Julia Sets Converging to the Filled Basilica

Robert Thÿs Kozma Professor: Robert L. Devaney

Boston University

Young Mathematicians Conference Columbus OH, August 29, 2010

Boston University

Robert Thÿs Kozma Professor: Robert L. Devaney

Outline

1. Introduction

Basic concepts of dynamical systems

2. Theoretical Background

Perturbations of quadratic maps

3. Main Results

Proof of the convergence of a family of Julia sets to the filled basilica

4. Concluding Remarks

Conjectures for future studies

Preliminaries of the Problem

Complex quadratic function $\mathbf{F}(z) = z^2 + \mathbf{c}$, (unperturbed) Iterates $F^2(z) = F(F(z)), \dots, F^n(z) = F(F^{n-1}(z)), \dots$ <u>Black:</u> $F^n(z)$ remains bounded. <u>Colored:</u> $F^n(z) \to \infty$ as $n \to \infty$. Unit disk Basilica Douady Rabbit

The Julia set is the boundary of the black region.

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Perturbed Quadratic Map (PQM) $F_{\lambda}(z) = z^2 + c + \frac{\lambda}{z^2}$ <u>Previous result '08:</u> (Julia set of PQM with c = 0) $\xrightarrow{\lambda \to 0}$ unit disk

<u>Present work:</u> (Julia set of PQM with c = -1) $\xrightarrow[\lambda \to 0+]{}$ filled basilica

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Boston University

Perturbed Quadratic Map (PQM) $F_{\lambda}(z) = z^2 + c + \frac{\lambda}{z^2}$ <u>Previous result '08:</u> (Julia set of PQM with c = 0) $\xrightarrow{\lambda \to 0}$ unit disk

<u>Present work:</u> (Julia set of PQM with c = -1) $\xrightarrow[\lambda \to 0+]{}$ filled basilica

 $\lambda = 10^{-2}$ $\lambda = 10^{-3}$ $\lambda = 10^{-4}$ $\lambda = 10^{-6}$ $\lambda = 0$

Conjecture: Julia set of PQM with c in the center of any periodic bulb in the Mandelbrot set \longrightarrow filled Julia set.

Boston University

Robert Thÿs Kozma Professor: Robert L. Devaney

On Convergence

Space-filling curve (Sierpinski curve)

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica

Iterates and Orbits of Quadratic maps $z^2 + c$

Graphical Analysis

Orbit of 0 when $F(z) = z^2 + c$ 1. $F(0) = 0^2 + c$ 2. $F(F(0)) = F(c) = c^2 + c$ 3. Do it again: F(F(F(0))) = $F(c^{2}+c) = (c^{2}+c)^{2} + c$ 4. Do it again ... $F(F(\ldots F(0)..)$ is called the *n*-th iterate and denoted $F^{n}(0)$. The list of numbers generated in this way called the orbit of 0.

< 口 > < 同

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica

The Julia Set

Given $c \in \mathbb{C}$ the filled Julia set for $z^2 + c$ is the collection of all z's whose orbit does not escape to infinity under iteration of $z^2 + c$. Definition

The **Julia set** is the boundary of the filled Julia set and is denoted J(F).

$$c = -1$$

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Other Julia sets can look very different

Julia sets are either connected or totally disconnected (black region is a scattered set of points).

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica

The Mandelbrot Set

Definition

The **Mandelbrot set** \mathcal{M} consists of all of all $c \in \mathbb{C}$ values for which the filled Julia set $J(z^2 + c)$ is connected.

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Perturbed Quadratic Maps

Perturbed complex quadratic polynomial maps are functions of the form

$$F_{\lambda}(z) = z^2 - 1 + rac{\lambda}{z^2} \quad ext{with } \lambda \in \mathbb{C}.$$

Illustration of unperturbed and perturbed quadratic maps, $\lambda \in \mathbb{R}^+$

Robert Thÿs Kozma Professor: Robert L. Devaney

Trap Door

 B_{λ} is the immediate basin of attraction of ∞ (outer red region). Definition

The region about the origin which is mapped to B_{λ} under one iteration is called the **trap door** and is denoted T_{λ} .

All colored regions within ∂B_{λ} are preimages of the T_{λ} .

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica

Julia sets converge to unit disk (Garijo & Devaney, 2008) $H_{\lambda}(z) = z^n + \lambda/z^d$ in the case of n, d > 2 there always exists an annulus of fixed size in the complement of the Julia set for all $\lambda \dots$

... but $H_{\lambda}(z) = z^n + \lambda/z^d$ converges to the unit disk in the case of n = d = 2 as $\lambda \to 0$.

