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Adaptive Resonance Theory 
 
 
Definition 
 
Adaptive Resonance Theory, or ART, is both a cognitive and neural theory of how the brain 
quickly learns to categorize, recognize, and predict objects and events in a changing world, and a 
set of algorithms which computationally embody ART principles and are used in large-scale 
engineering and technological applications where fast, stable, incremental, learning about 
complex changing environments is needed. ART clarifies the brain processes from which 
conscious experiences emerge. It predicts a functional link between processes of Consciousness, 
Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), including the 
prediction that “all conscious states are resonant states.” This connection clarifies how brain 
dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing 
world. ART predicts how top-down attention works and regulates fast stable learning of 
recognition categories. In particular, ART articulates a critical role for “resonant” states in 
driving fast stable learning; hence the name adaptive resonance. These resonant states are bound 
together, using top-down attentive feedback in the form of learned expectations, into coherent 
representations of the world. ART hereby clarifies one important sense in which the brain carries 
out predictive computation. ART has explained and successfully predicted a wide range of 
behavioral and neurobiological data, including data about human cognition and the dynamics of 
spiking laminar cortical networks. ART algorithms have been used in large-scale applications 
such as medical data base prediction, remote sensing, airplane design, and the control of 
autonomous adaptive robots. 
 
 
Motivation and Background 
 
Many current learning algorithms do not emulate the way in which humans and other animals 
learn. The power of human and animal learning provides high motivation to discover 
computational principles whereby machines can learn with similar capabilities. Humans and 
animals experience the world on the fly, and carry out incremental learning of sequences of 
episodes in real time. Often such learning is unsupervised, with the world itself as the teacher. 
Learning can also proceed with an unpredictable mixture of unsupervised and supervised 
learning trials. Such learning goes on successfully in a world that is non-stationary; that is, 
whose rules can change unpredictably through time. Moreover, humans and animals can learn 
quickly and stably through time. A single important experience can be remembered for a long 
time. ART proposes a solution of this stability-plasticity dilemma [1] by showing how brains 
learn quickly without forcing catastrophic forgetting of already learned, and still successful, 
memories.  
 
Thus, ART autonomously carries out fast, yet stable, incremental learning under both 
unsupervised and supervised learning conditions in response to a complex non-stationary world. 
In contrast, many current learning algorithms are use batch learning in which all the information 
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about the world to be learned is available at a single time. Other algorithms are not defined 
unless all learning trials are unsupervised. Yet other algorithms become unstable in a non-
stationary world, or become unstable if learning is fast; that is, if an event can be fully learned on 
a single learning trial. ART overcomes these problems.  
 
Some machine learning algorithms are feed-forward clustering algorithms that undergo 
catastrophic forgetting in a non-stationary world. The ART solution of the stability-plasticity 
dilemma depends upon feedback, or top-down, expectations that are matched against bottom-up 
data and thereby focus attention upon critical feature patterns. A good enough match leads to 
resonance and fast learning. A big enough mismatch leads to hypothesis testing or memory 
search that discovers and learns a more predictive category. Thus, ART is a self-organizing 
expert system that avoids the brittleness of traditional expert systems. 
 
The world is filled with uncertainty, so probability concepts seem relevant to understanding how 
brains learn about uncertain data. This fact has led some machine learning practitioners to 
assume that brains obeys Bayesian laws. However, the Bayes rule is so general that it can 
accommodate any system in Nature. Additional computational principles and mechanisms must 
augment Bayes to distinguish a brain from, say, a hydrogen atom or storm. Moreover, 
probabilistic models often use non-local computations. ART shows how the brain embodies a 
novel kind of real-time probability theory, hypothesis testing, prediction, and decision-making 
whose local computations adapt to a non-stationary world. These ART principles and 
mechanisms go beyond Bayesian analysis, and are embodied parsimoniously in the laminar 
circuits of cerebral cortex. Indeed, the cortex embodies a new kind of Laminar Computing that 
reconciles the best properties of feedforward and feedback processing, digital and analog 
processing, and data-driven bottom-up processing and hypothesis-driven top-down processing 
[2]. 
 
 
Structure of Learning System 
 
How CLEARS Mechanisms Interact 
 
Humans are intentional beings who learn expectations about the world and make predictions 
about what is about to happen. Humans are also attentional beings who focus processing 
resources upon a restricted amount of incoming information at any time. Why are we both 
intentional and attentional beings, and are these two types of processes related? The stability-
plasticity dilemma and its solution using resonant states provides a unifying framework for 
understanding these issues. 
 
