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Abstract - Classifying novel terrain or objects from sparse,
complex data may require the resolution of conflicting
information from sensors working at different times, locations,
and scales, and from sources with different goals and situations.
Information fusion methods can help resolve inconsistencies, as
when evidence variously suggests that an object’s class is car,
truck, or airplane. The methods described here consider a
complementary problem, supposing that information from
sensors and experts is reliable though inconsistent, as when
evidence suggests that an object’s class is car, vehicle, and man-
made. Underlying relationships among objects are assumed to
be unknown to the automated system or the human user. The
ARTMAP information fusion system uses distributed code
representations that exploit the neural network’s capacity for
one-to-many learning in order to produce self-organizing expert
systems that discover hierarchical knowledge structures. The
system infers multi-level relationships among groups of output
classes, without any supervised labeling of these relationships.

Keywords: ARTMAP, Adaptive Resonance Theory (ART),
information fusion, image fusion, data mining, remote sensing,
distributed coding, association rules, multi-sensor fusion.

1 Introduction: Deriving consistent
knowledge from inconsistent information

Image fusion has been defined as “the acquisition,
processing and synergistic combination of information
provided by various sensors or by the same sensor in
many measuring contexts.” [1, p. 3] When multiple
sources provide inconsistent data, fusion methods are
called upon to select the accurate information
components. As quoted by the International Society of
Information Fusion
(http://www.inforfusion.org/terminology.htm):
“Evaluating the reliability of different information sources
is crucial when the received data reveal some
inconsistencies and we have to choose among various
options.” For example, independent sources might label
an identified vehicle car or truck  or airplane. A fusion
method could address this problem by weighing the

confidence and reliability of each source, merging
complementary information, or gathering more data. In
any case, at most one of these answers is correct.

The methods described here address a complementary
and previously unexamined aspect of the information
fusion problem, seeking to derive consistent knowledge
from sources that are inconsistent – but accurate. This is a
problem that the human brain solves very well. A young
child who hears the family pet variously called Spot,
puppy, dog, dalmatian, mammal, and animal is not only
not alarmed by these labels but readily uses them to infer
functional relationships. An analogous problem for
information fusion methods seeks to classify the terrain
and objects in an unfamiliar territory based on intelligence
supplied by several reliable experts. Each expert labels a
portion of the region based on sensor data and
observations collected at specific times and based on
individual goals and interests. Across experts, a given
pixel might be correctly but inconsistently labeled car,
vehicle, and man-made. A human mapping analyst would,
in this case, be able to apply a lifetime of experience to
resolve the paradox by placing objects in a knowledge
hierarchy, and a rule-based expert system could be
constructed to codify this knowledge.

The current study shows how an ARTMAP neural
network can act as a self-organizing expert system to
derive hierarchical knowledge structures from inconsistent
training data. This ability is implicit in the network’s
learning strategy, which creates one-to-many, as well as
many-to-one, maps of the input space. During training, the
system can learn that disparate pixels map to the output
class car; but, if similar or identical pixels are later
labeled vehicle or man-made, the system can associate
multiple output classes with a given input. During testing,
distributed code activations predict multiple output class
labels. A rule-production algorithm uses these distributed
outputs to derive a knowledge hierarchy for the output
classes. The resulting diagram of the relationships among
classes can then guide the construction of consistent
layered maps.
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Sec. 2 outlines how distributed coding in the default
ARTMAP network supports many-to-one and one-to-
many learning. Sec. 3 describes a remote sensing testbed
example, with sensor data from the Boston area. Sec. 4
specifies the algorithm that derives hierarchical
knowledge structures from the trained network’s
distributed output class predictions, and Sec. 5
demonstrates system performance on multiband sensor
data derived from the Boston area. Sec. 6 points to the
application of ARTMAP fusion methods in other
application domains.

2 Multi-class predictions by ARTMAP
networks
Adaptive Resonance Theory (ART) neural networks
model real-time prediction, search, learning, and
recognition. ART networks function both as models of
human cognitive information processing (e.g., [2–7]) and
as neural systems for technology transfer (e.g., [8–10]).
Sites of early and ongoing transfer of ART-based
technologies include industrial venues such as the Boeing
Corporation [11]. A recent report on industrial uses of
neural networks [12] states:  “[The] Boeing … Neural
Information Retrieval System is probably still the largest-
scale manufacturing application of neural networks. It
uses [ART] to cluster binary templates of aeroplane parts
in a complex hierarchical network that covers over
100,000 items, grouped into thousands of self-organised
clusters. Claimed savings in manufacturing costs are in
millions of dollars per annum.”

