

HitRateg as a function
of

†

FalseAlarmg traces an ROC curve. The decision threshold

†

g = gf is chosen so as to
maximize the difference

†

HitRateg - FalseAlarmg() on the validation set. This choice
corresponds to the point where the ROC curve intersects the highest possible line with unit slope.
Once a decision threshold has been set for each class, pixels are labeled as the target class

†

f that
maximizes

†

sf - gf() .

Additionally, this method specifies an upper bound on the estimated false alarm rate for each
class: if the chosen threshold produces a false alarm rate higher than 10% on the validation set,
its value is raised until the false alarm rate falls to just below 10%. An upper bound helps ensure
that classes with few pixels in the true map are not over-represented in the labeled map. For
example, on six training set combinations of one typical prototype simulation, the validation
method produced decision thresholds

†

gcars between 0.085 and 0.165, while

†

g trees and

†

groads
each remained equal to 0 for all but one combination. As shown for the Monterey map below,
designated upper bounds can also be adjusted for certain target classes, to balance their
representation in the whole map. As with prior probabilities, iterative corrections by visual
inspection of maps produced by the validation method are rapid and easy to test.

Table!2c shows that validation produces the best overall predictive accuracy (94.4%) of all the
methods. Despite being given no prior information about class probabilities, this method
produced a class distribution that was much improved compared to the baseline method.
Nonetheless, the validation method labeled as cars over twice as many test pixels as in the true

CAS/CNS TR-2002-011 Parsons & Carpenter 9

map, a trend that can also be seen by comparing the labeled whole maps in the upper row of
Figures 3b and 3c.

3.2. Post-processing a labeled map
The methods described in Section!3.1, which label pixels independently, tend to produce speckle
in the final maps (Figure!3, upper row). Post-processing can improve both test-set classification
performance and the look of a map. Standard post-processing techniques include averaging,
smoothing filters, and morphological operations (e.g., Shapiro & Stockman, 2001; Matlab Image
Processing Toolbox, http://www.mathworks.com/access/helpdesk/help/toolbox/
images/images.shtml). Post-processing by a simple voting filter is tested here. Namely, each
pixel assumes the label originally assigned to the majority of abutting pixels (eight neighbors)
plus three copies of itself, with ties broken in favor of the class with the fewest pixels in the
original labeling.

Table!4 Prototype map classification with post-processing

Comparing Table!4 with Table!2 shows that post-processing the prototype map by the averaging
filter increased the overall pixel-by-pixel test-set accuracies for all three methods. Post-
processing also brought the fraction that the baseline and validation methods assigned to the
difficult under-represented class cars closer to that of true map (0.75%). A comparison of the
upper and lower rows of Figure!3c illustrates how post-processing can reduce speckle in maps
produced by the validation method. Post-processing tends to be even more effective on real
images than on the prototype. This is due to a construction artifact of the prototype image, where
a substantial fraction of feature vectors for neighboring pixels in small objects (cars) were drawn
from spatially separated objects in the source Monterey image, thereby reducing the meaning of
spatial contiguity in this example. In addition, whereas the a priori class distribution is exact in
the prototype example, errors in the distribution estimates for real images produce additional
mapping errors which can be usefully corrected at a post-processing stage.

4. The Monterey benchmark mapping problem
The methods illustrated on the prototype example will now be used to compare candidate
ARTMAP classifier modules and to produce a labeled map of the Monterey location. To prepare
for training, validation, and testing, a ground truth dataset was created by visual inspection of the
original image (Figure!1a). Pixels or regions were assigned labels from eight target classes: red
cars, non-red cars, roofs, roads, foot paths, grass, trees, other. The total number of pixels
labeled was 225,828, covering about 15% of the image.

In synthetic examples such as the prototype map (Section 2), the true distribution of classes is
known by construction. In most real examples, where ground truth typically covers only a small
fraction of the image, global class distributions are not known. In order still to be able to test a
priori distribution methods (Section!3.1.2), approximate class distributions were obtained by
visual inspection of the Monterey image. Because such estimates are typically imprecise,
distributions calculated independently by eight observers were averaged (Table!5).

Table!5 Monterey class distribution estimates

To prepare for cross validation, the Monterey image was partitioned into four vertical strips. If
available, 250 pixels were randomly selected and fixed for each class in each strip. If a strip

CAS/CNS TR-2002-011 Parsons & Carpenter 10

contained fewer labeled pixels for a particular class, then all available pixels were chosen. On
average, 1,738 pixels of the 372,592 in each strip constituted the training / validation / test set.

4.1. Default ARTMAP performance on the Monterey example
Table 6a-c summarizes the results of applying the mapping methodologies developed in Sections
2 and 3 to the Monterey image, using default ARTMAP without post-processing. Comparing the
class distribution statistics in Table 6 with Table 5 shows that, as on the prototype map (Table 2),
the baseline and validation methods label too many pixels as belonging to under-represented
classes (e.g., red cars, non-red cars, foot paths), generally at the expense of roofs and roads.
Validation has the greatest effect on non-red cars, where positive decision thresholds in five of
the six training combinations eliminated about half of the over-representation of that class,
transferring most to the adjacent road pixels.