To clarify the role of sensory or cognitive expectations, and of how a resonant state is activated, 
suppose you were asked to “find the yellow ball as quickly as possible, and you will win a 
$10,000 prize”. Activating an expectation of a “yellow ball” enables its more rapid detection, 
and with a more energetic neural response. Sensory and cognitive top-down expectations hereby 
lead to excitatory matching with consistent bottom-up data. Mismatch between top-down 
expectations and bottom-up data can suppress the mismatched part of the bottom-up data, to 
focus attention upon the matched, or expected, part of the bottom-up data.  
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Excitatory matching and attentional focusing on bottom-up data using top-down expectations 
generates resonant brain states: When there is a good enough match between bottom-up and top-
down signal patterns between two or more levels of processing, their positive feedback signals 
amplify and prolong their mutual activation, leading to a resonant state. Amplification and 
prolongation of activity triggers learning in the more slowly varying adaptive weights that 
control the signal flow along pathways from cell to cell. Resonance hereby provides a global 
context-sensitive indicator that the system is processing data worthy of learning, hence the name 
Adaptive Resonance Theory. 
 
In summary, ART predicts a link between the mechanisms which enable us to learn quickly and 
stably about a changing world, and the mechanisms that enable us to learn expectations about 
such a world, test hypotheses about it, and focus attention upon information that we find 
interesting. ART clarifies this link by asserting that, in order to solve the stability-plasticity 
dilemma, only resonant states can drive rapid new learning.  
 
It is just a step from here to propose that those experiences which can attract our attention and 
guide our future lives by being learned are also among the ones that are conscious. Support for 
this additional assertion derives from the many modeling studies whose simulations of 
behavioral and brain data using resonant states map onto properties of conscious experiences in 
those experiments. 
 
The type of learning within the sensory and cognitive domain that ART mechanizes is match 
learning: Match learning occurs only if a good enough match occurs between bottom-up 
information and a learned top-down expectation that is read out by an active recognition 
category, or code. When such an approximate match occurs, previously learned knowledge can 
be refined. Match learning raises the concern about what happens if a match is not good enough? 
How does such a model escape perseveration on already learned representations? 
 
If novel information cannot form a good enough match with the expectations that are read-out by 
previously learned recognition categories, then a memory search, or hypothesis testing, is 
triggered that leads to selection and learning of a new recognition category, rather than 
catastrophic forgetting of an old one. Figure 1 illustrates how this happens in an ART model; it 
will be discussed in greater detail below. In contrast, learning within spatial and motor processes 
is proposed to be mismatch learning that continuously updates sensory-motor maps or the gains 
of sensory-motor commands. As a result, we can stably learn what is happening in a changing 
world, thereby solving the stability-plasticity dilemma, while adaptively updating our 
representations of where objects are and how to act upon them using bodies whose parameters 
change continuously through time. Brain systems that use  inhibitory matching and mismatch 
learning cannot generate resonances; hence, their representations are not conscious. 
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Figure 1. Search for a recognition code within an ART learning circuit: (a) The input 
pattern I is instated across the feature detectors at level F1 as a short term memory (STM) 
activity pattern X. Input I also nonspecifically activates the orienting system with a gain 
that is called vigilance (ρ); that is, all the input pathways converge with gain ρ onto the 
orienting system and try to activate it. STM pattern X is represented by the hatched 
pattern across F1. Pattern X both inhibits the orienting system and generates the output 
pattern S. Pattern S is multiplied by learned adaptive weights, also called long term 
memory (LTM) traces. These LTM-gated signals are added at F2 cells, or nodes, to form 
the input pattern T, which activates the STM pattern Y across the recognition categories 
coded at level F2. (b) Pattern Y generates the top-down output pattern U which is 
multiplied by top-down LTM traces and added at F1 nodes to form a prototype pattern V 
that encodes the learned expectation of the active F2 nodes. Such a prototype represents 
the set of commonly shared features in all the input patterns capable of activating Y. If V 
mismatches I at F1, then a new STM activity pattern X* is selected at F1. X* is 
represented by the hatched pattern. It consists of the features of I that are confirmed by V. 
Mismatched features are inhibited. The inactivated nodes corresponding to unconfirmed 
features of X are unmatched. The reduction in total STM activity which occurs when X is 
transformed into X* causes a decrease in the total inhibition from F1 to the orienting 
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system. (c) If inhibition decreases sufficiently, the orienting system releases a nonspecific 
arousal wave to F2; that is, a wave of activation that equally activates all F2  nodes. This 
wave instantiates the intuition that “novel events are arousing”. This arousal wave resets 
the STM pattern Y at F2 by inhibiting Y. (d) After Y is inhibited, its top-down prototype 
signal is eliminated, and X can be reinstated at F1. The prior reset event maintains 
inhibition of Y during the search cycle. As a result, X can activate a different STM pattern 
Y at F2. If the top-down prototype due to this new Y pattern also mismatches I at F1, then 
the search for an appropriate F2 code continues until a more appropriate F2 representation 
is selected. Such a search cycle represents a type of nonstationary hypothesis testing. 
When search ends, an attentive resonance develops and learning of the attended data is 
initiated. [Adapted with permission from [3].] 