Design principles derived from scientific analyses and
design constraints imposed by targeted applications have
jointly guided the development of many variants of the
basic networks, including fuzzy ARTMAP [13],
simplified fuzzy ARTMAP [14], ART-EMAP [15],
ARTMAP-IC [16], Gaussian ARTMAP [17], and
distributed ARTMAP [18]. Across many variations of
these models, a neural computation central to both the
scientific and the technological analyses is the ART
matching rule [19], which represents the interaction
between top-down learned expectation and bottom-up
sensory input. This interaction creates a focus of attention
which, in turn, determines the nature of stored memories.

While the earliest unsupervised ART [19] and
supervised ARTMAP networks [20] feature winner-take-
all code representations, many of the networks developed
over the past ten years incorporate distributed code
representations. Comparative analyses of these systems
have led to the specification of a default ARTMAP
network, which features simplicity of design and robust
performance in many application domains [21]. Selection
of one particular a priori algorithm is intended to facilitate
technology transfer. This network, which here serves as
the recognition engine of the information fusion system,
uses winner-take-all coding during training and distributed
coding during testing. Distributed test outputs have helped
improve various methods for categorical decision-making.
One such method, in a map production application,

compares a baseline mapping procedure, which selects the
class with the largest total output, with a procedure that
enforces a priori output class probabilities and one that
selects class-specific output thresholds, via validation
[22]. Distributed coding supports each method, but the
ultimate prediction is still one output class per test input.
This paper also specifies a canonical training / testing
method, which partitions the area in question into four
vertical or horizontal strips. A given simulation takes
training pixels from two of these strips; uses the validation
strip to choose parameters, if necessary; and tests on the
fourth strip. Methods are thus compared with training and
test sets that are not only disjoint but drawn from
geographically distinct locations. This separation tests for
generalization to new regions, where class distributions
could typically be far from those of the training and
validation sets.

Fig. 1. Boston image testbed representation of
preprocessed image:  The city of Revere is at the center,
surrounded by (clockwise from lower right) portions of

Winthrop, East Boston, Chelsea, Everett, Malden,
Melrose, Saugus, and Lynn. Logan Airport runways

and Boston Harbor are at the lower center, with Revere
Beach and the Atlantic Ocean at the right. The Saugus

and Pines Rivers meet in the upper right, and the
Chelsea River is in the lower left of the image.

Landsat 7 spectral band values were acquired from the
Earth Resources Observation System (EROS) Data
Center, U.S. Geological Survey, Sioux Falls, SD

(http://edc.usgs.gov/). Dimensions:  180 x 300 pixels
(30m/pixel resolution) 

� 

≅  5.4 km x 9 km.
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The information fusion techniques summarized below
modify the baseline mapping procedure by allowing the
system to predict more than one output class during
testing. A given pixel either predicts the N  classes
receiving the largest net system outputs or predicts all
classes whose net output exceeds a designated threshold

� 

Γ . For either multi-class prediction method, the parameter
N or 

� 

Γ  is chosen from the validation strip.

3 Boston testbed example

The Boston  testbed (Fig. 1) was derived from a Landsat 7
Thematic Mapper (TM) image acquired on the morning of
January 1, 2001. The 5.4km x 9km area includes portions
of northeast Boston and suburbs. The resolution of the
Boston image is 30m2 in six TM bands, 60m2 in two
thermal bands, and 15m2 in one Panchromatic band. The
Boston image region encompasses mixed urban, suburban,
industrial, water, and park spaces. Ground truth pixels
were labeled:  ocean , ice , river, beach , park, road,
residential, industrial , water , open space, built-up,
natural, man-made.

Inputs for the Boston example were preprocessed by a
version of the Lincoln Lab image mining system [23-25],
called the Neural Fusion Module, which was developed
by Waxman and colleagues working in the CNS
Technology Laboratory during 2001-2002 [26, 27]. For
each pixel in the Boston image, this Module, implemented
on an ERDAS Imagine (http://gis.leica-geosystems.com)
platform, produced a 41-dimensional input vector
representing local contrast, color, and texture attributes.

