
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Neural Networks 20 (2007) 1109–1131
www.elsevier.com/locate/neunet

CONFIGR: A vision-based model for long-range figure completion

Gail A. Carpenter∗, Chaitanya Sai Gaddam, Ennio Mingolla

Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA

Received 14 February 2007; received in revised form 27 September 2007; accepted 27 September 2007

Abstract

CONFIGR (CONtour FIgure GRound) is a computational model based on principles of biological vision that completes sparse and noisy image
figures. Within an integrated vision/recognition system, CONFIGR posits an initial recognition stage which identifies figure pixels from spatially
local input information. The resulting, and typically incomplete, figure is fed back to the “early vision” stage for long-range completion via
filling-in. The reconstructed image is then re-presented to the recognition system for global functions such as object recognition. In the CONFIGR
algorithm, the smallest independent image unit is the visible pixel, whose size defines a computational spatial scale. Once the pixel size is fixed,
the entire algorithm is fully determined, with no additional parameter choices. Multi-scale simulations illustrate the vision/recognition system.
Open-source CONFIGR code is available online, but all examples can be derived analytically, and the design principles applied at each step
are transparent. The model balances filling-in as figure against complementary filling-in as ground, which blocks spurious figure completions.
Lobe computations occur on a subpixel spatial scale. Originally designed to fill-in missing contours in an incomplete image such as a dashed
line, the same CONFIGR system connects and segments sparse dots, and unifies occluded objects from pieces locally identified as figure in the
initial recognition stage. The model self-scales its completion distances, filling-in across gaps of any length, where unimpeded, while limiting
connections among dense image-figure pixel groups that already have intrinsic form. Long-range image completion promises to play an important
role in adaptive processors that reconstruct images from highly compressed video and still camera images.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Multi-scale image completion; Filling-in; Occlusion; BCS/FCS; Computer vision

1. Completing, connecting, and uniting image figures

In the process of recognizing objects, the human visual
system encounters long-range featural gaps, derived from
physiology, occlusion, and image sparseness. Early visual
areas V1-V2-V4 compensate for such gaps by completing
boundaries and filling-in features, as modeled, for exam-
ple, by the Boundary Contour System/Feature Contour Sys-
tem (BCS/FCS) neural network (Cohen & Grossberg, 1984;
Grossberg & Mingolla, 1985a, 1985b) and its many exten-
sions.

The initial goal of the CONFIGR (CONtour FIgure
GRound) project was to define a ready-to-use system for large-
scale image completion that would build upon the function
and design of the BCS/FCS model family. While partially
accomplishing this goal, CONFIGR embodies substantially

∗ Corresponding author. Tel.: +1 617 353 9483; fax: +1 617 353 7755.
E-mail addresses: gail@cns.bu.edu (G.A. Carpenter), gsc@cns.bu.edu

(C.S. Gaddam), ennio@cns.bu.edu (E. Mingolla).

distinct design principles and functional capabilities. The
new model carries out long-range contour completion via
complementary processes that fill-in both figure and ground.
The same general-purpose system also connects sparsely
represented images (dots) and unifies occluded objects. A
CONFIGR user need choose just one free parameter: the size
of the smallest independent, or “visible,” unit (pixel) in a given
image. Once the pixel size, and hence the computational spatial
scale, is specified, the algorithm is fully determined, even
analytically computable. Intrinsic self-limiting mechanisms
prevent spurious completions while permitting unimpeded
filling-in across arbitrary distances.

In the experimental domains of perceptual psychophysics
and cognitive neuroscience, CONFIGR filling-in more closely
resembles amodal completion (e.g., filling-in of occluded
contours and surfaces) than modal completion (e.g., filling-
in of perceived brightness) (Pessoa & De Weerd, 2003).
In the technological domains of sensor design and image
reconstruction, CONFIGR suggests new algorithms for signal
recovery from incomplete and inaccurate measurements

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.10.002



Author's personal copy

1110 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

(a) Fine scale. (b) Coarse scale.

Fig. 1. (a) Road pixels (dark) in the benchmark Monterey image were initially
located by an ARTMAP network using local visual features (Parsons &
Carpenter, 2003). At this finest available spatial scale, CONFIGR completes
figure contours (light pixels). (b) The coarse-scale image was created from
2 × 2 blocks of fine-scale pixels. At the coarse scale, CONFIGR fills-in road
segments that it missed at the fine scale (circles), but misses contours that
connect isolated pixels at the fine scale (ellipses).

Fig. 2. ((a), (b)) Completion: Where is the road? In an image detail from
Fig. 1(a), CONFIGR completes the figure road. ((c), (d)) Connection: Where
are the links? CONFIGR connects 40 random dots. The original figure covers
0.1% of a 200 × 200 pixel square. ((e), (f)) Union: Where is the horse? For
an image inspired by Magritte’s painting Blank Check, CONFIGR unifies the
occluded object.

(Candes, Romberg, & Tao, 2006), with potential applications to
compressive imaging with sparse representations (Takhar et al.,
2006) and new camera designs.

Fig. 1 shows how CONFIGR and ARTMAP (Carpenter,
2003; Carpenter, Grossberg, Markuzon, Reynolds, & Rosen,
1992) can work together in an integrated multi-scale
vision/recognition system. This simulation illustrates how the
system solves a potentially circular problem for a completion
mechanism faced with a complex image, namely:

Before object recognition takes place, how does the
system know what should connect with what?

CONFIGR addresses this problem by assuming that recognition
precedes, as well as follows, “early” vision, a sequence now
also being explored in the experimental literature (Ahissar &
Hochstein, 2004). Inputs to the long-range completion portions
of the model are the result of the initial recognition step, which
identifies figure pixels based on spatially local features. The
vision system then completes the figure, thereby preparing it for
global recognition. Various target classes might be defined as
figure, as could pixel subsets of a given depth, color, or texture.

In Fig. 1(a), the recognition system first identifies road
pixels from local features derived from the sensor input. The
resulting image (dark pixels) contains many gaps caused by
cars, overhanging trees, shadows, and errors. Initial road pixel
locations are fed back to the CONFIGR vision system, which
carries out long-range figure completion (light pixels).

Fig. 1(b) illustrates supplementary filling-in of the Monterey
road figure at a coarser spatial scale, which merges 2 × 2
fine-scale pixel squares into one pixel via a simple smoothing
algorithm. At the coarse scale, CONFIGR completes many of
the gaps that the fine scale missed (circles). However, because
the coarse scale treats isolated fine-scale pixels as noise, it
erases many of the isolated figure pixels that form coherent
connected contours (ellipses).

The Monterey simulation example suggests a strategy for
multi-scale CONFIGR completion that defines the completed
figure as the sum of the original image-figure pixels plus
completions made at each plausible spatial scale. Note that the
CONFIGR algorithm is identical across scales, once the pixel
size is fixed.

Fig. 2(a), (b) shows a detail of fine-scale Monterey road
pixels, and their CONFIGR completions. This image fragment
(around the lowest ellipse in Fig. 1(a)) illustrates filling-in of a
road that surrounds a building. At coarser spatial scales, nearly
all of the initial road pixels, and hence their completions, are
missing (Fig. 1(b)). Note, too, the absence of spurious figure
completions in and around nearby paved areas.

The same CONFIGR algorithm that completes contours
also connects random dots, with any degree of separation,
forming coherent clusters (Fig. 2(c), (d)); and unites an
occluded object (Fig. 2(e), (f)). Details of these and other
examples illustrate CONFIGR mechanisms throughout the
article. Sections 2 and 3 define the CONFIGR computational
elements, and Section 4 specifies the algorithm. Section 5
illustrates the system’s components with analytically computed
examples, and Section 6 shows CONFIGR simulations,



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1111

Fig. 3. Image pixels at three spatial scales: (a) fine, (b) medium, and (c) coarse. Each coarser-scale pixel is created from a 2 × 2 square of pixels in a finer-scale
image via a smoothing algorithm. A coarser-scale pixel is labeled image-figure if the number of finer-scale image-figure pixels in the 2 × 2 square, plus half the
number of image-figure pixels among the surrounding 12, is at least three.

including multi-scale Monterey examples and images where
the random dots are denser than Fig. 2(c), (d). CONFIGR
algorithm code is available in Matlab and C++ from
http://cns.bu.edu/techlab/CONFIGR/. Section 7 discusses the
special case of images that are exactly aligned with the vertical
and horizontal computational directions of the algorithm, and
Section 8 indicates future directions.