Table!6 Monterey map classification

4.2. Post-classification adjustments
Post-processing by a voting filter (Section 3.2) improves the overall accuracy of all three
methods by about 2%, but has a negligible effect on class distributions. A more important benefit
of post-processing is removing speckle from the labeled image. This is particularly true for the
prior probabilities method (Figure 4a), where the approximate nature of initial distribution
estimates leads to forced over-labeling of over-estimated classes.

Figure!4 Class adjustment via (a) post-processing, (b) class %, (c) false alarm rate

In addition to locally defined post-processing, the prior probability and validation methods allow
the user to make rapid adjustments to balance map classes. After a map has been generated, the
user can view the results of classification and decide whether adjustments are needed. Figure 4
shows the result of adjusting a class percentage with the prior probabilities method (Figure 4b)
and of adjusting an upper bound on the false alarm rate with the validation method (Figure 4c).
An effective way to visualize per class performance is to overlay the results of recognition on the
original image one class at a time. The left image of Figure 4b shows the classification results for
roofs in a portion of the Monterey image. Here, a majority of roof pixels are labeled correctly but
some tree and road pixels are also labeled as roof. After the roof percentage was reduced from
30% to 14%, most incorrectly labeled pixels disappeared, as seen in the right image of Figure 4b.
Post-classification visualization helps the user to correct errors in initial estimates of class
distributions, which can vary widely (Table 5).

Similar adjustments can be performed with the validation method. At the beginning, maximum
false alarm rates were set to 10% for all classes. The result of the label assignment for non-red
cars with this constraint is illustrated in the left image of Figure 4c. In the whole map, more than
twice as many pixels as desired were labeled as non-red cars. The map was corrected by
lowering the upper bound on the false alarm rate for non-red cars. When the false alarm rate was
lowered from 10% to 0.2%, the map became more accurate as shown in the right image of Figure
4c. Table 6d also shows that adjusting maximum false alarm rates with the validation method can
bring class distributions closer to their target values.

CAS/CNS TR-2002-011 Parsons & Carpenter 11

5. Evaluating ARTMAP classifiers and map production methods on
the Monterey benchmark

The studies described in this section compare performance of ARTMAP variants on the
Monterey benchmark problem. The learning systems under consideration differ primarily in
terms of their code representations (distributed vs. winner-take-all) during training and testing.
Tested systems include a straightforward fuzzy ARTMAP network and the variant used in the
Lincoln Lab implementation (LL), both of which employ winner-take-all coding during training
and testing; default ARTMAP, which is the same as fuzzy ARTMAP during training but uses a
distributed code representation during testing; ARTMAP-IC, which equals default ARTMAP
plus instance counting, which biases a category node’s test-set output by the number of training-
set inputs coded by that node; and distributed ARTMAP, which employs a distributed code (and
instance counting) during both training and testing. The versions of these networks tested here
form a nested sequence:

fuzzy ARTMAP Ã default ARTMAP Ã ARTMAP-IC Ã distributed ARTMAP

That is, distributed ARTMAP reduces to ARTMAP-IC when coding is set to winner-take-all
during training; ARTMAP-IC reduces to default ARTMAP when counting weights are set equal
to 1; and default ARTMAP reduces to fuzzy ARTMAP when coding is set to winner-take-all
during testing as well as training.

The LL system incorporates the original fuzzy ARTMAP algorithm (Carpenter et al., 1992) as
codified in a simplified form by Kasuba (1993). This algorithm differs somewhat from the
version of fuzzy ARTMAP described above in that it uses the MT+ search algorithm (instead of
MT–), a Weber Law choice function (instead of choice-by-difference), and exhaustive search of
learned categories before activating an uncommitted node. Additional variations in the LL
system include the use of two training epochs; two baseline vigilance values, a higher one for
targets and a lower one for non-targets; and a discrete-valued confidence measure that is finer
than a simple count of winner-take-all voters. Despite these additions, performance of the LL
system on the Monterey map benchmark was found to be similar to that of the basic fuzzy
ARTMAP network.

In order to identify eight map classes, the LL system needs to train eight individual networks on
target / non-target recognitions. All other networks are tested both with this method and with
single-system training for eight outputs classes.

Table 7 shows class distribution predictions made by the networks under consideration, each
using the baseline method for class labeling without post-processing. Boldface entries indicate
which predictions are closest (over- and/or under-estimates) to the average a priori class
distribution of the Monterey image (Table 5). Although the distribution pattern produced by
ARTMAP-IC is closest to the target, all the networks produce class label percentages that differ
from the estimates. Therefore the prior probabilities method was selected for making a valid
choice among classifiers. This labeling method evaluates test-set hit rates with class distribution
patterns held constant.