4 Deriving a knowledge hierarchy from a
trained network:  Predictions, rules, and
graphs

The ARTMAP fusion system provides a canonical
procedure for labeling an arbitrary number of output
classes in a supervised learning problem. A critical aspect
of the embedded default ARTMAP network is the
distributed nature of its internal code representation,
which produces continuous-valued test set predictions
distributed across output classes (Sec. 2). Following a
canonical partitioning procedure, each image was divided
into four vertical strips. In the Boston example, training
pixels were drawn from strips 1 and 3, validation pixels
from strip 4, and test pixels from strip 2. Note, for
example, the different distributions of the water class
across vertical strips in the image (Fig. 1). Each training
set contained a fixed number of pixels for each output
class; or, for rare classes such as road, the training set
contained all pixels available in the labeled ground truth
subset of the training strip.

Information implicit in the distributed predictions of a
trained ARTMAP network can be used to generate a
hierarchy of output class relationships. To accomplish
this, each test set pixel first produces a set of

output class predictions (Sec. 4.1). The resulting list of
test predictions then determines a list of rules   

� 

x ⇒ y ,
which define relationships between pairs of output classes,
with each rule carrying a confidence value (Sec. 4.2). The
rules are then used to assign classes to levels, with rule
antecedents x at lower levels and consequents y at higher
levels (Sec. 4.3). Classes connected by arrows that codify
the list of rules and confidence values form a graphical
representation of the knowledge hierarchy.

Fig. 2.  Default ARTMAP notation:  An M-D feature
vector a is complement coded to form the 2M-D

ARTMAP input A. Vector y represents a winner-take-
all code during training, when a single category node
(j=J) is active; and a distributed code during testing.
With fast learning, bottom-up weights 

  

� 

wij  equal top-

down weights 
  

� 

w ji , both represented by weight vector

wj. Each coding node j is connected to a single output
class node k, for which 

  

� 

Wjk =1. A distributed code y

thereby produces predictions   

� 

σ k  distributed across
output classes. In all simulations reported here, the
baseline vigilance matching parameter is set to its

default value,   

� 

ρ = 0 . [21]
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4.1  Predictions

In response to a test input, distributed activations in the
default ARTMAP coding field send a net signal   

� 

σ k  to
each output class k (Fig. 2). Competitive normalization of
the code y implies that the total system signal to all output
classes is also normalized:

  

� 

σ k
k
∑ = [ yj ]

j :Wjk =1
∑

k
∑ =

  

� 

y j
j
∑ =1

A baseline method predicts the single output class k=K
receiving the largest signal   

� 

σ k . Alternatively, a single test
input can predict multiple output classes, according to two
methods tested here. A threshold method predicts all
output classes k for which   

� 

σ k  exceeds a signal threshold

� 

Γ . A TopN method forces each pixel to choose the N
classes with the largest signals   

� 

σ k .
The optimal value of the prediction parameter 

� 

Γ  or N
is estimated from a subset of pixels drawn from the
images’s validation strip. Recall that the ground truth set
may assign any number of output class labels to a given
pixel, but that the system has no knowledge of multi-class
relationships during its incremental learning phase.
During testing, each input pixel tends to make more
predictions as the threshold 

� 

Γ  for the distributed output
pattern decreases (or as the number of TopN predictions
increases). Typically, a high threshold 

� 

Γ  yields few
predictions per pixel, but these few predictions are likely
to be “correct,” or hits , i.e., they are among those
specified by the ground truth set. A high prediction
threshold thus implies low recall, defined as the average
across pixels  of  the  number  of  hits  divided by the total
number of labels specified by the ground truth set; but
high precision, defined as the average across pixels of the
number of hits divided by the number of labels predicted
by the network. Conversely, a low threshold 

� 

Γ  tends to
discover most of the output classes in the ground truth set,
producing a high recall rate; but at a cost of predicting

Fig. 3.  On validation subsets of the Boston testbed,
increasing the number N of predicted output classes per
pixel, or decreasing the output threshold 

� 

Γ , produces
higher rates of recall (■) but lower precision (●). The

    

� 

F1 measure (◆) trades-off the competing goals of high
precision and high recall, to produce estimates of the
optimal prediction parameter values. Vertical lines

indicate values of N and 

� 

Γ  for simulations in Sec. 5.

many additional, incorrect classes, producing low
precision.

Values of 

� 

Γ  and N are chosen so as to generate as many
of the ground truth labels as possible (high recall) without
sacrificing accuracy (high precision). A common method
for balancing these two goals maximizes the     

� 

F1 measure
[28, 29], which is defined as:

    

� 

F1 = 2
precision× recall
precision + recall

Note that     

� 

F1 is symmetric with respect to recall and
precision, and lies between these two quantities; and that
at the cross-over point where precision equals recall,     

� 

F1
equals their common value.