 
 
 
Complementary Computing in the Brain: Resonance and Reset 
 
It has been mathematically proved that match learning within an ART model leads to stable 
memories in response to arbitrary list of events to be learned [4]. However, match learning also 
has a serious potential weakness: If you can only learn when there is a good enough match 
between bottom-up data and learned top-down expectations, then how do you ever learn 
anything that you do not already know? ART proposes that this problem is solved by the brain 
by using an interaction between complementary processes of resonance and reset, that are 
predicted to control properties of attention and memory search, respectively. These 
complementary processes help our brains to balance between the complementary demands of 
processing the familiar and the unfamiliar, the expected and the unexpected.  
 
Organization of the brain into complementary processes is predicted to be a general principle of 
brain design that is not just found in ART [5]. A complementary process can individually 
compute some properties well, but cannot, by itself, process other complementary properties. In 
thinking intuitively about complementary properties, one can imagine puzzle pieces fitting 
together. Both pieces are needed to finish the puzzle. Complementary brain processes are more 
dynamic than any such analogy: Pairs of complementary processes interact to form emergent 
properties which overcome their complementary deficiencies to compute complete information 
with which to represent or control some aspect of intelligent behavior. 
 
The resonance process in the complementary pair of resonance and reset is predicted to take 
place in the What cortical stream, notably in the inferotemporal and prefrontal cortex. Here top-
down expectations are matched against bottom-up inputs. When a top-down expectation achieves 
a good enough match with bottom-up data, this match process focuses attention upon those 
feature clusters in the bottom-up input that are expected. If the expectation is close enough to the 
input pattern, then a state of resonance develops as the attentional focus takes hold.  

  
 Figure 1 illustrates these ART ideas in a simple two-level example. Here, a bottom-up input 

pattern, or vector, I activates a pattern X of activity across the feature detectors of the first level 
F1. For example, a visual scene may be represented by the features comprising its boundary and 
surface representations. This feature pattern represents the relative importance of different 
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features in the inputs pattern I. In Figure 1a, the pattern peaks represent more activated feature 
detector cells, the troughs less activated feature detectors. This feature pattern sends signals S 
through an adaptive filter to the second level F2 at which a compressed representation Y (also 
called a recognition category, or a symbol) is activated in response to the distributed input T. 
Input T is computed by multiplying the signal vector S by a matrix of adaptive weights that can 
be altered through learning. The representation Y is compressed by competitive interactions 
across F2 that allow only a small subset of its most strongly activated cells to remain active in 
response to T. The pattern Y in the figure indicates that a small number of category cells may be 
activated to different degrees. These category cells, in turn, send top-down signals U to F1. The 
vector U is converted into the top-down expectation V by being multiplied by another matrix of 
adaptive weights. When V is received by F1, a matching process takes place between the input 
vector I and V which selects that subset X* of F1 features that were “expected” by the active F2 
category Y. The set of these selected features is the emerging “attentional focus”.  
 
 
Binding Distributed Feature Patterns and Symbols during Conscious Resonances 
 
If the top-down expectation is close enough to the bottom-up input pattern, then the pattern X* 
of attended features reactivates the category Y which, in turn, reactivates X*. The network 
hereby locks into a resonant state through a positive feedback loop that dynamically links, or 
binds, the attended features across X* with their category, or symbol, Y.  
 
Resonance itself embodies another type of complementary processing. Indeed, there seem to be 
complementary processes both within and between cortical processing streams [5]. This 
particular complementary relation occurs between distributed feature patterns and the 
compressed categories, or symbols, that selectively code them:  
 

 Individual features at F1 have no meaning on their own, just like the pixels in a picture are 
meaningless one-by-one. The category, or symbol, in F2 is sensitive to the global patterning of 
these features, and can selectively fire in response to this pattern. But it cannot represent the 
“contents” of the experience, including their conscious qualia, due to the very fact that a category 
is a compressed, or “symbolic” representation. Practitioners of Artificial Intelligence have 
claimed that neural models can process distributed features, but not symbolic representations. 
This is not, of course, true in the brain. Nor is it true in ART. 
 

 Resonance between these two types of information converts the pattern of attended features into 
a coherent context-sensitive state that is linked to its category through feedback. This coherent 
state, which binds together distributed features and symbolic categories, can enter consciousness 
while it binds together spatially distributed features into either a stable equilibrium or a 
synchronous oscillation. The original ART article [6] predicted the existence of such 
synchronous oscillations, which were there described in terms of their mathematical properties as 
“order-preserving limit cycles”. See [7] and [8] for reviews of confirmed ART predictions, 
including predictions about synchronous oscillations. 
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 Resonance Links Intentional and Attentional Information Processing to Learning 

 
In ART, the resonant state, rather than bottom-up activation, is predicted to drive learning.  The 
resonant state persists long enough, and at a high enough activity level, to activate the slower 
learning processes in the adaptive weights that guide the flow of signals between bottom-up and 
top-down pathways between levels F1 and F2 in Figure 1. This viewpoint helps to explain how 
adaptive weights that were changed through previous learning can regulate the brain's present 
information processing, without learning about the signals that they are currently processing 
unless they can initiate a resonant state. Through resonance as a mediating event, one can 
understand from a deeper mechanistic view why humans are intentional beings who are 
continually predicting what may next occur, and why we tend to learn about the events to which 
we pay attention.  
 