Table!7 Class distribution predictions of ARTMAP variations with the baseline method

CAS/CNS TR-2002-011 Parsons & Carpenter 12

Table 8 shows that the continuous-valued classifiers consistently produced the highest class-
specific and overall accuracies. For the discrete-valued LL and fuzzy ARTMAP networks, ties
frequently needed to be broken among classes with equal output values, which also produced
speckle in the corresponding maps. Although the LL system adds intermediate confidence values
to the voting system, which would seem to produce outputs more like those of the continuous-
valued systems, this addition did not improve performance over that of basic fuzzy ARTMAP
with five binary-valued voters. Output ties also created speckle in maps produced by fuzzy
ARTMAP or the LL system.

Table!8 Predictive accuracy of ARTMAP variations with the prior probabilities method

Default ARTMAP and ARTMAP-IC (both 1- and 8-system versions) produced overall average
test-set accuracies several points above those of the discrete-valued systems. Performance of 1-
system distributed ARTMAP was also close to that of default ARTMAP, but performance
dropped markedly for the 8-system version, where coding can be unpredictable on the target /
non-target discrimination tasks and where performance also varied dramatically from one strip to
the next. Continuous-valued networks have the added benefit of superior class adjustment
capabilities (Figure 4b,c). The instance counting feature of ARTMAP-IC adds a processing
complexity to the default ARTMAP network, as does training a target / non-target network for
every output class. In addition, instance counting may introduce sensitivity to numbers of
training samples presented for each class. Thus, given their similar test-set accuracies, one-
system default ARTMAP was chosen as the network standard. The mapping problem considered
here is sufficiently general as to recommend this system as the starting point for applications.

6. Producing a whole map
Figure 5 shows a whole map of the eight Monterey classes produced by the validation method,
after training one default ARTMAP system to label eight target classes. Training pixels were
drawn from strips!1, 2, and 4, and validation pixels from strip!3. While training and validation
pixels are included in the whole map, their sum constitutes only 0.35% of all pixels. The map
was also post-processed with a voting filter.

Figure!5 Monterey map, with default ARTMAP, validation method, post-processing

With maps evaluated by visual inspection, one-system and eight-system default ARTMAP
appeared to perform better than other candidates. Both prior probability and validation methods
gave reasonable results without user adjustments, though the tuning of method parameters (a
priori class distributions or maximum false alarm rates) improved the maps visibly. As in Figure
4a, maps produced by prior probabilities benefited most from post-processing by a voting filter,
since they almost always contain speckle produced by errors in class distribution estimates. Maps
produced by validation also improved with post-processing but this step was not essential. A
map produced by the LL system contained a lot of speckle. Post-processing removed some of the
speckle but sacrificed details. The problem of speckle can be traced to winner-take-all coding,
which implies that the summed system output assumes at most twenty possible values.

7. Selecting input features
In order to decrease the time required to identify target pixels in an entire image, the LL system
is designed to select a subset of input features for the search, based on a criterion of maintaining
performance on training pixels (Streilein et al., 2000). Feature selection also identifies which

CAS/CNS TR-2002-011 Parsons & Carpenter 13

data layers are important for defining objects of interest. The LL feature selection method uses
an algorithm similar to one developed for ARTMAP systems in the context of medical database
analysis (Carpenter & Milenova, 2000). These selection algorithms use the fact that, in a network
trained with complement coded inputs, each feature of a learned category is represented as an
interval of values. The algorithms calculate interval overlap of target vs. non-target nodes for
each feature, delete features with the greatest interval overlaps, and retrain using subsets of the
original feature set. The LL algorithm starts with the most promising feature, then adds others
one by one while calculating training set performance. Only features that incrementally improve
performance are retained. This section evaluates this method and extends it from the target / non-
target setting to systems with arbitrarily many output classes, with features selected on a
validation set. Section 11 specifies this algorithm.

The feature selection method tested with the default ARTMAP system identified 11 components
of the Monterey input vector as the most useful across six training set combinations. Selected
features were: 5 single-opponents (G/R, B/NIR, G/NIR, G/B, R/NIR), 3 double-opponents (G/R,
R/G, NIR/B), 2 linear combinations (NIR+B, G+R+NIR+B), and height. It is interesting to note
that the four individual contrast-enhanced color bands (G, R, NIR, B) were almost never chosen.
Table 9 shows that the system trained and tested using only the 11 selected input components
produced performance that was better than (or equal to) that of the same system using all 20 of
the original features in all categories.

Table 9 Feature selection

Feature selection is one way in which the structure of ARTMAP memories supports
interpretation and analysis. Further development of rule-based methods for spatial data mining is
the subject of ongoing research.

8. Mapping methodology
The following steps outline a procedure for labeling an arbitrary number of object classes

in an image. Options include production of a whole map or evaluation of candidate classifiers on
disjoint training and testing sets. Each image pixel is represented by a feature vector which may
have an arbitrary number of feature components.

Map labeling and adjustment procedure
8.1. Define object classes for the image to be mapped.
8.2. Estimate the a priori distribution of classes in the image.
8.3. If not provided, create a ground truth set for each class by assigning labels to selected

regions of the image.
8.4. Divide the image into four strips, choosing vertical or horizontal to balance class

distributions across strips.
8.5. In each strip, randomly choose P labeled pixels for each class (or all pixels in a given

class if fewer than P have been labeled). Fix five randomly chosen orderings of
designated pixels in each strip.