2. Figure, ground, and spatial scale

The first step of the CONFIGR algorithm is the specification
of a computational spatial scale. This choice entails defining an
integral square image unit, or pixel. For a given image, fewer
pixels produce a coarser scale and more pixels produce a finer
scale (Fig. 3). The pixel serves as the smallest independent, or
“visible,” unit of the image. The side of a pixel defines one unit
of length.

The spatial scale (or, equivalently, the number of pixels in
the image) is the only CONFIGR free parameter. Once this
scale is fixed, system dynamics are fully determined and are,
in fact, analytically computable. The same parameter-free com-
putational algorithm serves for problems of completion, con-
nection, and occlusion across all spatial scales. Parameter inde-
pendence reflects the fact that CONFIGR is based on a minimal
set of principles that produce a specified set of functional ca-
pabilities. It also promotes ease of use in a variety of image
processing applications. Earlier BCS/FCS implementations, in
contrast, typically required image-specific parameter selection,
e.g., Gove, Grossberg, and Mingolla (1995, Appendix) and
Mingolla, Ross, and Grossberg (1999, Table 1).

Pixels are initially labeled as image-figure or image-ground.
This labeling may be the result of a pattern recognition
procedure that identifies the initial set of figure pixels based
on features that are spatially local. Alternative criteria for
image-figure labels include color, depth, or edges. CONFIGR
completes missing figure portions by relabeling some image-
ground pixels as filled-figure or filled-ground (Fig. 4). The
final figure at a given spatial scale is taken to be the sum of
image-figure and filled-figure pixels. Complementary filling-
in at different scales (Fig. 1) suggests a default strategy of
summing filled-figure pixels across spatial scales to form the
final percept.

3. CONFIGR computational elements

The basic CONFIGR architecture is designed to embody the
simplest possible image elements. Accordingly, computations

Fig. 4. CONFIGR pixel labels: image-figure (dark grey), filled-figure (lighter
grey), image-ground (light grey texture), and filled-ground (white). The image
shows the result of CONFIGR filling-in of three figure and eleven ground
pixels, starting with five image-figure pixels. The Monterey fine-scale example
(Fig. 1(a)) includes a similar configuration, with the image-figure pixels initially
identified as road by the spatially local recognition system, and the final figure
pixels forming a connected contour.

are restricted to vertical and horizontal directions. System
analysis explores the computational capabilities of this minimal
model system, whose limits suggest directions for future
development—CONFIGR 2++ (Section 8).

The computational elements that work together to define the
CONFIGR model are now defined.

3.1. Rectangles, subpixels, and the grid

Defined by vertical and horizontal pixel boundaries, all
CONFIGR image components are sums of rectangles. The size
of a rectangle equals its height plus its width, with length
measured in numbers of pixels along edges.

The smallest independent image rectangle is a pixel. Since
one unit of length is defined as equal to the side of a pixel,
the size of a pixel equals two at each spatial scale. Each pixel
corresponds to a 5×5 array of square subunits, called subpixels,
aligned as shown in Fig. 5. A grid subpixel is centered at the
meeting point of four image pixels. CONFIGR system values
at grid subpixels determine filling-in decisions.

3.2. Simple and complex cells

Together with left or right (for vertical) and up or down
(for horizontal), the two CONFIGR directions produce four



Author's personal copy

1112 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 5. Each pixel overlaps 16 full subpixels (interior), 16 half subpixels
(border), and 4 quarter subpixels (grid).

Fig. 6. N, S, E, and W simple cell receptive fields, with shaded activation
masks. The dimensionless activation threshold ∈ [

1
4 , 1

3 ). A dark-light bar in a
center subpixel indicates the east or west (vertical) or north or south (horizontal)
orientation of an active simple cell.

orientations: west (W) or east (E) and north (N) or south
(S). To calculate the local orientations of the initial image-
figure boundaries, each subpixel is associated with a set of
simple cells, one for each orientation (N, S, E, W). For each
orientation, the 3 × 3 subpixel square centered on the simple
cell’s image subpixel is its receptive field.

A simple cell’s activation is determined by the image-figure
pixels intersecting its receptive field. A simple cell sums image-
figure subpixel fractions (+ or −) within its receptive field
according to its orientation (Fig. 6). Within its receptive field,
an east (E) simple cell, for example, sums image-figure subpixel
fractions to the east of its midline; subtracts from this the image-
figure subpixel fractions to the west of its midline; and divides
this difference by the number of subpixels in the receptive field
(9), to produce an activation ratio ∈ [−

1
2 , + 1

2 ].
A simple cell is (by definition) active if its activation ratio

exceeds a given threshold. The activation threshold is set high
enough (≥1/4) so that simple cells centered at image-figure
corners are not active, but low enough (<1/3) so that simple
cells centered at border subpixels adjacent to these corners are
active (Fig. 7(a)). An east (E) simple cell is active if the net
number of image-figure subpixels to the east of its midline
minus the number to the west is greater than 2.25, or one
quarter the number of subpixels in the receptive field. A north,
south, east, or west simple cell is active at each subpixel on the
boundary between image-figure and image-ground, except for

the grid subpixels that are located at convex or concave image-
figure corners (Fig. 7(b)).

Complex cells sum the activation of two simple cells. That
is, a horizontal complex cell subpixel is active if a north or a
south simple cell is active at that subpixel. A vertical complex
cell subpixel is active if an east or a west simple cell is active at
that subpixel.

Vertical and horizontal complex cells are active in the
same subpixel locations as simple cells (Fig. 7(b)). CONFIGR
computations may be considered to be based upon either sums
of simple cells or sums of complex cells. A light-dark bar that
denotes an active simple cell in a subpixel center also denotes
an active complex cell at the same location.

3.3. Lobe activation and propagation

Starting with BCS/FCS modeling (Cohen & Grossberg,
1984; Grossberg & Mingolla, 1985a, 1985b) and experimental
investigations of the visual cortex (Von der Heydt, Peterhans,
& Baumgartner, 1984), bipole cells have come to be viewed
as fundamental computational units of visual processing. A
typical bipole cell becomes active in response to activity in two
adjacent lobes. Computations like those of bipole cells are key
components of models of association fields (Field, Hayes, &
Hess, 1993) and relatable contours (Kellman & Shipley, 1991).

CONFIGR incorporates particular types of lobes and bipole
cells. This section defines model lobes, and Section 3.4
describes how lobes activate CONFIGR bipole cells. With
computations restricted to N, S, E, and W orientations, lobe
receptive fields can be modeled simply as subpixel strips. A
lobe receptive field consists of a base subpixel and a line
of subpixels extending N, S, E, or W from the base. The
lobe size (3) is the number of subpixels in the line, including
the base (Fig. 8). Initially, lobes receive input from complex
[or simple] cells (iteration #0). Thereafter, a lobe iteratively
receives input from active base subpixels of other lobes with
the same orientation.

A lobe responds at its base subpixel (lobe activation) if at
least two of its three receptive field subpixels receive input
(Fig. 9(a)). Initially, an east or west lobe sums horizontal
complex cell activity in its receptive field; and a north or south
lobe sums vertical complex cell activity in its receptive field. A
pair of perpendicular lobes is then active at each image-figure
corner, and one or two lobes are active at other subpixels on the
image-figure boundary. Where two image-figure pixels touch at
corners, four lobes may be initially active at one base subpixel
(Fig. 9(a), detail).