Fig. 3 illustrates how recall, precision, and     

� 

F1 values
vary on validation subsets of pixels drawn from the
Boston image with increasing N, for the TopN prediction
method, and with decreasing output class thresholds 

� 

Γ .
Graphs of recall and precision derived from a validation
subset of the Boston testbed point to optimal values of
N=3 and Γ ≅ 0.11 , each being close to the crossover point
where recall equals precision and to the peak of the graph
of     

� 

F1.

4.2  Rules

Based on the validation set analysis of recall and precision
(Sec. 4.1), a user determines a prediction parameter equal
to a fixed number N  of output classes per pixel or an
output signal threshold 

� 

Γ . Each test pixel produces a set
of output class predictions     

� 

x, y,…{ }  from its distributed
signals   

� 

σ k , according to the chosen method. The list of
all multi-class test set predictions is then used to deduce a
list of output class implications of the form   

� 

x ⇒ y , each
carrying a confidence value C %. This rule-creation
method is related to the Apriori algorithm of Agrawal and
Srikant [30, 31] for generating data mining association
rules.

The following steps derive the list of rules. The
algorithm introduces an equivalence parameter e% and a
minimum confidence parameter c%. Two classes x and y
are treated as equivalent 

  

� 

x ≡ y( )  if both rules   

� 

x ⇒ y  and

  

� 

y ⇒ x  hold with confidence greater than e. In this case,
the class predicted by fewer pixels is ignored in
subsequent computations, but equivalent classes are
displayed as a single node on the final rule summary
graph. Rules with low confidence (C < c) are ignored,
with one exception:  if all rules that include a given class
have confidence below c, then the list retains the rule
derived from the pair predicted by the largest number of
pixels. Although this “no extinction” clause may produce
low-confidence rules, these tend to correspond to cases
that are rare but important. The user can easily take these
exceptions under advisement, since the graph displays
each confidence value.

Reasonable default values set the equivalence parameter
e  between 90-95%, and the minimum confidence
parameter c between 50-70%. In all simulations shown
here e=91% and c=50%. Alternatively, e and c may
chosen by validation.
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Rule Step 1 List the number of test set pixels
predicting each output class x. Order this list from the
classes with the fewest predictions to the classes with the
most.

Rule Step 2 List the number of test set pixels
#(x & y) simultaneously predicting each pair of distinct
output classes. Omit pairs with no such pixels. Order the
list so that #(x ) ≤ #(y):  classes x  observe the order
established in Rule Step 1; and for each such class x,
classes y observe the same order.

Rule Step 3 Identify equivalent classes, where   

� 

x ≡ y
if [#(x & y) / #(y)]≥e%. Remove from the list all class
pairs that include x.

Rule Step 4 Each pair remaining on the list produces
a rule   

� 

x ⇒ y  with confidence C% = [#(x & y) / #(x)]. If
Rule Step 3 determined that   

� 

x ≡ y, record the confidence
C ≥ e  of each rule in the pair {  

� 

x ⇒ y ,   

� 

y ⇒ x}.

Rule Step 5 Remove from the list all rules with
confidence C < c. Exception (no extinction):  If all rules
that include a given class have confidence below the
minimum confidence c , then retain the rule or rules

  

� 

x ⇒ y  with maximal #(x & y) pixels.

Rule Step 6 The following optional information may
be useful for purposes of analysis.

(a) List rules removed in Rule Step 5 that have
confidence in a marginal range, say     

� 

10% ≤ C < c.
(b) List class pairs x & y (from Rule Step 2) with
equivalence values in a marginal range. For example,
list the rule pairs {  

� 

x ⇒ y ,   

� 

y ⇒ x} for class pairs
x & y for which c ≤ [#(x & y) / #(y)] < e.   

Fig. 4.  Boston testbed knowledge hierarchies derived by the ARTMAP fusion system for prediction parameters
corresponding to peak     

� 

F1 validation set values:  (a) The threshold 

� 

Γ =0.11 produces all the correct rules except beach

� 

⇒ natural (C=19%); plus eight other marginal rules and five marginal equivalence relations, all incorrect. (b) Setting
N=3 produces all the correct rules; plus five marginal rules and three marginal equivalence relations, all incorrect.
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4.3  Graphs

A directed graph summarizes the list of rules derived in
Sec. 4.2. These rules suggest a natural hierarchy among
output classes, with antecedents sitting below
consequents. For each rule   

� 

x ⇒ y , class x is located at a
lower level of the hierarchy than class y, according to the
iterative algorithm below. Once each class is situated on
its level, a listed rule   

� 

x ⇒ y  produces an arrow from x to
y. Each rule’s confidence is indicated by the arrow, with
lower-confidence rules (say C<95%) portrayed by dashed
arrows. For arrows with no displayed confidence values,
C=100%.