8.6. Choose training, validation, and testing strips:
8.6.a. For labeling a whole map: Choose three strips for training and one for

validation.
8.6.b. For classifier evaluation: Choose two strips for training, one for validation, and

one for testing.

CAS/CNS TR-2002-011 Parsons & Carpenter 14

8.7. Train V systems (voters), each with E presentations of input vectors from one of the
ordered pixel sets.

8.8. For each voter, choose parameters by validation (if required).
8.9. Present to each voter all pixels to be labeled in the whole map (mapping) or in the test

strip (evaluation). Produce output class predictions

†

sk for each pixel (Section 9).
8.10. Sum the distributed output class predictions across the V voters.
8.11. Label pixels by one of three methods (breaking ties by random choice):

8.11.a. Baseline: Assign the pixel to the output class k with the largest summed
prediction.

8.11.b. Prior probabilities: Select an output class at random according to the estimated
a priori distribution in the image. Assign that class label to the still-unlabeled
pixel with the largest summed prediction for this class.

8.11.c. Validation: Bias the summed output class distribution, evaluating performance
on the validation set. In this paper, decision thresholds are selected for each
output class (Section 3.1.3), with an upper bound of 10% set for each false
alarm rate. Alternatively, the distributed prediction of each voter (or of the sum)
could be weighted by a steepest descent algorithm. Use the biased summed
distribution to label the pixel by the baseline or prior probabilities method.

8.12. Map adjustment:
8.12.a. Local image processing: Post-processing for speckle removal may be

implemented as a simple voting filter, which assigns to each pixel the label
originally assigned to a majority of its eight neighbors plus three copies of itself.

8.12.b. Class distribution adjustment: Starting with the output class predictions
produced by any method (Step 8.11), target distribution percentages may be
adjusted up or down (e.g., based on inspection of the resulting map), and class
labels recomputed by the prior probabilities method.

8.12.c. False alarm rate adjustment: A decision threshold for an over-represented class
may be increased to reduce the validation set false alarm rate.

8.13. Classifier evaluation: Compute average performance statistics across six combinations
of two training strips (each with five voters). Classifier evaluation measures include test
strip output class distributions, hit and false alarm rates for each class and overall
accuracy on the test set, performance variability between tasks, map appearance (overall
and by overlays for each class), and degree of improvement by post-processing.

9. Default ARTMAP training
The default ARTMAP algorithm specified here is a special case of the distributed

ARTMAP (dARTMAP) algorithm described in Carpenter, Milenova, and Noeske (1998).

Table 10 Default ARTMAP notation

Table 11 Default ARTMAP parameter values

Default ARTMAP training (with winner-take-all code representation)
9.1. Complement code M-D feature vectors a to produce 2M-D input vectors A:

†

A ≡ a,ac() and

†

A = M
9.2. Set initial values:

†

wij = 1,

†

W jk = 0 ,

†

C = 1
9.3. Select the first input vector A, with associated output class K

CAS/CNS TR-2002-011 Parsons & Carpenter 15

9.4. Set initial weights for the newly committed coding node

†

j = C :

†

wC = A

†

WCK = 1
9.5. Set vigilance to its baseline value

†

r = r () and set

†

y = 0
9.6. Select the next input vector A, with associated output class K (until the last input of the

last training epoch)
9.7. Calculate signals to committed coding nodes

†

j =1KC:

†

Tj = A Ÿ w j + 1-a() M - w j()
9.8. Search order: Sort committed coding nodes with

†

Tj > aM in order of

†

Tj values (max to
min)

9.9. Search for a coding node that meets the matching criterion and makes the correct output
class prediction:
9.9.a. Code: For the next sorted coding node

†

j = J() that meets the matching criterion

†

A Ÿ wJ
M ≥ r

Ê

Ë Á
ˆ

¯ ˜ , set

†

yJ =1 (WTA)

9.9.b. Output class predictions:

†

sk = W jk y j
j=1

C
Â = WJk

9.9.c Match tracking: If the active code fails to predict the correct output class

†

s K = 0() , raise vigilance

†

r =
A Ÿ wJ

M +e
Ê

Ë Á
ˆ

¯ ˜ .

Return to Step 9.9.a (continue search).
9.10. Learning: Update coding weights:

†

wJ
new = b A Ÿ wJ

old() + 1- b()wJ
old .

Return to Step!9.5 (next input).
9.11. After unsuccessfully searching the sorted list, increase C by 1.

Return to Step 9.4 (add a committed node).