More recent versions of ART, notably the Synchronous Matching ART (SMART) model  [8] 
show how a match may lead to fast gamma oscillations that facilitate spike-timing dependent 
plasticity (STDP), whereas mismatch can lead to slower beta oscillations that lower the 
probability that mismatched events can be learned by a STDP learning law.  
 
 
Complementary Attentional and Orienting Systems Control Resonance vs. Reset 
 
A sufficiently bad mismatch between an active top-down expectation and a bottom-up input, say 
because the input represents an unfamiliar type of experience, can drive a memory search. Such a 
mismatch within the attentional system is proposed to activate a complementary orienting 
system, which is sensitive to unexpected and unfamiliar events. ART suggests that this orienting 
system includes the nonspecific thalamus and the hippocampal system. See [8] for a summary of 
data supporting this prediction. Output signals from the orienting system rapidly reset the 
recognition category that has been reading out the poorly matching top-down expectation 
(Figures 1b and 1c). The cause of the mismatch is hereby removed, thereby freeing the system to 
activate a different recognition category (Figure 1d). The reset event hereby triggers memory 
search, or hypothesis testing, which automatically leads to the selection of a recognition category 
that can better match the input.        
 
If no such recognition category exists, say because the bottom-up input represents a truly novel 
experience, then the search process automatically activates an as yet uncommitted population of 
cells, with which to learn about the novel information. In order for a top-down expectation to 
match a newly discovered recognition category, its top-down adaptive weights initially have 
large values, which are pruned by the learning of a particular expectation.  
 
This learning process works well under both unsupervised and supervised conditions [9]. 
Unsupervised learning means that the system can learn how to categorize novel input patterns 
without any external feedback. Supervised learning uses predictive errors to let the system know 
whether it has categorized the information correctly. Supervision can force a search for new 
categories that may be culturally determined, and are not based on feature similarity alone. For 
example, separating the featurally similar letters E and F into separate recognition categories is 
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culturally determined. Such error-based feedback enables variants of E and F to learn their own 
category and top-down expectation, or prototype. The complementary, but interacting, processes 
of attentive-learning and orienting-search together realize a type of error correction through 
hypothesis testing that can build an ever-growing, self-refining internal model of a changing 
world. 
 
 
Controlling the Content of Conscious Experiences: Exemplars and Prototypes 
 
What combinations of features or other information are bound together into conscious object or 
event representations?  One view is that exemplars, or individual experiences, are learned, 
because humans can have very specific memories. For example, we can all recognize the 
particular faces of our friends. On the other hand, storing every remembered experience as 
exemplars can lead to a combinatorial explosion of memory, as well as to unmanageable 
problems of memory retrieval. A possible way out is suggested by the fact that humans can learn 
prototypes which represent general properties of the environment [10]. For example, we can 
recognize that everyone has a face. But then how do we learn specific episodic memories? ART 
provides an answer to this question that overcomes problems faced by earlier models.  
 
ART prototypes are not merely averages of the exemplars that are classified by a category, as is 
typically assumed in classical prototype models. Rather, they are the actively selected critical 
feature patterns upon which the top-down expectations of the category focus attention. In 
addition, the generality of the information that is codes by these critical feature patterns is 
controlled by a gain control process, called vigilance control, which can be influenced by 
environmental feedback or internal volition [11]. Low vigilance permits the learning of general 
categories with abstract prototypes. High vigilance forces a memory search to occur for a new 
category when even small mismatches exist between an exemplar and the category that it 
activates. As a result, in the limit of high vigilance, the category prototype may encode an 
individual exemplar.  
 
Vigilance is computed within the orienting system of an ART model (Figures 1b-d). It is here 
that bottom-up excitation from all the active features in an input pattern I are compared with 
inhibition from all the active features in a distributed feature representation across F1. If the ratio 
of the total activity across the active features in F1 (that is, the “matched” features) to the total 
activity due to all the features in I is less than a vigilance parameter ρ (Figure 1b), then a reset 
wave is activated (Figure 1c), which can drive the search for another category with which to 
classify the exemplar. In other words, the vigilance parameter controls how bad a match can be 
before search for a new category is initiated. If the vigilance parameter is low, then many 
exemplars can all influence the learning of a shared prototype, by chipping away at the features 
that are not shared with all the exemplars. If the vigilance parameter is high, then even a small 
difference between a new exemplar and a known prototype (e.g., F vs. E) can drive the search for 
a new category with which to represent F.  
 