After initialization, lobes iteratively activate other lobes with
the same orientation (Fig. 9(b)). At each step, a lobe of a
given orientation responds at its base subpixel if lobes of that
orientation are active in at least two of its three receptive field
subpixels. Each iteration computes lobe activations for five
subpixel (one pixel) steps, extending from one grid subpixel to
the next.

In order to avoid spurious boundary effects, CONFIGR
computations are carried only so far as simple cell and lobe
receptive fields fit into the image. A half-pixel fringe suffices.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1113

Fig. 7. Simple and complex cell activations. (a) A simple cell is active if its activation ratio exceeds an activation threshold ∈ [
1
4 , 1

3 ). A dark-light bar indicates the
center of the receptive field of an active simple cell, and a dot indicates an inactive simple cell. (b) Vertical complex cells are active at subpixels where either E or
W simple cells are active, and horizontal complex cells are active where either N or S simple cells are active. Note that simple cells are not active at image-figure
corners.

Fig. 8. Lobe receptive fields. A light or dark bar in a base subpixel indicates an
active lobe, along with its north, south, east, or west orientation.

3.4. Lobe corners and empty rectangles

A classical bipole cell, with lobe receptive fields oriented
180◦ relative to one another, responds most strongly to collinear
groupings. Recently, models (Grossberg & Mingolla, 1987;
Grossberg & Swaminathan, 2004; Hansen & Neumann, 2004)
and experiments (Pasupathy & Connor, 1999) that consider
lobes at other relative orientations have investigated bipole cells
that respond to other angles.

CONFIGR featural filling-in is based on bipole cells with
lobes that are 90◦ relative to one another. A subpixel where
one of these right-angle bipoles is active is called a lobe
corner. A lobe corner (NE, NW, SE, or SW) is a grid
subpixel with perpendicular active lobes (Fig. 10). CONFIGR
defines two mutually exclusive classes of lobe corners: empty
and filled. A lobe corner is empty if the pixel within its
defining perpendicular lobes is image-ground. A lobe corner
is filled if it is not empty; i.e., the pixel within its defining
perpendicular lobes is image-figure or filled-figure or filled-
ground. CONFIGR filling-in converts some empty corners to
filled corners. Once a lobe corner is filled, it remains filled.

CONFIGR defines three mutually exclusive classes of empty
corners: figure, ground, and wall (Figs. 9 and 11). Back-to-back

empty corners are wall corners. An empty ground corner is an
empty corner whose defining perpendicular lobes are flanked
by pixels that are image-figure or filled-figure. For example, an
empty NE lobe corner is an empty ground corner if the pixels
to its north and east are image-figure or filled-figure. An empty
corner that is neither a wall corner nor an empty ground corner
is an empty figure corner. That is, it does not share a lobe with
another empty corner; and at least one flanking pixel is image-
ground or filled-ground.

An empty rectangle is an array of pixels that is spanned by
a diagonal pair of empty lobe corners, neither of which is a
wall corner. In addition, all of the rectangle’s pixels are image-
ground; and at least one lobe is active at each subpixel on the
rectangle’s edges. Fig. 11(b) contains three empty rectangles,
of which one is spanned by a pair of empty figure corners and
two are spanned by empty figure/empty ground corner pairs.
The CONFIGR algorithm specifies which empty rectangles fill
as figure and which fill as ground.

4. CONFIGR algorithm

CONFIGR realizes a set of computational principles, or
rules, that govern lobe propagation and featural filling-in. The
first rule states that formation of an empty corner stops lobe
propagation. The second and third rules specify which empty
rectangles fill as ground and which fill as figure. Other things
being equal, ground fills more quickly than figure, and smaller
rectangles fill before larger ones. An empty rectangle fills as
ground if it contains an empty ground corner or if it is adjacent
to one or more filled-ground pixels. After ground has filled-in
on a given iteration, remaining empty rectangles fill as figure
(Fig. 12). Examples in Section 5 illustrate these rules at work.

The steps of the CONFIGR algorithm will now be described.
Matlab and C++ implementations of this system are available
from: http://cns.bu.edu/techlab/CONFIGR/.

CONFIGR algorithm step 1: Preparing the image



Author's personal copy

1114 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 9. Lobe activation. (a) Each lobe initially sums complex cell activity in its receptive field (iteration #0). After lobe initialization, each image-figure corner
becomes a lobe corner. In this image fragment, initial lobe activation produces eight empty ground corners, one at each of the image-figure concavities. (b) After
lobe initialization, an empty rectangle of size 2 (one pixel) fills as ground (G0). Lobe iteration #1 creates one empty figure corner and two wall corners. The empty
figure corner and its diagonally opposite empty ground corner span an empty rectangle composed of two pixels. Recall that the rectangle’s size (3) equals its height
(2) plus its width (1).

Fig. 10. Lobe corners. (a) Each lobe corner is defined by a pair of perpendicular active lobes, located at a grid subpixel. (b) Complex cell activations around the
pixel shown in Fig. 5. (c) Initial lobe activations. (d) Initial activation produces seven lobe corners at convex and concave image-figure corners. Four of these are
empty and three are filled. The grid subpixel at the lower right contains four lobe corners.

Image: Select a rectangular image.
Choose the spatial scale: Specify the size and location of one
pixel in the designated image.
Storage matrices: Create matrices to store locations and
variable values for pixels, subpixels, grid subpixels, simple and
complex cells, and lobe corners.
Figure and ground: Label each pixel as image-figure (1) or
image-ground (0).

Simple cell activation: At each subpixel and for each
orientation (N, S, E, W), compute the simple cell activation
(1 = active, 0 = inactive).
Complex cell activation: At each subpixel with an active
simple cell, compute the vertical or horizontal complex cell
activation (1 = active, 0 = inactive).

CONFIGR algorithm step 2: Lobe initialization
Lobe iteration number: Set the lobe iteration number to 0.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1115

Fig. 11. Lobe corners, as computed by the CONFIGR algorithm. (a) Lobe initialization produces three empty ground corners, at the concave corners of the image
figure. Each convex corner of the image figure also produces a lobe corner, which is already filled with figure. (b) Lobe iteration #1 produces four new lobe corners,
and three empty rectangles. (c) By the end of iteration #1, two empty rectangles are filled as ground and one is filled as figure. (d) Lobe iteration #2 produces
two back-to-back empty corners (wall corners), and two empty figure corners. The left-hand empty figure corner abuts another lobe corner, but this was filled on
the previous iteration, so neither corner is a wall. Subsequent iterations produce no more lobe corners or filling-in. CONFIGR is thus seen to connect the figure
components without creating spurious completions.

Fig. 12. Filling-in of the multi-scale images from Fig. 3. (a) At the fine spatial scale, CONFIGR connects the left-hand pixel group, forming two connected figure
components. At lobe iteration #1, rectangles of size 2 and 3 fill as ground (G1), then another rectangle of size 3 fills as figure (F1). Three more rectangles (G2) fill
as ground at iteration #2, two because they contain a ground corner and one because it is adjacent to a filled-ground pixel. No pixels fill as figure at the medium (b)
and coarse (c) spatial scales. The lower row shows the final figure components after CONFIGR filling-in.



Author's personal copy

1116 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Lobe activation: At each subpixel and for each orientation
(N, S, E, W), compute the initial lobe activation (1 = active,
0 = inactive).
Lobe corners: Specify each lobe corner type (NE, NW, SE,
SW) and the location of its grid subpixel.
Corner labels: Label each lobe corner as a filled corner or an
empty ground corner.
Empty rectangles: Mark each empty rectangle.
Filling-in as ground: Relabel as filled-ground the pixels of
each empty rectangle.
Update corner labels: Relabel the four lobe corners spanning
each filled rectangle as filled corners.

CONFIGR algorithm step 3: Lobe iterations

LOBE STOPPING RULE: Stop lobe propagation where two
lobes form an empty corner.