10. Default ARTMAP testing

Default ARTMAP testing (with distributed code representation)
10.1. Complement code M-D feature vectors a to produce 2M-D input vectors A
10.2. Select the next input vector A, with associated output class K
10.3. Set

†

y = 0
10.4. Calculate signals to committed coding nodes

†

j =1KC:

†

Tj = A Ÿ w j + 1-a() M - w j()
10.5. Let

†

L = l =1KC: Tl > aM{ } and

†

¢ L = l = 1KC: Tl = M{ }=

†

l =1KC: w j = A{ }
10.6. Increased Gradient (IG) CAM Rule:

10.6.a. Point box case: If

†

¢ L ≠ f (i.e.,

†

w j = A for some j), set

†

y j =
1
¢ L

 for each

†

j Œ ¢ L

CAS/CNS TR-2002-011 Parsons & Carpenter 16

10.6.b. If

†

¢ L = f , set

†

y j =

1
M - Tj

È

Î
Í
Í

˘

˚
˙
˙

p

1
M - Tl

È

Î
Í

˘

˚
˙

p

lŒL
Â

 for each

†

j ŒL

10.7. Calculate distributed output class predictions:

†

sk = W jk y j
j=1

C
Â

10.8. Until the last test input, return to Step!10.2
10.9. Predict output classes from

†

sk values, according to chosen labeling method (see
Step!8.11)

11. Feature selection
Feature selection methods may be employed after an ARTMAP system has been trained on
complete input vectors. The algorithm is based on methods, developed by Carpenter and
Milenova (2000) and Streilein et al. (2000), which respect the geometry of ARTMAP memory
representations.

11.1.

†

D k i(): Diffentiability of class k by feature i

†

D k i() indicates how well the feature i alone differentiates the output class k from all the
other classes. It is based on the degree of overlap of the weight intervals

†

wiJ ,wi+ M ,J
c[] of

coding nodes J predicting k

†

WJk =1() with weight intervals

†

wij ,wi+ M , j
c[] of coding

nodes j predicting all other classes

†

W jk = 0() . Smaller overlaps (or disjoint intervals)
correspond to higher degrees of differentiability.

For each output class k and each feature i let:

†

D k i() =
wi+ M ,J - wi+ M , j + wiJ - wij

1- wi+ M ,J Ÿ wi+ M , j() - wiJ Ÿ wij()
È

Î

Í
Í

˘

˚

˙
˙

J :WJk =1
j:W jk =0

Â

11.2.

†

D i() : Differential power of feature i
For each class k, order the M input features i based on the values

†

D k i() (max to min),
and let

†

O k i() equal the position of feature i in the ordered list for class k.

For each feature i, let the differential power

†

D i() =
1

O k i()k
Â .

Order features i based on their

†

D i() values.

11.3.

†

U i(): Marginal predictive utility of feature i
Derive an index set

†

F of features i that show marginal predictive utility

†

U i() on the
validation set. Features are tested one at a time, in order of their differential power

†

D i() .

CAS/CNS TR-2002-011 Parsons & Carpenter 17

Let

†

F = i{} , where i is the feature with largest

†

D i() . Test validation set performance with
only component i presented in the input vector. Let

†

U i() equal the number of
validation samples classified correctly.

Let i be the index with the next greatest

†

D i() . Test validation set performance with only
components

†

F » i{} presented in the input vector. Let

†

U i() equal the number of
validation samples classified correctly, less the number that were classified
correctly with only input components

†

F .
Add i to

†

F if

†

U i() ≥ 1.
Continue until

†

U i() has been computed for all M input features.

11.4 Final selection of features
Features are ordered and tested for each voter of each training set. Features are selected
according to their high utility values and frequency of use. In Section 7, selected features
were defined as those that had a marginal predictive utility

†

U i() greater than half the
maximum value for any training set; or were identified as useful

†

U i() ≥ 1() by all five
voters on two or more training sets. These criteria can be adjusted by the user to increase
or decrease the number of selected features.

References
Aguilar, M., & Garrett, A.L. (2001). Biologically-based sensor fusion for medical imagery. In

Proceedings of SPIE Sensor Fusion: Architectures, Algorithms, and Applications
Conference, Orlando, Florida.

Carpenter, G.A., & Gjaja, M.N. (1994). Fuzzy ART choice functions. In Proceedings of the
World Congress on Neural Networks (WCNN-94) (pp. 713-722), vol. I. Lawrence
Erlbaum Associates.

Carpenter, G.A., Gjaja, M.N., Gopal, S., & Woodcock, C.E. (1997). ART neural networks for
remote sensing: Vegetation classification from Landsat TM and terrain data. IEEE
Transactions on Geoscience and Remote Sensing, 35, 308-325.

Carpenter, G.A., Gopal, S., Macomber, S., Martens, S., & Woodcock, C.E. (1999). A neural
network method for mixture estimation for vegetation mapping. Remote Sensing of
Environment, 70, 138-152.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., & Rosen, D.B. (1992). Fuzzy
ARTMAP: A neural network architecture for incremental supervised learning of analog
multidimensional maps. IEEE Transactions on Neural Networks, 3, 698-713.

Carpenter, G.A., & Markuzon, N. (1998). ARTMAP-IC and medical diagnosis: Instance
counting and inconsistent cases. Neural Networks, 11, 323-336.