One way to control vigilance is by a process of match tracking. Here a predictive error (e.g., D is 
predicted in response to F), the vigilance parameter increases until it is just higher than the ratio 
of active features in F1 to total features in I. In other words, vigilance “tracks” the degree of 
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match between input exemplar and matched prototype. This is the minimal level of vigilance that 
can trigger a reset wave and thus a memory search for a new category. Match tracking realizes a 
Minimax Learning Rule that conjointly maximizes category generality while it minimizes 
predictive error. In other words, match tracking uses the least memory resources that can prevent 
errors from being made. 
 
 
Because vigilance can vary across learning trials, recognition categories capable of encoding 
widely differing degrees of generalization or abstraction can be learned by a single ART system. 
Low vigilance leads to broad generalization and abstract prototypes. High vigilance leads to 
narrow generalization and to prototypes that represent fewer input exemplars, even a single 
exemplar. Thus a single ART system may be used, say, to learn abstract prototypes with which 
to recognize abstract categories of faces and dogs, as well as “exemplar prototypes” with which 
to recognize individual views of faces and dogs. ART models hereby try to learn the most 
general category that is consistent with the data. This tendency can, for example, lead to the type 
of overgeneralization that is seen in young children until further learning leads to category 
refinement. 
 
 
Memory Consolidation and the Emergence of Rules: Direct Access to Globally Best Match 
 
As sequences of inputs are practiced over learning trials, the search process eventually converges 
upon stable categories. It has been mathematically proved [11] that familiar inputs directly 
access the category whose prototype provides the globally best match, while unfamiliar inputs 
engage the orienting subsystem to trigger memory searches for better categories until they 
become familiar.  This process continues until the memory capacity, which can be chosen 
arbitrarily large, is fully utilized. The process whereby search is automatically disengaged is a 
form of memory consolidation that emerges from network interactions.  Emergent consolidation 
does not preclude structural consolidation at individual cells, since the amplified and prolonged 
activities that subserve a resonance may be a trigger for learning-dependent cellular processes, 
such as protein synthesis and transmitter production.   
 
It has also been shown that the adaptive weights which are learned by some  ART models can, at 
any stage of learning, be translated into fuzzy IF-THEN rules [9]. Thus the ART model is a self-
organizing rule-discovering production system as well as a neural network. These examples 
show that the claims of some cognitive scientists and AI practitioners that neural network models 
cannot learn rule-based behaviors are as incorrect as the claims that neural models cannot learn 
symbols. 
 