Start lobe iterations{
Lobe iteration number: Increase the lobe iteration number by
1.
Lobe activation: At each subpixel and for each orientation (N,
S, E, W), compute the lobe activation (1 = active, 0 = inactive).
Repeat for a total of five subpixel steps.
New corners: For each new lobe corner, specify each lobe
corner type (NE, NW, SE, SW) and the location of its grid
subpixel.
Empty corner labels: Label each new lobe corner as empty
figure, empty ground, or wall. Relabel as wall each existing
empty figure corner that is back-to-back with a new wall corner.
Empty rectangles: List all NW empty corners that are not
walls.
For each listed corner, search for SE empty corners that span
empty rectangles with this lobe corner. When a NW–SE pair of
empty corners spans an empty rectangle, mark it for potential
filling-in on this iteration.

Repeat the search, marking each NE–SW pair of empty
corners that spans an empty rectangle.

Sort the marked rectangles from smallest to largest.

GROUND FILLING RULE: An empty rectangle is eligible
for filling-in as ground if it contains an empty ground corner or
if it shares an edge with one or more filled-ground pixels.

Loop from smallest to largest empty rectangle (filling-in as
ground){

Relabel as filled-ground the pixels of each empty rectangle
that is the size of the loop’s index and that is eligible for filling-
in as ground. Relabel as filled each corner whose defining lobes
are on the border or in the interior of the filled rectangle.

Update corners and rectangles

Relabel wall corners that have become empty figure or empty
ground. For each such corner, add newly created empty
rectangles to the marked list.
Relabel as filled-ground the pixels of each newly created empty
rectangle of size equal to or smaller than the current loop size, if
the rectangle is eligible for filling-in as ground. Relabel newly
filled corners.
Remove from the list of marked rectangles all that are no longer
empty, because they intersect newly filled rectangles.

Iterate corner and rectangle updates until no more changes
occur.

}End empty rectangle loop (filling-in as ground)

FIGURE FILLING RULE: Remaining empty rectangles are
eligible for filling-in as figure.

Loop from smallest to largest empty rectangle (filling-in as
figure){

Relabel as filled-figure the pixels of each empty rectangle
that is the size of the loop’s index. Relabel as filled each corner
whose defining lobes are on the border or in the interior of the
filled rectangle.

Update corners and rectangles

After all rectangles of the loop size have been filled as figure,
relabel affected corners.
Some empty corners that had previously been wall may now be
empty figure or empty ground corners. For each such corner,
add newly created empty rectangles to the marked list. Fill
as ground newly created marked rectangles, if the rectangle
contains an empty ground corner or is adjacent to one or more
filled-ground pixels.
Remove from the list of marked rectangles all that are no longer
empty, because they intersect newly filled rectangles.
Fill as figure each remaining newly created marked rectangle of
size equal to or smaller than the current loop size.
Remove from the list of marked rectangles all that are no longer
empty, because they intersect newly filled rectangles.

Iterate corner and rectangle updates until no more changes
occur.

}End empty rectangle loop (filling-in as figure)
}End lobe iterations

5. CONFIGR algorithm illustrations

Examples in this section illustrate computations of the
CONFIGR algorithm. These results are derived analytically.
Only the Monterey and random dot examples (Section 6) are
produced by computer simulation. Even in such large-scale
examples, each CONFIGR detail can be readily checked by
hand.

5.1. Filling-in as ground

Upon lobe initialization (iteration #0), the only possible type
of empty rectangle is one that is surrounded by image-figure
pixels, with four empty ground corners. As seen in the image
fragment from Fig. 9, such an empty rectangle fills as ground
(Fig. 13(a)).

Lobe iteration #1 produces an empty rectangle of size 3
(Fig. 13(b)). This rectangle contains empty ground corners and
hence fills as ground. The five lobe corners (two ground, two
wall, one figure) within the filled rectangle are then no longer
empty. Diagonal lines run through the grid subpixels that are a
city-block distance of 0, 1, 2, . . . , 10 from the NW image corner.

According to the lobe stopping rule, propagation from the
lower left of the rectangle G1 ceases upon formation of the



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1117

Fig. 13. Filling-in as ground in an image fragment. (a) G0 indicates a rectangle that fills as ground during the lobe initialization step (iteration #0). (b) At iteration #1,
an empty rectangle fills as ground (G1). (c) Lobe activity after iteration #2. Lobe propagation from the lower central corner ceased when that corner formed during
iteration #1.

Fig. 14. Each image shows all the lobe corners and filled rectangles that CONFIGR would ever create, even if the lobe iterations were to continue indefinitely.

empty figure corner. Iteration #2 produces no additional empty
corners or rectangles (Fig. 13(c)). The final CONFIGR figure
consists of the original image-figure pixels, with no additional
pixels filled as figure.

5.2. Filling-in as figure

Fig. 14 illustrates both ground and figure filling-in. In
Fig. 14(a), starting with two image-figure pixels, CONFIGR
creates two empty figure corners on lobe iteration #2. These
corners span an empty rectangle, which fills as figure (F2).
Iteration #3 creates two more empty figure corners, which
span no empty rectangles and never fill-in. In Fig. 14(b), lobe

initialization produces two empty ground corners, at concave
corners of the image figure. Iteration #1 produces one empty
figure corner (upper right), which pairs with one of the empty
ground corners to span an empty rectangle, which fills as
ground (G1). Iteration #2 produces four more empty figure
corners, which span the central empty rectangle (size 4), plus
two overlapping empty rectangles (size 5). After the smallest
of these empty rectangles fills as ground (G2), the larger
rectangles are no longer empty. In Fig. 14(c), active lobes
generated by the opposing image-figure bars form four empty
figure corners at iteration #2. The resulting empty rectangle fills
as figure (F2), completing across the gap.



Author's personal copy

1118 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 15. Collinear grouping examples. In each case, CONFIGR mechanisms
fill-in contours, limit lobe corner creation, and block spurious filling-in. All
filling-in occurs on iteration #1 or #2. In (a) and (e), iterations #3–5 produce
the additional lobe corners shown, but no empty rectangles.

5.3. Collinear groupings

Fig. 15 shows how CONFIGR computes collinear groupings
of image-figure pixels arranged at various spacings and angles.
The system employs different computational mechanisms for
different cases. Fig. 15(b) and (d) create wall corners which
help prevent spurious filling-in. The back-to-back corners in
Fig. 15(e) are never walls, because the left corner is filled at
iteration #2, before the right corner is created (iteration #3). In
these examples, CONFIGR produces no empty ground corners
and no filled-ground pixels.

5.4. Filling-in may relabel empty corners

An algorithmic implementation of the CONFIGR system
needs to respect the fact that filling of an empty rectangle may
change the status of other rectangles. For example, when two
empty rectangles intersect, once the smaller fills, the larger is
no longer empty, as in Fig. 14(b).

Filling-in may also change lobe corner labels. For example,
if one of a pair of corners that form a wall fills-in, the second
wall corner may become an empty ground or empty figure
corner, which might then define a new empty rectangle.

Fig. 16 shows how ground filling-in (iteration #2) may cause
an adjacent wall corner to be relabeled empty figure. At the next
iteration, this corner is one of a pair of empty figure corners that
span an empty rectangle. This rectangle fills as ground (G3)
because of its adjacency to previously filled ground (G2).

The filling-in sequence in Fig. 17, all within iteration #1,
illustrates how an empty rectangle, newly created by lobe

relabeling, might fill immediately thereafter. When the central
rectangle fills as ground (c), two adjacent wall corners become
empty figure (d), creating two new empty rectangles. These
fill immediately (e), because they are smaller than the size
currently being filled within the algorithm’s ground-filling loop.

Fig. 18 illustrates why the CONFIGR algorithm specifies
that a rectangle newly filled as figure may reclassify an
adjacent empty figure corner as an empty ground corner.
Without this relabeling, the large rectangle (G3) would have
filled, unreasonably, as figure. A similar pixel configuration
occurs in the upper right section of the Monterey example
(Fig. 1(a)). Fig. 18 demonstrates the CONFIGR computations
that produced Fig. 4.