Carpenter, G.A., & Milenova, B.L. (2000). ART neural networks for medical data analysis and
fast distributed learning. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial
neural networks in medicine and biology (pp. 10-17). Springer series Perspectives in
Neural Computing, London: Springer-Verlag.

Carpenter, G.A., Milenova, B.L., & Noeske, B.W. (1998). Distributed ARTMAP: a neural
network for fast distributed supervised learning. Neural Networks, 11, 793-813.

CAS/CNS TR-2002-011 Parsons & Carpenter 18

Carpenter, G.A., & Ross, W.D. (1995). ART-EMAP: A neural network architecture for object
recognition by evidence accumulation. IEEE Transactions on Neural Networks, 6,
805-818.

Gopal, S., Liu, W.G., & Woodcock, C. (2000). Visualization based on the Fuzzy ARTMAP
neural network for mining remotely sensed data. In H.J. Miller & J. Han (Eds.),
Discovering Geographic Knowledge in Data-rich Environments, Heidelberg: Springer-
Verlag.

Gopal, S., Woodcock, C., & Strahler, A. (1999). Fuzzy ARTMAP classification of global land
cover from the 1 degree AVHRR data set. Remote Sensing of Environment, 67, 230-243.

Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in
reverberating neural networks. Studies in Applied Mathematics, 52, 217-257.

Kasuba, T. (1993). Simplified Fuzzy ARTmap. AI Expert, 8(11), 18-25.
Lennie, P. (2000). Color vision. In E.R. Kandel, J.H. Schwartz, & T.M. Jessell (Eds.), Principles

of Neural Science, Fourth Edition (pp. 572-589). New York: McGraw-Hill.
Ross, W.D., Waxman, A.M., Streilein, W.W., Aguilar, M., Verly, J., Liu, F. Braun, M.I.,

Harmon, P., & Rak, S. (2000). Multi-sensor 3D image fusion and interactive search. In
Proceedings of 3rd International Conference on Information Fusion, Paris, vol. I.

Shapiro, L., & Stockman, G. (2001). Computer Vision. New York: Prentice-Hall.
Streilein, W., Waxman, A., Ross, W., Liu, F., Braun, M., Fay, D., Harmon, P., & Read, C.H.

(2000). Fused multi-sensor image mining for feature foundation data. In Proceedings of
3rd International Conference on Information Fusion, Paris, vol. I.

Waxman, A.M., Verly, J.G., Fay, D.A., Liu, F., Braun, M.I., Pugliese, B., Ross, W.D., &
Streilein, W.W. (2001). A prototype system for 3D color fusion and mining of
multisensor/ spectral imagery. In Proceedings of 4th International Conference on
Information Fusion, Montreal, (pp. 3-10), vol. I.

Waxman, A.M., Fay, D.A., Rhodes, B.J., McKenna, T.S., Ivey, R.T., Bomberger, N.A., Bykoski,
V.K., & Carpenter, G.A. (2002). Information fusion for image analysis: Geospatial
foundations for higher-level fusion. In Proceedings of 5th International Conference on
Information Fusion, Annapolis.

Pixel distribution % Trees Roads Cars

Prototype image 78.78 20.47 0.75
Strip 1 77.86 21.36 0.78
Strip 2 75.88 23.10 1.02
Strip 3 78.47 21.11 0.42
Strip 4 82.90 16.32 0.78

Table 1. Distribution of pixels among target classes in the whole prototype image
and within each vertical strip.

CAS/CNS TR-2002-011 Parsons & Carpenter 19

a) Baseline Overall Trees Roads Cars
Hits 92.4 98.3 84.0 95.0
False alarms 1.3 1.3 8.8
Class distribution 77.6 17.6 4.9

b) Prior
 probabilities

Overall Trees Roads Cars

Hits 89.2 98.7 94.0 75.0
False alarms 10.5 5.2 0.5
Class distribution 78.9 20.4 0.76

c) Validation Overall Trees Roads Cars
Hits 94.4 99.0 92.8 91.5
False alarms 1.4 2.8 4.1
Class distribution 77.9 19.6 2.5

Table 2. Prototype map test set classification performance (%) using three class
label assignment methods: a) baseline, b) prior probabilities, and c) validation.
All methods used the same 100 pixels per class from each strip. Results represent
averages from the six possible combinations of two training strips. Boldface:
Best result (a-c) for each matrix entry.

Baseline Trees Roads Cars Overall
(actual)

Trees 98 2 100
Roads 84 16 100
Cars 2 3 95 100
Overall
(predicted)

100 87 113 300

Table 3. Confusion matrix for the prototype map in a typical test strip (3) using
the baseline method for class label assignment. Rows show true distributions
(100!pixels per class) and columns show the predicted distributions. Boldface:
Diagonal, where predicted = actual class.