 
How the Laminar Circuits of Cerebral Cortex Embody ART Mechanisms 
 
More recent versions of ART have shown how predicted ART mechanisms may be embodied 
within known laminar microcircuits of the cerebral cortex. These include the family of 
LAMINART models (Figure 2; see [7]) and the Synchronous Matching ART, or SMART, model  
(Figure 3, see [8]). SMART, in particular, predicts how a top-down match may lead to fast 
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gamma oscillations that facilitate spike-timing dependent plasticity (STDP), whereas a mismatch 
can lead to slower beta oscillations that lower the probability that mismatched events can be 
learned by a STDP learning law. At least three neurophysiological labs have recently reported 
data consistent with the SMART prediction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. LAMINART circuit clarifies how known cortical connections within and 
across cortical layers join the layer 6  4 and layer 2/3 circuits to form a laminar circuit 
model for the interblobs and pale stripe regions of cortical areas V1 and V2. Inhibitory 
interneurons are shown filled-in black. (a) The LGN provides bottom-up activation to 
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layer 4 via two routes. First, it makes a strong connection directly into layer 4. Second, 
LGN axons send collaterals into layer 6, and thereby also activate layer 4 via the 6  4 
on-center off-surround path. The combined effect of the bottom-up LGN pathways is to 
stimulate layer 4 via an on-center off-surround, which provides divisive contrast 
normalization [12][13][14] of layer 4 cell responses. (b) Folded feedback carries 
attentional signals from higher cortex into layer 4 of V1, via the modulatory 6  4 path. 
Corticocortical feedback axons tend preferentially to originate in layer 6 of the higher 
area and to terminate in layer 1 of the lower cortex [15], where they can excite the apical 
dendrites of layer 5 pyramidal cells whose axons send collaterals into layer 6. The 
triangle in the figure represents such a layer 5 pyramidal cell. Several other routes 
through which feedback can pass into V1 layer 6 exist (see [16] for a review). Having 
arrived in layer 6, the feedback is then “folded” back up into the feedforward stream by 
passing through the 6  4 on-center off-surround path [17]. (c) Connecting the 6  4 
on-center off-surround to the layer 2/3 grouping circuit: like-oriented layer 4 simple cells 
with opposite contrast polarities compete (not shown) before generating half-wave 
rectified outputs that converge onto layer 2/3 complex cells in the column above them. 
Just like attentional signals from higher cortex, as shown in (b), groupings that form 
within layer 2/3 also send activation into the folded feedback path, to enhance their own 
positions in layer 4 beneath them via the 6  4 on-center, and to suppress input to other 
groupings via the 6  4 off-surround. There exist direct layer 2/3  6 connections in 
macaque V1, as well as indirect routes via layer 5. (d) Top-down corticogeniculate 
feedback from V1 layer 6 to LGN also has an on-center off-surround anatomy, similar to 
the 6  4 path. The on-center feedback selectively enhances LGN cells that are 
consistent with the activation that they cause [18], and the off-surround contributes to 
length-sensitive (endstopped) responses that facilitate grouping perpendicular to line 
ends. (e) The entire V1/V2 circuit: V2 repeats the laminar pattern of V1 circuitry, but at a 
larger spatial scale. In particular, the horizontal layer 2/3 connections have a longer range 
in V2, allowing above-threshold perceptual groupings between more widely spaced 
inducing stimuli to form [19]. V1 layer 2/3 projects up to V2 layers 6 and 4, just as LGN 
projects to layers 6 an 4 of V1. Higher cortical areas send feedback into V2 which 
ultimately reaches layer 6, just as V2 feedback acts on layer 6 of V1 [20]. Feedback paths 
from higher cortical areas straight into V1 (not shown) can complement and enhance 
feedback from V2 into V1. Top-down attention can also modulate layer  2/3 pyramidal 
cells directly by activating both the pyramidal cells and inhibitory interneurons in that 
layer. The inhibition tends to balance the excitation,  leading to a modulatory effect. 
These top-down attentional pathways tend to synapse in layer 1, as shown in Figure 2b. 
Their synapses on apical dendrites in layer 1 are not shown, for simplicity. (Reprinted 
with permission from [16].) 
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Figure 3. SMART model overview. A first-order and higher-order cortical area are 
linked by corticocortical and corticothalamocortical connections. The thalamus is 
subdivided into specific first-order, second-order, nonspecific, and thalamic reticular 
nucleus (TRN). The thalamic matrix (one cell population shown as an open ring) 
provides priming to layer 1, where layer 5 pyramidal cell apical dendrites terminate. The 
specific thalamus relays sensory information (first-order thalamus) or lower-order 
cortical information (second-order thalamus) to the respective cortical areas via plastic 
connections. The nonspecific thalamic nucleus receives convergent BU input and 
inhibition from the TRN, and projects to layer 1 of the laminar cortical circuit, where it 
regulates reset and search in the cortical circuit (see text). Corticocortical feedback 
connections link layer 6II of the higher cortical area to layer 1 of the lower cortical area, 
whereas thalamocortical feedback originates in layer 6II and terminates in the specific 
thalamus after synapsing on the TRN.  Layer 6II corticothalamic feedback matches the 
BU input in the specific thalamus. V1 receives two parallel BU thalamocortical 
pathways. The LGN→V1 layer 4 pathway and the  modulatory LGN→V1 layer 6I→4 
pathway provide divisive contrast normalization  of layer 4 cell responses. The 
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intracortical loop V1 layer 4→2/3→5→6I→4 pathway (folded feedback) enhances the 
activity of winning  layer 2/3 cells at their own positions via the 6I →4 on-center, and 
suppresses input to other layer 2/3 cells via the 6I →4 off-surround. V1 also activates the 
BU V1→V2 corticocortical pathways (V1 layer 2/3→V2 layers 6I and 4) and the BU 
corticothalamocortical pathways (V1 layer 5 →PULV→V2 layers 6I and 4), where the 
layer 6I→4 pathway provides divisive contrast normalization to V2 layer 4 cells 
analogously to V1. Corticocortical feedback from V2 layer 6II→V1 layer 5 →  6I →  4 
also uses the same modulatory 6I→4 pathway. TRN cells of the two thalamic sectors are 
linked via gap junctions, which provide synchronization of the two thalamocortical 
sectors when processing BU stimuli. [Reprinted with permission from [8].] 

 
 

Review of ART and ARTMAP Algorithms 
 
From Winner-Take-All to Distributed Coding 
 
As noted above, ART networks serve both as models of human cognitive information processing 
[21][22][23] and as neural systems for technology transfer [24][25][26]. Design principles 
derived from scientific analyses and design constraints imposed by targeted applications have 
jointly guided the development of many variants of the basic networks, including fuzzy 
ARTMAP [9], ART-EMAP [27], ARTMAP-IC [28], and Gaussian ARTMAP [29]. Early 
ARTMAP systems, including fuzzy ARTMAP, employ winner-take-all (WTA) coding, whereby 
each input activates a single category node during both training and testing. When a node is first 
activated during training, it is mapped to its designated output class.  
 
Starting with ART-EMAP, subsequent systems have used distributed coding during testing, 
which typically improves predictive accuracy, while avoiding the computational problems 
inherent in the use of distributed code representations during training. In order to address these 
problems, distributed ARTMAP [30][31] introduced a new network configuration, in addition to 
new learning laws. 
 