The example in Fig. 19(a), (b) is similar to another pixel
combination in the upper right section of the Monterey image.
It shows a second way in which the creation of empty ground
corners during lobe iteration prevents unreasonable filling-in as
figure. If the lobe corner (*) had, instead, been labeled empty
figure, the large central rectangle would have filled as figure on
iteration #5.

Fig. 19(c) serves as a reminder that a concave figure corner is
an empty ground corner only if it is a lobe corner first. Creation
of an empty ground corner after lobe initialization is a relatively
rare but essential feature of the CONFIGR computation. The
40 random dot example (Fig. 2(d)) includes a pair of adjacent
vertical filled rectangles similar to the two in Fig. 19(c).

5.5. CONFIGR component interactions

Figs. 20 and 21 further illustrate how CONFIGR lobe
propagation, empty corner formation, and figure and ground
filling-in work together to complete figures, starting with
various image-figure pixel configurations.

In Fig. 20, for the U-shape, T-junction, and front porch
examples, the final figure pixels are simply the original image-
figure pixels. Both ground and wall corners help prevent
spurious filling-in.

In Fig. 21(a), the central rectangle (size 5) completes as
ground on lobe iteration #1. The upper and lower empty
rectangles (size 2) then immediately fill as ground, because
of their adjacency to filled-ground pixels. With a wider gap
(Fig. 21(b)), CONFIGR produces two intersecting empty
rectangles of size 6 on iteration #2. The horizontal one fills
first as ground. Four wall corners are then relabeled as empty
figure corners, producing the upper and lower empty rectangles
(size 3). These fill as ground, by adjacency. With an even wider
gap (Fig. 21(c)), two rectangles fill as ground at iteration #2.
Iteration #3 produces four empty figure corners and eight wall
corners. The central rectangle (size 7) fills as ground, again by
adjacency.

Fig. 21(d) shows that, without the lower horizontal pixels,
the upper bar in each image completes as figure. Since the
central rectangle fills on a later iteration or not at all, adjacency
does not cause the gap to fill as ground, as it did in (a)–(c). With
the three-pixel gap, the two empty figure corners that emerge
on iteration #3 fill as ground. An adjacent pair of empty figure
corners emerge on iteration #4, but these do not span empty
rectangles.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1119

Fig. 16. Ground filling-in at iteration #2 causes one of the existing wall corners to become an empty figure corner. On iteration #3, this corner helps span an empty
rectangle, which fills as ground.

Fig. 17. Filling-in steps within lobe iteration #1. (a) Lobe initialization
(iteration #0) produced four empty ground corners, and lobe iteration #1
produces six empty figure corners and six wall corners. These corners span
three empty rectangles. (b) The CONFIGR algorithm’s ground-filling loop first
fills the two smallest empty rectangles, each of size 2. (c) The central rectangle
(size 3) then fills as ground. (d) After four wall corners fill, the two remaining
wall corners become empty figure corners, creating two more empty rectangles,
each of size 2. (e) These two rectangles immediately fill, because they are
smaller than the current loop’s rectangle size. They fill as ground because they
are adjacent to ground pixels. Subsequent lobe iterations produce no additional
corners, empty rectangles, or filling-in for this image. (f) The final figure image
is the same as the original image.

5.6. Local computations, global reorganization

The examples in Figs. 22 and 23 illustrate how a single pixel
can qualitatively alter the global figure produced by CONFIGR.
Each series (reading top to bottom, by column) shows the initial
image-figure pixels and the series of lobe corners and filled
rectangles that lead to the final figure.

In Fig. 22(a), the two image-figure pixels at the upper right
form a self-contained unit, which blocks filling-in as figure
elsewhere in the image. Removal of either of these pixels
(Fig. 22(b), (c)) frees the remaining pixels to form a connected

component. In both (b) and (c), iteration #1 produces an empty
ground corner after flanking pixels fill as figure.

Fig. 23 further illustrates how a single image-figure pixel
may reorganize the global figure percept. In Fig. 23(a), the
right-hand pixel anchors a five-pixel grouping which becomes
a self-contained unit, and so blocks filling-in of more figure
pixels. If the five-pixel group were moved to the right, the two
left-hand pixels would connect as a vertical figure component
on iteration #1, but the left and right image sections would
never connect. Fig. 23(b) shows how removing one image-
figure pixel can reshape the global grouping. In Fig. 23(c),
shifting the location of one of the image-figure pixels produces
yet another final figure pattern. Like image (a), adding an
extra image-figure pixel at the right of the bars would produce
ground filling-in only. Similar filling-in patterns would persist
for longer horizontal bars.

6. CONFIGR simulations: Roads, stars, and horses

The small-scale examples of Section 5 demonstrate the
essential role of various mechanisms of the CONFIGR
algorithm. Large-scale simulations now illustrate completion,
connection, and union. Even in a large simulation, each
computational detail can be checked by hand.

The implemented CONFIGR algorithm is available in
Matlab and C++, from http://cns.bu.edu/techlab/CONFIGR/.

6.1. Roads: Completing contours at multiple spatial scales

The Monterey example (Fig. 1) illustrates how a multi-scale
CONFIGR system, starting with noisy image-figure pixels,
can complete contours in order to locate roads in a remotely
sensed image. In large-scale simulations, rectangles filled as
figure are indicated by a diagonal of grey pixels connecting
the two corners lying between the two lobe corners that define
the empty rectangle. In Fig. 14(a), for example, this diagonal
would have connected the NE and SW corners of the filled
rectangle F2. When two corner pairs complete one rectangle
(e.g., Fig. 14(c)), the two intersecting diagonals are shown.
When two filled rectangles are adjacent (e.g., Fig. 19(c)),
two parallel diagonals appear. In multi-scale simulations, all
diagonals are drawn at the fine scale.



Author's personal copy

1120 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 18. Empty ground corner creation within an iteration, going from the smallest to the largest marked rectangle within the filling-in as figure loop of the
CONFIGR algorithm. (a) Iteration #3 produces four empty figure corners, which span empty rectangles of size 4, 6, and 7. (b) The smallest empty rectangle fills first
as figure (F3). (c) One of the lobe corners (*) is relabeled empty ground, since its defining perpendicular lobes are now flanked by figure pixels. (d) The remaining
empty rectangle, which now contains an empty ground corner, immediately fills as ground.

Fig. 19. Empty ground corners created after lobe initialization help prevent spurious filling-in as figure. (a) At iteration #3, two empty rectangles (F3) fill as figure.
The same iteration produces the central wall corners and the lobe corner to their left, which is empty ground because it is flanked by two figure pixel. (b) Iteration #5
produces the central empty rectangle, which fills as ground. If its upper left-hand corner had been an empty figure corner, this large area would have filled as figure,
even though it does not reasonably connect any image-figure pixels. After the large rectangle fills-in, the wall corner it contains becomes filled, and the wall corner
to its right becomes an empty figure corner. The adjacent smaller rectangle then also fills as ground. Subsequent iterations produce no more lobe corners, empty
rectangles, or filling-in. The final figure is an arc of twelve pixels connecting the six original image-figure pixels. (c) For this image, iteration #2 produces four
empty figure corners, which span two empty rectangles that fill as figure (F2). Although the lower filled rectangle touches the corner of an image-figure pixel, the
concave image corner that they surround is not a lobe corner, and hence it is not an empty ground corner. Iteration #3 produces six more empty figure corners, which
span three empty rectangles. The two smallest (which together comprise the third) fill as figure (F3).

Fig. 24 shows a detail of CONFIGR filling-in at the fine and
coarse spatial scales, for a fragment of the Monterey image
located in and around the circle at the upper right. The fine
and coarse scales exhibit complementary filling-in of figure
(road) pixels. At the fine scale (Fig. 24(a)), image-figure details
(concavity) in the central component cause filling-in as ground
on iteration #1. This stops lobe propagation, and so inhibits
connection to the road component located below and to its right.