The following steps assign each output class to a level.

Top Level Items that appear only as consequents y.

Level 1 Classes that do not appear as consequents in
any rule.
Remove from the list all rules   

� 

x ⇒ y  where
x is in Level 1.

Next Level Classes that do not appear as consequents in
any remaining rule.
Remove from the list all rules   

� 

x ⇒ y  where
x is in this level.

Iterate Repeat until all rules have been removed
from the list.

Note that Level 1 includes classes that do not appear in
any rule as well as those that appear only as antecedents.

Fig. 5. Boston graphs for prediction parameter values with high precision but low recall:  (a) The too-high threshold

� 

Γ=0.15 produces the incorrect equivalence relation water ≡  natural. A slightly higher value of the equivalence
parameter e would have restored the rule water 

� 

⇒ natural, and produced a graph that more closely reflects the true
hierarchy. Note that the no-extinction clause in Rule Step 5 preserves the correct (but low confidence) rules

ice 

� 

⇒ water and ice 

� 

⇒ natural.  (b) The too-small output class number N = 2 misses a number of rules, but still
discovers at least part of the true three-level hierarchy.



5 Graphical representations of knowledge
hierarchies

Graphs in Fig. 4 depict the rules derived for the Boston
example with prediction parameters set to the optimal
levels chosen by validation. Graphs in Fig. 5 show how
performance deteriorates when parameters are set above
or below their optimal values.

5.1 Optimal prediction parameters for the Boston
testbed

Setting 

� 

Γ  = 0.11 maximizes the     

� 

F1 measure for the
Boston image (Fig. 3). Fig. 4a shows that this threshold
value places each class in its correct level, and discovers
all the correct rules except for beach 

� 

⇒ natural.
For the TopN method, setting     

� 

N = 3 (Fig. 4b) produces
all the correct rules in a complete graph. Note that in the
Boston ground truth set, road pixels are also labeled man-
made, while all other ground truth pixels have three class
labels.

5.2 Sub-optimal prediction parameters for the
Boston testbed

Fig. 5a shows that, with the high threshold 

� 

Γ=0.15, the
ARTMAP fusion system misses the rule

  

� 

open space ⇒ natural  in the Boston example. It therefore
equates natural with water. Note that the (correct) rule
pair {  

� 

ice ⇒ natural ,   

� 

ice ⇒ water } is included in the
graph despite its low confidence (C = 46% ). This is due to
the no-extinction clause in Rule Step 5 (Sec. 4.2), which
ensures that the rule with maximal confidence involving
each class survives pruning. Despite the high output
threshold, the system is able to infer the transitive
relationships residential 

� 

⇒ built-up 

� 

⇒ man-made and
industrial 

� 

⇒ built-up 

� 

⇒ man-made.
Compared to the threshold method with Γ =0.15,

setting    

� 

N = 2 produces even fewer rules, and a somewhat
different graph (Fig. 5b). All specified rules are again
correct. The     

� 

N = 2 system also correctly derives the
transitive relationship residential 

� 

⇒ built-up 

� 

⇒ man-
made.

6 Conclusion:  ARTMAP information
fusion
The ARTMAP neural network produces one-to-many
mappings from input vectors to output classes, as well as
many-to-one mappings, as the normal product of its
supervised learning laws. During training, a given input
may be associated with more than one output class. Some
of these associations could be erroneous:  when different
observers label an image dog, coyote, or wolf, at most one
of these classes is correct. Inconsistent data may,
however, be completely correct, as when observers
variously label the image wolf, mammal, and carnivore.
By resolving such paradoxes during everyday knowledge
acquisition, humans naturally infer complex, hierarchical

relationships among classes without explicit supervision.
One-to-many learning allows the ARTMAP information
fusion system to associate any number of output classes
with each input. Although inter-class relationships are not
specified with the training inputs, the system readily
derives knowledge of the rules, confidence estimates, and
multi-class hierarchical relationships from patterns of
distributed test predictions.

The testbed example from the Boston image
demonstrates how ARTMAP information fusion resolves
apparent contradictions in input pixel labels by assigning
output classes to levels in a knowledge hierarchy. This
methodology is not limited to the image domain illustrated
here, and could be applied, for example, to infer patterns
of drug resistance from medical data or to improve
marketing suggestions to individual consumers.
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