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Abstract— Consideration of how people respond to the question 

What is this? has suggested new problem frontiers for pattern 
recognition and information fusion, as well as neural systems that 
embody the cognitive transformation of declarative information 
into relational knowledge. In contrast to traditional classification 
methods, which aim to find the single correct label for each 
exemplar (This is a car), the new approach discovers rules that 
embody coherent relationships among labels which would 
otherwise appear contradictory to a learning system (This is a car, 
that is a vehicle, over there is a sedan). This talk will describe how 
an individual who experiences exemplars in real time, with each 
exemplar trained on at most one category label, can autonomously 
discover a hierarchy of cognitive rules, thereby converting local 
information into global knowledge. Computational examples are 
based on the observation that sensors working at different times, 
locations, and spatial scales, and experts with different goals, 
languages, and situations, may produce apparently inconsistent 
image labels, which are reconciled by implicit underlying 
relationships that the network’s learning process discovers. The 
ARTMAP information fusion system can, moreover, integrate 
multiple separate knowledge hierarchies, by fusing independent 
domains into a unified structure. In the process, the system 
discovers cross-domain rules, inferring multilevel relationships 
among groups of output classes, without any supervised labeling of 
these relationships. In order to self-organize its expert system, the 
ARTMAP information fusion network features distributed code 
representations which exploit the model’s intrinsic capacity for 
one-to-many learning (This is a car and a vehicle and a sedan) as 
well as many-to-one learning (Each of those vehicles is a car). 
Fusion system software, testbed datasets, and articles are available 
from http://cns.bu.edu/techlab . 
 
 

I. INTRODUCTION 
 

HIS plenary talk will describe recently developed 
Adaptive Resonance Theory (ART) networks for rule 
discovery (Carpenter, Martens, & Ogas, 2005; Carpenter 

& Ravindran, 2008), as described in the Abstract. This paper 
provides an introduction to the computations and dynamics 
of the basic ART and ARTMAP networks. 

 

II. ART AND ARTMAP 
ART neural networks model real-time prediction, search, 
learning, and recognition. ART networks serve both as 
models of human cognitive information processing 
(Grossberg, 1999, 2003; Carpenter, 1997) and as neural 
systems for technology transfer (Caudell et al., 1994; Lisboa, 
2001; Parsons & Carpenter, 2003). 
 
Design principles derived from scientific analyses and 
design constraints imposed by targeted applications have 
jointly guided the development of many variants of the basic 
networks, including fuzzy ARTMAP (Carpenter et al., 
1992), ART-EMAP (Carpenter & Ross, 1995), ARTMAP-
IC (Carpenter & Markuzon, 1998), and Gaussian ARTMAP 
(Williamson, 1998). A defining characteristic of various 
ARTMAP classes is the nature of the internal code 
representation. Early ARTMAP systems, including fuzzy 
ARTMAP, employ winner-take-all (WTA) coding, whereby 
each input activates a single category node during both 
training and testing. When a node is first activated during 
training, it is mapped to its designated output class.  
 
Starting with ART-EMAP, subsequent systems have used 
distributed coding during testing, which typically improves 
predictive accuracy, while avoiding the computational 
problems inherent in the use of distributed code 
representations during training. In order address these 
problems, distributed ARTMAP (Carpenter, 1998; 
Carpenter, Milenova, & Noeske, 1998) introduces a new 
network configuration, in addition to new learning laws. 
 
Comparative analysis of the performance of ARTMAP 
systems on a variety of benchmark problems has led to the 
identification of a default ARTMAP network (Carpenter, 
2003), which features simplicity of design and robust 
performance in many application domains. Default 
ARTMAP employs winner-take-all coding during training 
and distributed coding during testing within a distributed 
ARTMAP network architecture. With winner-take-all 
coding during testing, default ARTMAP reduces to a version 
of fuzzy ARTMAP. 
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Figure 1.  Complement coding transforms an M-dimensional feature 
vector a into a 2M-dimensional system input vector A. A 
complement-coded system input represents both the degree to which 
a feature i is present a

i( )  and the degree to which that feature is 

absent 1! a
i( ) . 

 

III. COMPLEMENT CODING:  LEARNING BOTH ABSENT AND 
PRESENT FEATURES 

 
ART and ARTMAP employ a preprocessing step called 
complement coding (Figure 1), which models the nervous 
system’s ubiquitous use of the computational design known 
as opponent processing (Hurvich & Jameson, 1957). 
Balancing an entity against its opponent, as in agonist-
antagonist muscle pairs, allows a system to act upon relative 
quantities, even as absolute magnitudes may vary 
unpredictably. In ART systems, complement coding 
(Carpenter, Grossberg, & Rosen, 1991) is analogous to 
retinal ON-cells and OFF-cells (Schiller, 1982). When the 
learning system is presented with a set of input features 
a ! a

1
...a

i
...a

M( ) , complement coding doubles the 
number of input components, presenting to the network both 
the original feature vector and its complement. 
 