The coarse scale (Fig. 24(b)) removes the concavity, with
the central image-figure component reduced to a two-pixel
rectangle. This piece connects to the component below and
to its right at iteration #3. On the other hand, coarse-
scale smoothing removes entirely the two-pixel image-figure
rectangle seen above and to the left of the central component
at the fine scale. At the fine scale, this small component
anchors a road intersection, which CONFIGR connects to two



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1121

Fig. 20. Filling-in as ground and figure. Each image shows CONFIGR lobe propagation and corner formation. In each case, additional iterations would produce no
more lobe corners or filling-in.

Fig. 21. Severed squares aligned with the vertical and horizontal lobe axes.



Author's personal copy

1122 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 22. Local perturbation produces global figure reorganization. (a) Within iteration #1, CONFIGR fills-in ground, but no additional figure, for a six-pixel image.
Reading in ten steps (1–10) from top to bottom, then left to right by column, and starting as in the parallel bar example (Fig. 17), the original image (1) produces
four empty ground corners at lobe initialization (2), then 11 empty figure corners and 11 wall corners at iteration #1 (3). Within the ground filling-in loop, two
rectangles of size 2 fill as ground (4), then a rectangle of size 3 fills as ground (5). Filling of wall corners converts two adjacent wall corners to empty figure corners
(6). The resulting empty rectangle of size 2 (lower right) immediately fills as ground, by adjacency to a filled-ground pixel (7). As rectangle size increases within
the filling-in as ground loop, another empty rectangle (size 4) fills as ground (8). This in turn fills more wall corners and thus converts one more corner from wall to
empty figure (9). The resulting empty rectangle of size 2 immediately fills as ground (10). Iteration #2 produces two more empty figure corners between the upper
pixels, but these do not span empty rectangles. (b) Removing one image-figure pixel (upper right) changes the global configuration. Four image-figure pixels join
as a single contour (5) during iteration #1 (3–6). Iteration #2 produces two empty figure corners (7) and an empty rectangle of size 4. The rectangle fills as ground
because it contains the empty ground corner which was relabeled at iteration #1 (6), after two adjacent pixels filled as figure (5). (c) Removing the other image-figure
pixel from the upper right produces the same connected figure on iteration #1 (3–9), but via different CONFIGR mechanisms. Iteration #3 (10) produces one empty
figure corner, but no more filling-in.

nearby image-figure components. The algorithm connects road
components at the lower right in both spatial scales.

Fig. 24(c) superimposes the original fine-scale image-figure
pixels and the CONFIGR road completions from both the fine
and the coarse spatial scales. Note that concavities in the road
component in the upper left inhibit completion at both scales.
The next coarser spatial scale removes the concavity, allowing
this component to connect with the intersecting roads.

6.2. Stars: Connecting dots to form constellations

Fig. 2(c), (d) shows how CONFIGR joins 40 random dots,
representing 0.1% a 200×200 pixel image, to form a connected
figure component. The histogram in Fig. 25 shows the distribu-
tion of iteration numbers at which figure filling-in occurs, rang-
ing from iteration #3 to iteration #38. Six dots connect to one
other dot, 27 connect to two others, and seven connect to three
others. In all, CONFIGR produces 41 figure connections, in-
cluding one double vertical, like Fig. 19(c). This example has
no initial figure concavities, and no filling-in as ground.

The random dot example in Fig. 2(c), (d) indicates that
CONFIGR fill-in across arbitrary unobstructed distances while
applying the same mechanisms for short-range connections.
Although the final connected figure suggests optimization
procedures such as those applied to the Traveling Salesman
Problem, CONFIGR relies on local image-based computations,
not the minimization of a global cost function.

Fig. 26 shows CONFIGR connection of 360 random dots,
which include the previous 40 as a subset and which represent
0.9% of the square image. While most of the dots connect
eventually, the complete figure includes four small self-
contained components and one isolated dot (upper right). With
this denser array of image-figure pixels, CONFIGR fills-in
30 rectangles as ground: 13 on iteration #1 and 17 more
on iterations #2–14. Although the additional dots produce
many more potential connections, filled-ground rectangles
inhibit excessive filling-in as figure. CONFIGR produces figure
connections on iterations #1–23, with the largest number (60)
connecting on iteration #5. The number of figure connections
(466) is more than 15 times the number of ground connections.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1123

Fig. 23. Filling-in at iteration #1 for three related images. Each series starts with the image-figure pixels and ends with the complete set of figure pixels. (a) At
the CONFIGR filling-in stage for a given lobe iteration, ground fills the eligible empty rectangles of all sizes, before any figure fills-in. Thus (5), the horizontal
rectangle (size 5) fills before the intersecting vertical rectangle (size 4). Four relabeled wall corners (6) then produce two smaller empty rectangles (size 2), which
fill as ground (7), by adjacency to ground. (b) Iteration #1 produces two intersecting empty rectangles of size 4 and size 5 (2). When the smaller one fills (3),
the larger is no longer empty. After four wall corners are relabeled as empty ground (4), two new empty rectangles fill as ground (5, 6). (c) CONFIGR interprets
image-figure pixels as pieces of a solid rectangle.

Fig. 24. Fragment from the upper right portion of the Monterey image (Fig. 1). Dark pixels are image-figure (road), and light pixels are diagonals of filled-figure
rectangles. Coordinate lines are drawn at the coarse spatial scale, so each small box contains four fine-scale pixels.

With 3240 dots (8.1% of the square), image-figure crowding
produces far more ground connections (1482) relative to the
number of figure connections (2336). In Fig. 27, CONFIGR fills
650 rectangles as ground on iteration #1, 511 on iteration #2,
and 321 more on iterations #3–7. Figure also fills-in quickly,
with 1185 connections on iteration #1, 682 on iteration #2, 301
on iteration #3, 163 on iterations #4–6, and the final five on
iterations #7–11.

In addition to completing its connections in just a few
iterations, CONFIGR breaks this crowded random dot field into
many self-contained components, or “constellations,” which

range in size from one image-figure dot, or “star,” to hundreds.
Connecting stars to form constellations is perhaps the most
ancient and universal recorded example of filling-in. Fig. 28
demonstrates CONFIGR solutions to the problem of bringing
coherence to the night sky. In each image, dark pixels represent
stars of a constellation, and light pixels show CONFIGR
connections.

In the constellations of Fig. 28, each set of stars is predefined
and isolated for the CONFIGR algorithm. In a detail from
the central portion of the 3240 dot simulation, Fig. 29 shows
how CONFIGR can also self-organize its own constellations.



Author's personal copy

1124 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 25. Iteration numbers at which figure filling-in occurs for the 40 random
dots of Fig. 2(c), (d).

Starting with a dense set of random dots, the system creates
clusters of various sizes, leaving some dots isolated and
incorporating others into large figures. The 60 × 120 pixel
piece of the 200 × 200 square contains approximately 583
image-figure stars. CONFIGR clusters 61 of these stars into 23
small constellations (2–5 stars each) and clusters 62 stars into
eight medium-sized constellations (7–17 stars each). Fourteen
stars remain solo, and the remaining stars (approximately
446) are in nine large constellations, each extending beyond
the rectangle’s borders. As image-figure density increases,
CONFIGR partitions the image into ever smaller self-contained
clusters.

6.3. Horses: Unifying occluded objects

Magritte’s painting Blank Check (1965)
(http://www.planetperplex.com/img/magritte blank check.jpg)
provides a vivid illustration of automatic segmentation of oc-
cluded objects. In that painting, a horse and rider are occluded
by trees in a forest. The picture is globally impossible, but at
first glance the horse appears to be a normally unified object. If
the picture is manipulated to insert more occluding forest, the
horse still seems unified—but only up to a point. If the separa-
tion is too great, the pieces of the horse never appear as a single
object.