Comparative analysis of the performance of ARTMAP systems on a variety of benchmark 
problems has led to the identification of a default ARTMAP network [32], which features 
simplicity of design and robust performance in many application domains. Default ARTMAP 
employs winner-take-all coding during training and distributed coding during testing within a 
distributed ARTMAP network architecture. With winner-take-all coding during testing, default 
ARTMAP reduces to a version of fuzzy ARTMAP. 
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Figure 4.  Complement coding transforms an M-dimensional feature vector a into a 2M-
dimensional system input vector A. A complement-coded system input represents both 
the degree to which a feature i is present a

i( )  and the degree to which that feature is 
absent 1! a

i( ) . 
 
 

Complement coding:  Learning both absent and present features 
 
ART and ARTMAP employ a preprocessing step called complement coding (Figure 4), which 
models the nervous system’s ubiquitous use of the computational design known as opponent 
processing [33][34]. Balancing an entity against its opponent, as in agonist-antagonist muscle 
pairs, allows a system to act upon relative quantities, even as absolute magnitudes may vary 
unpredictably. In ART systems, complement coding [35] is analogous to retinal ON-cells and 
OFF-cells [36]. When the learning system is presented with a set of input features 
a ! a

1
...a

i
...a

M( ) , complement coding doubles the number of input components, presenting to the 
network both the original feature vector and its complement. 
 
Complement coding allows an ART system to encode within its critical feature patterns of 
memory features that are consistently absent on an equal basis with features that are consistently 
present. Features that are sometimes absent and sometimes present when a given category is 
learning become regarded as uninformative with respect to that category. Since its introduction, 
complement coding has been a standard element of ART and ARTMAP networks, where it plays 
multiple computational roles, including input normalization. However, this device is not 
particular to ART, and could, in principle, be used to preprocess the inputs to any type of system. 
 
To implement complement coding, component activities 

i
a  of a feature vector a are scaled so 

that 0 1
i
a! ! . For each feature i, the ON activity 

i
a  determines the complementary OFF 

activity ( )1
i
a! . Both 

i
a  and ( )1

i
a!   are represented in the 2M-dimensional system input 

vector 
  
A = a a

c( )  (Figure 4).  Subsequent network computations then operate in this 2M-

dimensional input space. In particular, learned weight vectors w
J
 are 2M-dimensional. 
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ARTMAP Search and Match Tracking in fuzzy ARTMAP 
 
As illustrated by Figure 1, the ART matching process triggers either learning or a parallel 
memory search.  If search ends at an established code, the memory representation may either 
remain the same or incorporate new information from matched portions of the current input. 
While this dynamic applies to arbitrarily distributed activation patterns, the F2 search and code 
for fuzzy ARTMAP (Figure 5) describes a winner-take all system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A fuzzy ART search cycle [35], with a distributed ART network configuration 
[23]. The ART 1 search cycle [11] is the same, but allows only binary inputs and did not 
originally feature complement coding. The match field F1 represents the matched 
activation pattern 

  
x = A ! w

J
, where !  denotes the component-wise minimum, or fuzzy 

intersection, between the bottom-up input A and the top-down expectation 
  
w

J
. If the 

matched pattern fails to meet the matching criterion, then the active code is reset at F2, 
and the system searches for another code y that better represents the input. The match / 
mismatch decision in the ART orienting system. Each active feature in the input pattern 
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A excites the orienting system with gain equal to the vigilance parameter ! . Hence, with 

complement coding, the total excitatory input is 
2

1

M

i

i

A M! ! !
=

= ="A . Active cells in the 

matched pattern x inhibit the orienting system, leading to a total inhibitory input equal to 
2

1

M

i

i

x

=

! = !"x . If 0! " #A x , then the orienting system remains quiet, allowing 

resonance and learning to occur. If 0! " >A x , then the reset signal r=1, initiating 
search for a better matching code.  

 
 
 
Before ARTMAP makes a class prediction, the bottom-up input A is matched against the top-
down learned expectation, or critical feature pattern, that is read out by the active node (Figure 
5b). The matching criterion is set by a vigilance parameter ! . As noted above, low vigilance 
permits the learning of abstract, prototype-like patterns, while high vigilance requires the 
learning of specific, exemplar-like patterns. When a new input arrives, vigilance equals a 
baseline level, ! . Baseline vigilance is set equal to zero by default, in order to maximize 
generalization. Vigilance rises only after the system has made a predictive error. The internal 
control process that determines how far it must rise in order to correct the error is called match 
tracking [37]. As vigilance rises, the network is required to pay more attention to how well top-
down expectations match the current bottom-up input. 
 