Complement coding allows an ART system to encode within 
its critical feature patterns of memory features that are 
consistently absent on an equal basis with features that are 
consistently present. Features that are sometimes absent and 
sometimes present when a given category is learning 
become regarded as uninformative with respect to that 
category. Since its introduction, complement coding has 
been a standard element of ART and ARTMAP networks, 
where it plays multiple computational roles, including input 
normalization. However, this device is not particular to 
ART, and could, in principle, be used to preprocess the 
inputs to any type of system. 
 
To implement complement coding, component activities 

i
a  

of a feature vector a are scaled so that 0 1
i
a! ! . For each 

feature i, the ON activity 
i
a  determines the complementary  

 
OFF activity ( )1

i
a! . Both 

i
a  and ( )1

i
a!   are 

represented in the 2M-dimensional system input vector 

  
A = a a

c( )  (Figure 1).  Subsequent network 

computations then operate in this 2M-dimensional input 
space. In particular, learned weight vectors w

J
 are 2M-

dimensional. 
 

IV. ARTMAP SEARCH AND MATCH TRACKING 
 
The ART matching process triggers either learning or a 
parallel memory search (Figure 2).  If search ends at an 
established code, the memory representation may either 
remain the same or incorporate new information from 
matched portions of the current input. While this dynamic 
applies to arbitrarily distributed activation patterns, the F2 
code will here be described as a single category node, in a 
winner-take all system. 
 
Before ARTMAP makes a class prediction, the bottom-up 
input A is matched against the top-down learned 
expectation, or critical feature pattern, that is read out by the 
active node (Figure 2b). The matching criterion is set by a 
parameter ! , called vigilance. Low vigilance permits the 
learning of abstract, prototype-like patterns, while high 
vigilance requires the learning of specific, exemplar-like 
patterns. When a new input arrives, vigilance equals a 
baseline level, ! . Baseline vigilance is set equal to zero by 
default, in order to maximize generalization. Vigilance rises 
only after the system has made a predictive error. The 
internal control process that determines how far ρ must rise 
in order to correct the error is called match tracking 
(Carpenter, Grossberg, & Reynolds, 1991). As vigilance 
rises, the network is required to pay more attention to how 
well top-down expectations match the current bottom-up 
input. 
 
Match tracking (Figure 3) forces an ARTMAP system not 
only to reset its mistakes, but to learn from them. With 
match tracking and fast learning, each ARTMAP network 
passes the Next Input Test, which requires that, if a training 
input were re-presented immediately after a learning trial, it 
would directly activate the correct output class, with no 
predictive errors or search. Match tracking thus 
simultaneously implements the design goals of maximizing 
generalization and minimizing predictive error, without 
requiring the choice of a fixed matching criterion. ARTMAP 
memories thereby include both broad and specific pattern 
classes, with the latter typically formed as exceptions to the 
more general “rules” defined by the former. ARTMAP 
learning typically produces a wide variety of such mixtures, 
whose exact composition depends upon the order of training 
exemplar presentation. 
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Figure 2. A fuzzy ART search cycle (Carpenter, Grossberg & Rosen, 1991), with a distributed ART network 
configuration (Carpenter, 1997). The ART 1 search cycle (Carpenter & Grossberg, 1987) is the same, but allows 
only binary inputs and did not originally feature complement coding. The match field F1 represents the matched 
activation pattern 

  
x = A ! w

J
, where !  denotes the component-wise minimum, or fuzzy intersection, between 

the bottom-up input A and the top-down expectation 
  
w

J
. If the matched pattern fails to meet the matching 

criterion, then the active code is reset at F2, and the system searches for another code y that better represents the 
input. The match / mismatch decision in the ART orienting system. Each active feature in the input pattern A excites 
the orienting system with gain equal to the vigilance parameter ! . Hence, with complement coding, the total 