Dark image-figure pixels in Fig. 30(a) approximate the
tan portions of the Blank Check horse. Light pixels show
CONFIGR’s filled-figure rectangles, which unify the complete
object, though leaving open the space occupied by the
rider. With the image-figure components further separated
(Fig. 30(b)), CONFIGR still unites the occluded horse. If,
however, the initial image-figure pieces are too far apart
(Fig. 30(c)), CONFIGR does not span the gap.

As the sparse dot example illustrates (Fig. 2(c), (d)),
CONFIGR does not set an a priori limit on the filling-
in distance. Pixels can connect from arbitrary distances, if
unimpeded. In Fig. 30(c), no image-figure or filled pixels block
the central space. However, an empty rectangle by the front
right leg (ellipse) fills as ground on iteration #8. In Fig. 30(b),
the central empty rectangle forms on iteration #7. For any
greater separation between the front and back of the horse, this
rectangle would fill as ground, by adjacency to the filled-ground
pixels by the leg.

Fig. 26. CONFIGR connection of 360 random dots in a 200 × 200 pixel square, and iteration numbers at which figure and ground filling-in occurs.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1125

Fig. 27. CONFIGR connection of 3240 random dots in a 200 × 200 pixel square, and iteration numbers at which figure and ground filling-in occurs.

These images illustrate how the shape, detail, and scale
of figure components contribute to the filling-in decisions.
Note, too, that the image of Fig. 30(b), enlarged four-fold,
would still fill-in as figure in the center, despite the wide
separation, because the leg details would be similarly enlarged.
This observation is reminiscent of the scale-invariant image
completion extensively studied by Biederman (1987).

7. Images exactly aligned with lobe directions

Examples in this section highlight an anomaly of the
CONFIGR algorithm, whereby vertical and horizontal image-
figure elements that are aligned completely with the lobe
directions fill-in differently from similar images that are tilted
with respect to the lobes. Exactly vertical or horizontal bars
rarely occur in natural images, and never in the Monterey or
dots examples. The Monterey image, for instance (Fig. 1),
includes many examples of parallel roads that fill appropriately
as figure and ground. Nonetheless, the anomalous cases are
notable, and point to directions for future system development:
CONFIGR 2++ (Section 8).

7.1. Parallel bars

Given two parallel bars of image-figure pixels, CONFIGR
typically fills-in figure and ground appropriately, as Fig. 31
shows for a series of bars that are tilted 45◦. In these examples,
CONFIGR completes the bars while employing a variety of
mechanisms to block spurious filling-in as figure. In particular,

Fig. 28. CONFIGR constellations. (a) Big Dipper. (b) Cassiopeia. (c)
Sagittarius. (d) Pegasus. (e) Orion.

filled-ground pixels “seal off” sides of bars, halting further lobe
propagation from their interiors.

Note that, in Fig. 31(b), iteration #1 produces three
overlapping empty rectangles of size 4, requiring a tie-breaker
in the algorithm. Either the two vertical (1 × 3) rectangles fill



Author's personal copy

1126 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 29. CONFIGR self-organizes the randomly placed “stars,” from the central
rectangle of Fig. 27, into small (S), medium (M), and large (L) “constellations.”
Two small, three medium, and all nine large constellations extend beyond the
borders of the rectangle.

as ground (as shown); or the central (2 × 2) rectangle fills first,
converting two adjacent wall corners to empty figure corners
and creating two new empty rectangles (1 × 1), which fill at
once. In either case, all the central pixels fill as ground.

In contrast to the tilted parallel bar examples in Fig. 31,
CONFIGR may fill the whole space between bars that are
exactly horizontal or vertical. For short bars, this is basic
long-range completion (Fig. 32(a)). However, when the image-
figure bars are long (Fig. 32(b)), CONFIGR fills-in excessively
between them, provided that the bars are exactly aligned with
a lobe direction. The problem of central filled-figure pixels
persists with missing image-figure pixels (Fig. 32(c)).

Fig. 33 further illustrates anomalous filling-in between bars
that are exactly vertical or horizontal. If the bars are offset
(Fig. 33(a)), filling-in may be even more extreme than when
the bars are aligned (Fig. 32(b)). Missing pixels may produce
a different filled-figure pattern, even if the gaps are filled at an

Fig. 30. CONFIGR unification of an occluded figure. (a) Image-figure pixels
approximate the horse in Magritte’s Blank Check. (b), (c) The scale of adjacent
figure details determines the maximum separation for filling-in.

early iteration. In Fig. 33(b), pixels missing from the bars fill as
figure on iteration #1. On iteration #5, the large empty rectangle
of Fig. 33(a) now contains a smaller one, which fills as figure
(F5). Adjacent wall corners then become empty ground corners,
creating two new empty rectangles, which fill immediately as
ground (G5).

When parallel bars are tilted, CONFIGR ground filling-in
blocks spurious figure completions. Fig. 34 shows an image-
figure pixel configuration which is similar to the ones in the
upper left portion of the Monterey image (Fig. 1(a)). When the
central rectangle (G4) fills, ground adjacency prevents filled-
figure cross-talk between digitized bars that are approximately
parallel and tilted with respect to the lobe directions. Here, all
the empty ground corners are created at lobe initialization.

Bars that are just slightly tilted provide an intermediate case
between the strictly horizontal bars of Figs. 32 and 33, and more
tilted bars of Figs. 31 and 34. Fig. 35(a) shows a filled-figure
connection between slightly tilted bars. While this filled-figure
cross-talk (F2) is not as extreme as the complete filling-in of the
exactly horizontal case, the extra connection may nonetheless
be spurious. Fig. 35(b) shows appropriate filling-in generated
by the same local image-figure pixel configuration.

7.2. Occluded squares

Fig. 21(a) showed a severed square aligned in the vertical
and horizontal directions. CONFIGR does not connect the



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1127

Fig. 31. Tilted parallel bars. (a) Bars are farther apart than in Fig. 17, and different CONFIGR algorithm elements block spurious figure filling-in. Here, three empty
rectangles fill as ground on iteration #1. Iteration #2 produces two more empty figure corners, but no additional empty rectangles or filling-in. (b) With longer
bars, iteration #1 again fills all empty rectangles as ground, and iteration #2 completes empty corner production. (c) With the bars even farther apart, filled-ground
pixels stop most lobe propagation at iteration #1, without wall corners. At iteration #2, bar ends generate four additional empty corners, but no empty rectangles.
(d) The gap in each bar fills as figure on iteration #1. Missing pixels imply that filled-ground pixels fail to block lobe propagation from the interior of each bar, but
iteration #2 produces only wall corners in the center, as well as six new empty figure corners, and no additional filling-in. (e) With the bars-with-gaps farther apart,
iteration #2 produces two central empty figure corners, but these span no empty rectangles. (f) When image-figure bars are sufficiently offset, CONFIGR may treat
them as misaligned segments of a single contour, here connecting the end of one bar with the beginning of the other on iteration #2.

Fig. 32. Mechanisms that allow CONFIGR to connect pixel dots at a distance (a) also cause filling as figure between longer bars that are exactly horizontal or
vertical (b). In (c), iteration #5 produces two rows of six wall corner pairs, plus four empty figure corners. After the smallest empty rectangle fills as figure (F5), the
upper left and lower right wall corners become empty ground. The empty ground corners help span empty rectangles, which immediately fill as ground (G5).

edges of this image as figure, because the central rectangle
fills first as ground. When the severed square is tilted, however
(Fig. 36), its center does not fill as ground, so the edges are free
to complete as figure. Iteration #2 produces four central wall

corners, and two more empty figure corners, but no additional
empty rectangles.

Similarly, Fig. 37 shows how CONFIGR unites digitized
Kaniza squares tilted at various angles. However, when the



Author's personal copy

1128 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 33. Offset horizontal bars of length 7 fill-in between each other on iteration #5.