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica

Main Theorem:

The Julia set of $F_{\lambda}(z) = z^2 - 1 + \frac{\lambda}{z^2}$ converges to the filled basilica for parameter values $\lambda \in \mathbb{R}^+$ as $\lambda \to 0$ when $\lambda \neq 0$.

Steps in Proof:

- 1. Find an invariant interval in the Julia set
- 2. Behavior of the 2nd iterate of the central bulb.
- 3. Construction of a Cantor necklace
- 4. Finish by showing that iterates of a disk of radius ϵ in the central bulb will intersect with the Cantor necklace in $J(F_{\lambda}(z))$.

The Invariant Interval/1

Proposition

There is an invariant interval I in the filled Julia set under the map F_{λ}^2 which connects T_{λ} and the preimage of T_{λ} in D_1 .

Graphical analysis of the first and second iterate of $F_{\lambda}(z)$.

Boston University

Robert Thÿs Kozma Professor: Robert L. Devaney

The Invariant Interval/2

Graphical analysis of the first and second iterate of $F_{\lambda}(z)$. We show there is a invariant interval under the second iterate.

Robert Thÿs Kozma Professor: Robert L. Devaney

The Invariant Interval/3

Schematic illustration of two regions in the basilica Julia set. Segments a given same color are mapped to the segments of the same color.

Robert Thÿs Kozma Professor: Robert L. Devaney

Behavior of the 1st Iterate of a Sector

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Boston University

Behavior of the 2nd Iterate of a Sector/1

Segments a given same color are mapped to the segments of the same color. $(\square) (\square) ($

Robert Thÿs Kozma Professor: Robert L. Devaney

Behavior of the 2nd Iterate of a Sector/2

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

Behavior of the 2nd Iterate of a Sector/3

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

 F_{λ}^2 maps the central bulb of the basilica onto itself The mapping of central bulb D_0 under F_{λ}^2 is 4-to-1.

The 4 preimages of each of the fundamental sectors of the central bulb. Its four preimages in $J(F_{\lambda})$ under F_{λ}^2 are shown. Segments of the same color are mapped to the segments of the same color.

Green: preimages of B_{λ} ; Yellow and Brown sectors: trace the evolution of the preimages.

This is homeomorphic to the Cantor middle thirds necklace;

generalization of Devaney (2006).

Robert Thÿs Kozma Professor: Robert L. Devaney

Final Step of the Proof

Theorem (Disk Wrapping around the origin)

Let $B_{\epsilon}(z_0)$ denote the disk of radius $\epsilon > 0$ centered at z_0 . There exists a $\mu > 0$ such that, for any $\lambda \in \mathbb{R}^+$ such that $0 < |\lambda| \le \mu$, $J(F_{\lambda}) \cap B_{\epsilon}(z_0) \neq \emptyset$ for all $z_0 \in D_0$.

- The 2k-th iterates of disk always stays in central bulb D_0 .
- ▶ $\exists n, F^{2n}(B_{\epsilon})$ wraps around origin, intersects Cantor necklace.
- Julia set is backwards invariant.
- ▶ This concludes the proof of the main result. □

Julia set of F_{λ} for $\lambda \to 0+$ converges to the filled basilica.

Robert Thÿs Kozma Professor: Robert L. Devaney Julia Sets Converging to the Filled Basilica Conclusion & Future Directions

Conjecture

The Julia set of

$$F_{\lambda} = z^2 + c + \frac{\lambda}{z^2}$$

converges to the filled Julia set given that the value c lies in the center of a hyperbolic component of the Mandelbrot set.

$$\lambda = 10^{-2} \quad \lambda = 10^{-3} \quad \lambda = 10^{-4} \quad \lambda = 10^{-6} \quad \lambda = 0$$

Robert Thÿs Kozma Professor: Robert L. Devaney

Julia Sets Converging to the Filled Basilica

References

- Devaney, R.L., Cantor Necklaces and Structurally Unstable Sierpinski Curve Julia Sets for Rational Maps, Qualitative Theory of Dynamical Systems 5 (2006), 337-359.
- Devaney, R.L., Garijo, A. Julia Sets Converging to the Unit Disk, Proc. AMS, Vol. 136 (2008) 981-988.
- Morabito, M., Devaney, R.L., *Limiting Julia Sets for Singularly Perturbed Rational Maps*, International Journal of Bifurcation and Chaos 18 (2008), 3175-3181.
- Blanchard, P., Devaney, R.L., Garijo, A., Marotta, S.M., Russel E. D. Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets, Complex Dynamics: Families and Friends, A. K. Peters (2009), 277-296.
- Kozma, R.T., Julia Sets Converging to the Filled Basilica, PiMuEpsilon Journal (Accepted, 2010).