CAS/CNS TR-2002-011 Parsons & Carpenter 20

a) Baseline + post Overall Trees Roads Cars
Hits 94.6 99.2 87.2 97.5
False alarms 0.3 1.0 6.8
Class distribution 77.8 18.3 3.9

b) Prior
 probabilities + post

Overall Trees Roads Cars

Hits 90.4 99.5 96.8 75.0
False alarms 7.4 6.8 0.1
Class distribution 78.7 20.7 0.62

c)Validation + post Overall Trees Roads Cars
Hits 96.3 99.5 96.0 93.5
False alarms 0.6 2.6 2.3
Class distribution 78.1 20.2 1.7

Table 4. Prototype map test set classification performance using the three class
label assignment methods of Table 2, plus post-processing: a) baseline, b) prior
probabilities, and c) validation. Boldface: Best result (a-c) for each matrix entry.

Monterey
class distribution
estimates

Red
cars

Non-
red
cars

Roofs Roads Foot
paths

Grass Trees Other

Average % 0.9 2.6 20.8 23.9 2.9 10.4 36.1 2.4
Range [min, max] < 1 [1, 5] [9, 34] [16, 36] [1, 7] [6, 18] [28, 49] [1, 5]

Table 5. A priori distribution of eight target classes in the Monterey image,
averaged across estimates made by eight observers. The range of values indicates
the variability of estimates.

CAS/CNS TR-2002-011 Parsons & Carpenter 21

a) Baseline Overall Red
cars

Non-red
cars

Roofs Roads Foot
paths

Grass Trees Other

Hits 74.9 90.3 82.4 93.2 68.5 62.7 60.3 87.1 2.0

False alarms 1.3 10.9 0.5 3.8 2.9 2.5 6.9 0.2
Class
distribution

2.1 13.2 12.1 13.9 8.2 9.9 40.3 0.2

b) Prior
probabilities

Overall Red
cars

Non-red
cars

Roofs Roads Foot
paths

Grass Trees Other

Hits 71.7 84.3 54.8 92.3 92.3 46.1 60.7 83.0 22.8

False alarms 0.6 2.5 8.2 7.4 1.1 2.6 6.3 3.8

Class
distribution

0.9 2.6 20.8 23.9 2.9 10.4 36.1 2.4

c) Validation Overall Red
cars

Non-red
cars

Roofs Roads Foot
paths

Grass Trees Other

Hits 77.3 91.3 77.8 92.3 83.6 66.2 63.4 86.4 2.4

False alarms 1.2 7.1 0.4 5.0 3.1 2.8 6.3 0.2
Class
distribution

2.0 8.3 12.0 18.3 8.9 10.9 39.4 0.2

d) Validation
 + max FA

Overall Red
cars

Non-red
cars

Roofs Roads Foot
paths

Grass Trees Other

Max FA rate
 in validation

0.2 2 10 10 2 10 3 0.1

Hits 76.8 87.5 60.0 94.7 92.1 63.9 76.1 80.4 5.6

FA (testing) 0.8 4.8 1.3 8.7 2.7 4.3 3.9 0.5

Class
distribution

1.6 4.9 12.7 22.7 6.6 17.0 34.0 0.5

Table 6. Monterey map test set classification performance using default ARTMAP and four
class label assignment methods: a) baseline, b) prior probabilities, c) validation with maximum
false alarm rates set to 10%, and d) validation plus a maximum false alarm rate chosen for each

CAS/CNS TR-2002-011 Parsons & Carpenter 22

target class during the validation step. As in Table 2, performance results show averages of
training default ARTMAP networks, each on one of the six combinations of selected pixels
from two image strips, without post-processing. Note that, although the prior probability
method has the lowest overall test set accuracy, this method also produces the exact (estimated)
class distribution from Table 5. Boldface: Best result (a-d) for each matrix entry.

Lincoln
Lab (LL)

system
Fuzzy ARTMAP Default ARTMAP ARTMAP-IC Distributed

ARTMAP
Baseline

Average
estimated

class
distribution

8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys

Red cars 0.9 3.7 3.4 5.3 2.1 2.0 6.7 5.0 4.9 2.1

Non-red
cars

2.6 9.0 7.7 10.3 13.2 14.5 5.2 4.5 4.7 1.3

Roofs 20.8 14.2 12.6 13.3 12.1 12.2 12.1 19.4 12.1 13.5

Roads 23.9 14.9 16.7 14.2 13.9 14.9 21.1 17.8 21.6 25.9

Foot
paths

2.9 8.1 9.0 8.1 8.2 3.9 3.9 3.2 4.9 4.8

Grass 10.4 12.1 13.9 14.1 9.9 10.3 10.9 10.5 14.1 20.7

Trees 36.1 36.1 36.0 33.2 40.3 42.0 40.2 39.6 37.7 31.7

Other 2.4 1.9 0.7 1.4 0.2 0.2 0 0 0.1 0

Table 7. Class distributions (%) predicted by candidate ARTMAP classifiers on
the Monterey benchmark map. Results are averaged across six training set
combinations, using the baseline method for class label assignment without post-
processing. Boldface: Best performance in each row.