Fig. 34. For bars that are tilted and approximately parallel, CONFIGR blocks spurious filling-in as figure by filling empty rectangles as ground. The final figure is
the same as in the original image.

square is exactly vertical and horizontal, the central square fills
as ground, causing its edges also to fill as ground on the same
iteration, by adjacency.

These examples further illustrate the special nature of
images that are exactly aligned with the vertical and horizontal
lobe directions.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1129

Fig. 35. The possibility of CONFIGR cross-talk is unavoidable at some scales, without another rule. (a) Slightly tilted parallel bars. (b) Correct filling-in as figure.

Fig. 36. CONFIGR completion of a severed image-figure square, tilted 45◦.

8. Future directions: CONFIGR 2++

Image examples in Sections 5–7 are designed to highlight
CONFIGR limitations as well as model capabilities. These
examples point toward new design goals for the next generation.

This section outlines questions of interest and possible design
principles for future model development.

More lobe directions: Although CONFIGR can connect
image-figure components in any direction, the model computes
locally only in the horizontal and the vertical. These two
directions derive from the sides of the square image pixels. A
natural question for CONFIGR 2 is:

How can a vision system with more than two
computational directions realize CONFIGR properties?

Images aligned with lobe directions: Examples in Section 7
illustrate the special nature of CONFIGR processing of images
that are exactly vertical or horizontal. These figures suggest the
more general question:

For any vision system based on a finite set of orientations,
how do responses to image elements aligned with these
orientations differ from responses to image elements
placed at other orientations?



Author's personal copy

1130 G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131

Fig. 37. Digitized Kaniza square tilted 0◦, 30◦, 45◦, and 60◦. CONFIGR
completes the edges of the central square, except when the sides align exactly
with the vertical and horizontal lobe directions.

Perturbing the image: Images that are strictly horizontal
or vertical rarely occur in complex natural images such as
Monterey (Fig. 1). Such images are, however, commonly
constructed, e.g., for psychophysics experiments. To test robust
CONFIGR predictions for these examples, the image angle
might be randomly perturbed. The likelihood of an anomalous
figure is then very small (Figs. 36 and 37).

Multiple spatial scales: The Monterey simulations (Figs. 1
and 24) apply a multi-scale CONFIGR strategy of adding the
connections from all spatial scales to the original image figure
to obtain the final figure. Although this multi-scale combination
works well for the Monterey example, other examples might
require alternative multi-scale procedures.

Global evidence: CONFIGR lobe computations are strictly
local. The horizontal bar examples in Fig. 32 are designed to
show that local evidence alone may be insufficient for some
cases. CONFIGR 2 might address this issue by taking into
account more global properties of the image figure. In such
a system, short bars (Fig. 32(a)) would connect as figure,
but the space between longer parallel bars (Fig. 32(b), (c))
would not fill. Similarly, CONFIGR 2 might permit the local
vertical connections in Fig. 35(b), which are consistent with
more global vertical image elements, but inhibit the spurious
connection in Fig. 35(a), which is inconsistent with more global
horizontal image elements. Multi-scale combinations might
also help solve this problem.

Image boundary effects: In large-scale simulations, CON-
FIGR occasionally produces anomalies near image borders.
“Connections” from only one image-figure pixel appear near
the SW corner of the fine-scale Monterey example (Fig. 1(a))
and near the SE corner of the 360 dot example (Fig. 26).
Though rare, these instances point to possible future system
modifications, and suggest caution when interpreting results
near image borders. Ideally, an image of interest should include
a fringe (e.g., Fig. 27) which the final computation (Fig. 29) can
employ to eliminate boundary effects.

Neural substrates and psychophysical predictions: Many el-
ements of the CONFIGR system are new to the modeling liter-
ature. The recognition-vision-recognition sequence (Section 1)
suggests that CONFIGR computations might occur in visual
area V4. CONFIGR filling-in examples, particularly the role
of concavities, suggest psychophysical experiments. Cognitive
and neural considerations (Pessoa & De Weerd, 2003), as well
as new computational challenges of large-scale simulations,
will guide the design of CONFIGR 2 and beyond.

Acknowledgements

This work was supported by research grants from the Air
Force Office of Scientific Research (AFOSR F49620-01-1-
0423), the National Geospatial-Intelligence Agency (NMA
201-01-1-2016), the National Science Foundation (NSF SBE-
0354378), and the Office of Naval Research (ONR N00014-01-
1-0624).

References

Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual
perceptual learning. Trends in Cognitive Sciences, 8(10), 457–464.

Biederman, I. (1987). Recognition-by-components: A theory of human image
understanding. Psychological Review, 94(2), 115–147.

Candes, E., Romberg, J., & Tao, T. (2006). Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and
Applied Mathematics, 59, 1207–1223.

Carpenter, G. A. Default ARTMAP. In Proceedings of the international joint
conference on neural networks (pp. 1396–1401).

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D.
B. (1992). Fuzzy ARTMAP: A neural network architecture for incremental
supervised learning of analog multidimensional maps. IEEE Transactions
on Neural Networks, 3(5), 698–713.

Cohen, M. A., & Grossberg, S. (1984). Neural dynamics of brightness
perception: Features, boundaries, diffusion, and resonance. Perception and
Psychophysics, 36(5), 428–456.

Field, D. J., Hayes, A., & Hess, Robert F. (1993). Contour integration by
the human visual system: Evidence for a local “association field”. Vision
Research, 33(2), 173–193.

Gove, A., Grossberg, S., & Mingolla, E. (1995). Brightness perception,
illusory contours, and corticogeniculate feedback. Visual Neuroscience, 12,
1027–1052.

Grossberg, S., & Mingolla, E. (1985a). Neural dynamics of perceptual
grouping: Textures, boundaries, and emergent segmentations. Perception
and Psychophysics, 38(2), 141–171.

Grossberg, S., & Mingolla, E. (1985b). Neural dynamics of form perception:
Boundary completion, illusory figures, and neon color spreading.
Psychological Review, 92(2), 173–211.

Grossberg, S., & Mingolla, E. (1987). Neural dynamics of surface perception:
Boundary webs, illuminants, and shape-from-shading. Computer Vision,
Graphics, and Image Processing, 37(1), 116–165.

Grossberg, S., & Swaminathan, G. (2004). A laminar cortical model for 3D
perception of slanted and curved surfaces and of 2D images: Development,
attention, and bistability. Vision Research, 44, 1147–1187.

Hansen, T., & Neumann, H. (2004). Neural mechanisms for the robust
representation of junctions. Neural Computation, 16(5), 1013–1037.

Kellman, P. J., & Shipley, T. (1991). A theory of visual interpolation in object
perception. Cognitive Psychology, 23, 141–221.

Mingolla, E., Ross, W., & Grossberg, S. (1999). A neural network for
enhancing boundaries and surfaces in synthetic aperture radar images.
Neural Networks, 12, 499–511.

Parsons, O., & Carpenter, G. A. (2003). ARTMAP neural networks for
information fusion and data mining: Map production and target recognition
methodologies. Neural Networks, 16, 1075–1089.



Author's personal copy

G.A. Carpenter et al. / Neural Networks 20 (2007) 1109–1131 1131

Pasupathy, A., & Connor, C. E. (1999). Responses to contour features in
macaque area V4. Journal of Neurophysiology, 82, 2490–2502.

Pessoa, L., & De Weerd, Peter (2003). Filling-in: From perceptual completion
to cortical reorganization. New York: Oxford University Press.

Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D.,

Sarvotham, S., et al. (2006). A new compressive imaging camera
architecture using optical-domain compression. In Proc. computational
imaging IV . SPIE, http://www.dsp.ece.rice.edu/cs/cscam-SPIEJan06.pdf.

Von der Heydt, R., Peterhans, E., & Baumgartner, G. (1984). Illusory contours
and cortical neuron responses. Science, 224(4654), 1260–1262.