Match tracking (Figure 6) forces an ARTMAP system not only to reset its mistakes, but to learn 
from them. With match tracking and fast learning, each ARTMAP network passes the Next Input 
Test, which requires that, if a training input were re-presented immediately after a learning trial, 
it would directly activate the correct output class, with no predictive errors or search. Match 
tracking thus simultaneously implements the design goals of maximizing generalization and 
minimizing predictive error, without requiring the choice of a fixed matching criterion. 
ARTMAP memories thereby include both broad and specific pattern classes, with the latter 
typically formed as exceptions to the more general “rules” defined by the former. ARTMAP 
learning typically produces a wide variety of such mixtures, whose exact composition depends 
upon the order of training exemplar presentation. 
 
Unless they have already activated all their coding nodes, ARTMAP systems contain a reserve of 
nodes that have never been activated, with weights at their initial values. These uncommitted 
nodes compete with the previously active committed nodes, and an uncommitted node will be 
chosen over poorly matched committed nodes. An ARTMAP design constraint specifies that an 
active uncommitted node should not reset itself. Weights initially begin with w

iJ
= 1 . Thus, when 

the active node J is uncommitted, x = A !w
J
= A  at the match field. Then,  

! A " x = ! A " A = ! "1( ) A . Thus ! A " x # 0  and an uncommitted node does not 
trigger a reset, provided that ! " 1. 
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Figure 6.   ARTMAP match tracking [37]. When an active node J meets the matching 
criterion ! A " x # 0( ) , the reset signal r=0 and the node makes an prediction. If the 

predicted output is incorrect, the feedback signal R=1. While R = r
c
= 1 , r increases 

rapidly. As soon as ! >
x

A
, r switches to 1, which both halts the increase of r and resets 

the active F2 node. From one chosen node to the next, r decays to slightly below 
x

A
 

(MT–:  [28]. On the time scale of learning r returns to ! . 
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Figure 7.    Fuzzy ART geometry. The weight of a category node  J  is represented in 
complement-coding form as w

J
= u

J
v
J

C( ) , and the M-dimensional vectors u
J
 and v

J
 

define the corners of the category box R
J
. When M=2, the size of R

J
 equals its width 

plus its height. During learning, R
J
 expands toward R

J
! a , defined as the smallest box 

enclosing both R
J
 and a. Node J will reset before learning if R

J
! a > M 1" #( ) . 

 
 
 
ART Geometry 
 
Fuzzy ART long-term memories are visualized as hyper-rectangles, called category boxes. The 
weight vector w

J
 is interpreted geometrically as a box R

J
 whose ON-channel corner u

J
 and 

OFF-channel corner v
J

 are, in the format of the complement-coded input vector, defined by 

u
J
v
J

C( ) ! wJ
 (Figure 7). For fuzzy ART with the choice-by-difference F

0
! F

2
 signal function 

T
J

 [38], an input a activates the node J of the closest category box R
J
, according to the L1 (city-

block) metric. In case of a tie, as when a lies in more than one box, the node with the smallest 

R
J
 is chosen, where R

J
 is defined as the sum of the edge lengths v

iJ
! u

iJ

i=1

M

" . The chosen 

node J will reset if  R
J
! a > M 1" #( ) , where R

J
! a  is the smallest box enclosing both R

J
 

and a. Otherwise, R
J
 expands toward R

J
! a  during learning. With fast learning, 

R
J

new
= R

J

old
! a . 
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Biasing Against Previously Active Category Nodes and Previously Attended Features during 
Attentive Memory Search 
 
Activity x at the ART field F1 continuously computes the match between the field’s bottom-up 
and top-down input patterns. A reset signal r shuts off the active F2 node J when x fails to meet 
the matching criterion determined by the value of the vigilance parameter r. Reset alone does 
not, however, trigger a search for a different F2 node:  unless the prior activation has left an 
enduring trace within the F0-to-F2 subsystem, the network will simply reactivate the same node 
as before. As modeled in ART 3 [39], biasing the bottom-up input to the coding field F2 to favor 
previously inactive nodes implements search by allowing the network to activate a new node in 
response to a reset signal. The ART 3 search mechanism defines a medium-term memory 
(MTM) in the F0-to-F2 adaptive filter which biases the system against re-choosing a node that 
had just produced a reset. A presynaptic interpretation of this bias is transmitter depletion, or 
habituation (Figure 8). 
 
Medium-term memory in all ART models allows the network to shift attention among learned 
categories at the coding field F2 during search. The new biased ART network [40] introduces a 
second medium-term memory that shifts attention among input features, as well as categories, 
during search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  ART 3 search implements a medium-term memory within the F0-to-F2 pathways, 
which biases the system against choosing a category node that had just produced a reset. 
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Self-Organizing Rule Discovery 
 
This foundation of computational principles and mechanisms has enabled the development of an 
ART information fusion system that is capable of incrementally learning a cognitive hierarchy of 
rules in response to probabilistic, incomplete, and even contradictory data that are collected by 
multiple observers [41][42]. 
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