excitatory input is 
2

1

M

i

i

A M! ! !
=

= ="A . Active cells in the matched pattern x inhibit the orienting system, 

leading to a total inhibitory input equal to 
2

1

M

i

i

x

=

! = !"x . If 0! " #A x , then the orienting system remains 

quiet, allowing resonance and learning to occur. If 0! " >A x , then the reset signal r=1, initiating search for a 
better matching code.  
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Figure 3.   ARTMAP match tracking (Carpenter, Grossberg, & Reynolds, 1991). When an active node J meets the 
matching criterion ! A " x # 0( ) , the reset signal r=0 and the node makes an prediction. If the predicted output 

is incorrect, the feedback signal R=1. While R = r
c
= 1 , ρ increases rapidly. As soon as ! >

x

A
, r switches to 1, 

which both halts the increase of ρ and resets the active F2 node. From one chosen node to the next, ρ decays to 

slightly below 
x

A
 (MT–:  Carpenter & Markuzon, 1998). On the time scale of learning ρ returns to ! . 

 
Unless they have already activated all their coding nodes, 
ARTMAP systems contain a reserve of nodes that have 
never been activated, with weights at their initial values. 
These uncommitted nodes compete with the previously 
active committed nodes, and an uncommitted node will be 
chosen over poorly matched committed nodes. An 
ARTMAP design constraint specifies that an active 
uncommitted node should not reset itself. Weights initially  

 
begin with w

iJ
= 1 . Thus, when the active node J is 

uncommitted, x = A !w
J
= A  at the match field. Then,  

! A " x = ! A " A = ! "1( ) A . Thus 

! A " x # 0  and an uncommitted node does not trigger a 
reset, provided that ! " 1 . 
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V. ART GEOMETRY 
 
ART long-term memories are visualized as hyper-rectangles, 
called category boxes. The weight vector w

J
 is interpreted 

geometrically as a box R
J

 whose ON-channel corner u
J

 
and OFF-channel corner v

J
 are, in the format of the 

complement-coded input vector, defined by 

u
J
v
J

C( ) ! wJ
 (Figure 4). For fuzzy ART with the 

choice-by-difference F
0
! F

2
 signal function T

J
 

(Carpenter & Gjaja, 1994), an input a activates the node J of 
the closest category box R

J
, according to the L1 (city-

block) metric. In case of a tie, as when a lies in more than 
one box, the node with the smallest R

J
 is chosen, where 

R
J

 is defined as the sum of the edge lengths 

v
iJ
! u

iJ

i=1

M

" . The chosen node J will reset if  

R
J
! a > M 1" #( ) , where R

J
! a  is the smallest box 

enclosing both R
J

 and a. Otherwise, R
J

 expands toward 
R
J
! a  during learning. With fast learning, 

R
J

new
= R

J

old
! a . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.    Fuzzy ART geometry. The weight of a 
category node  J  is represented in complement-coding 

form as w
J
= u

J
v
J

C( ) , and the M-dimensional 

vectors u
J

 and v
J

 define the corners of the category 
box R

J
. When M=2, the size of R

J
 equals its width 

plus its height. During learning, R
J

 expands toward 
R
J
! a , defined as the smallest box enclosing both 

R
J

 and a. Node J will reset before learning if 

R
J
! a > M 1" #( ) . 

VI. BIASING AGAINST PREVIOUSLY ACTIVE CATEGORY 
NODES AND PREVIOUSLY ATTENDED FEATURES DURING 

ATTENTIVE MEMORY SEARCH 
 
Activity x at the ART field F1 continuously computes the 
match between the field’s bottom-up and top-down input 
patterns. A reset signal r shuts off the active F2 node J when 
x fails to meet the matching criterion determined by the 
value of the vigilance parameter ρ. Reset alone does not, 
however, trigger a search for a different F2 node:  unless the 
prior activation has left an enduring trace within the F0-to-F2 
subsystem, the network will simply reactivate the same node 
as before. As modeled in ART 3 (Carpenter & Grossberg, 
1990), biasing the bottom-up input to the coding field F2 to 
favor previously inactive nodes implements search by 
allowing the network to activate a new node in response to a 
reset signal. The ART 3 search mechanism defines a 
medium-term memory (MTM) in the F0-to-F2 adaptive filter 
which biases the system against re-choosing a node that had 
just produced a reset. A presynaptic interpretation of this 
bias is transmitter depletion, or habituation (Figure 5). 
 
Medium-term memory in all ART models allows the 
network to shift attention among learned categories at the 
coding field F2 during search. The new biased ART network 
(Carpenter & Gaddam, 2009) introduces a second medium-
term memory that shifts attention among input features, as 
well as categories, during search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  ART 3 search implements a medium-term 
memory within the F0-to-F2 pathways, which biases the 
system against choosing a category node that had just 
produced a reset. 
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