CAS/CNS TR-2002-011 Parsons & Carpenter 23

Lincoln
Lab (LL)

system
Fuzzy

ARTMAP
Default ARTMAP ARTMAP-IC Distributed

ARTMAP
Prior
probabilities

8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys 1 sys 8 sys

Overall 67 66 69 72 74 74 73 73 62

Red cars 71 63 73 84 86 88 85 84 72

Non-red cars 47 45 52 55 55 55 52 51 43

Roofs 97 96 96 92 96 93 98 93 93

Roads 87 90 90 92 91 91 88 93 79

Foot paths 41 42 44 46 51 56 55 51 34

Grass 59 53 56 61 69 72 65 71 40

Trees 81 81 83 83 86 81 85 80 84

Other 4 9 5 23 12 7 5 10 2

Table 8. Comparative accuracies (%) on the Monterey benchmark map, averaged
across six training set combinations, using the prior probabilities method for class
label assignment, without post-processing. Boldface: Best performance in each
row.

CAS/CNS TR-2002-011 Parsons & Carpenter 24

Default ARTMAP
(1 system)
Baseline

Original
20 features

Selected
11 features

Overall 75 76

Red cars 90 91

Non-red cars 82 82

Roofs 93 94

Roads 68 68

Foot paths 63 65

Grass 60 65

Trees 87 87

Table 9. Hit rates with feature selection for the Monterey map, using single-
system default ARTMAP for classification and the baseline method for label
assignment. Reducing the number of input components from the original 20 to the
selected 11 improved (or leaves unchanged) performance in every category.
Boldface: Best performance in each row.

CAS/CNS TR-2002-011 Parsons & Carpenter 25

Notation Description

i input component index

j coding node index

k output class index

M number of input features

a feature vector

†

ai() ,

†

0 £ ai £1

†

A complement coded input vector:

†

A ≡ a,ac()
K output class of current input

y coding field activation pattern (CAM):

†

y j()
J chosen coding node (winner-take-all)

C number of committed coding nodes

†

L, ¢ L committed node subsets

†

Tj signal from input field to coding node j

†

sk signal from coding field to output node k

†

w j coding node weight vector j:

†

wij()

†

Wk output class weight vector k:

†

W jk()
r vigilance variable

†

Ÿ component-wise minimum (fuzzy intersection):

†

pŸ q()i ≡ min pi ,qi()

†

⋅ vector size (

†

L1-norm):

†

p ≡ pi
i
Â

†

pc vector complement:

†

pc()i
≡ 1- pi

Table 10. Default ARTMAP notation.

CAS/CNS TR-2002-011 Parsons & Carpenter 26

Name Parameter Range Default
value

Description

signal rule

parameter

a

†

0,1() 0.01

†

a = 0+ maximizes code compression

learning

fraction

b

†

0,1[] 1.0

†

b = 1 implements fast learning

match

tracking

e

†

-1,1() – 0.001

†

e < 0 (MT–) codes inconsistent cases

baseline

vigilance

†

r

†

0,1[] 0.0

†

r = 0 maximizes code compression

CAM rule

power

p

†

0,•(] 1.0 Increased Gradient (IG) CAM rule

converges to WTA as

†

p Æ •

training

epochs

E ≥1 1

voting

systems

V ≥1 5

Table 11. Default ARTMAP parameters and their default values.

CAS/CNS TR-2002-011 Parsons & Carpenter 27

(a) (b)

Figure 1. (a) Monterey Naval Postgraduate School image. Dimensions: 987 x 1,510 = 1,490,370
pixels

†

@ 500m x 750m. (b) Prototype image with three target classes: trees (black), roads
(gray), and cars (white). Prototype feature vectors were drawn from corresponding classes in the
Monterey image. Dimensions: 400 x 400 = 160,000 pixels. Each “car” is 4x6 pixels.

CAS/CNS TR-2002-011 Parsons & Carpenter 28

Figure 2. A cross-validation methodology designates spatially distinct regions for training,
validation, and testing, with each map divided into four vertical strips (Strips 1 – 4, left to right).

CAS/CNS TR-2002-011 Parsons & Carpenter 29

(a) Baseline (b) Prior (c) Validation

Figure 3. Prototype map class label assignments by three methods: (a) baseline, (b) prior
probabilities, and (c) validation. Upper row: without post-processing. Lower row: with post-
processing by a voting filter.

CAS/CNS TR-2002-011 Parsons & Carpenter 30

Figure!4. Class adjustment via (a) post-processing by a voting filter (prior probability method),
(b) reducing class fraction roofs (pink overlay) from 30% (overestimated) to 14% (prior
probability method), and (c) reducing false alarm rate of non-red cars (blue overlay) from 10%
to 0.2% (validation method). Color code for (a): red – red car, light gray – non-red car, pink –
roof, dark gray – road, white – foot path, dark green – grass, light green – tree.

(b)

(c)

(a)

CAS/CNS TR-2002-011 Parsons & Carpenter 31

(a) (b)

Figure 5. Whole map production. (a) Monterey image. (b) Map of target classes. A single
default ARTMAP network was trained to recognize the eight classes, using validation and post-
processing by a voting filter. Training was performed on pixels from strips 1, 2, and 4, with
validation on pixels from strip 3.

