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Abstract

In this paper we investigate singularly perturbed complex quadratic
polynomial maps of the form

Fλ(z) = z2 − 1 +
λ

z2
.

We prove that for parameter values λ ∈ R+ as λ → 0 the Julia set of
Fλ(z) converges to the filled basilica when λ 6= 0.

1 Introduction
Our goal in this paper is to show that the Julia sets of the functions z2−1+λ/z2

converge to the filled basilica, the filled Julia set of z2 − 1, as λ → 0 along the
positive real axis. Julia sets of singularly perturbed polynomial maps from the
family Hλ(z) = zn + c + λ/zd have been extensively studied in recent years.
These maps are obtained by replacing the only finite critical point of H0(z), the
z0 value for which the derivative is zero, by a pole of order n.

For case c = 0, is well known that the filled Julia set of H0(z) = zn is the
unit disk [8]. The family of maps Hλ(z) = zn + λ/zd was investigated for d = 1
in [6], and for n, d ≥ 2 in [3]. For family Hλ the Julia sets behave in three
different ways as λ→ 0. In the case d = 1, the Julia set converges to the closed
unit disk as λ → 0 along n − 1 special rays in C. For n = d = 2 the Julia
set converges to the unit disk as λ → 0 from all directions in C. In cases with
n, d > 2, regardless of how small |λ|, Julia sets no longer converge, as there is
always an annulus of fixed size about the origin in the complement of the Julia
set.

In [1] the authors investigate the family Hλ(z) = zn + c + λ/zd for various
c values located at centers of hyperbolic components of the Mandelbrot set.
It is shown that the Julia set explodes for λ 6= 0, and for cases where c 6= 0
the boundaries of the components of the basin of infinity are not simple closed
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curves, but rather doubly inverted copies of the Julia set of z2 + c. In this
paper, we use the boundary structure of the Julia set to show that the Julia set
of Fλ(z) = z2 − 1 + λ/z2 converges to the filled basilica.

This paper is structured as follows. In Section 2, we outline preliminaries on
Julia sets. In Section 3, we show that the critical orbits of Fλ never escape to
infinity for small |λ|, by finding an invariant interval in the filled Julia set under
the second iterate of Fλ containing the critical orbit. The second iterate of Fλ
is denoted F 2

λ . In Section 4, we show that the dynamics of F 2
λ on a portion of

the Julia set is conjugate to the shift map on two symbols, and use symbolic
dynamics to construct a Cantor necklace in the dynamical plane. In Section
5, we conclude the paper by proving that the existence of the invariant Cantor
necklace in the dynamical plane implies that the Julia set converges to the filled
basilica as λ→ 0.

(i) (ii) (iii)

Figure 1: Filled Julia sets for maps (i) F0.001; (ii) F0.00001; (iii) F0, called the
filled basilica. Black points have bounded orbits, while colored points escape to
infinity; the Julia set is the boundary of the colored region.

2 Preliminaries
The Julia set is the chaotic domain of a complex analytic function. Equivalently,
the Julia set is the boundary of the basin of attraction of infinity, which for our
maps is a superattracting fixed point. The complement of the Julia set is called
the Fatou set. All attracting periodic orbits lie within the Fatou set, while the
boundary of the Fatou set, as well as all repelling periodic points are contained
in the Julia set. The Fatou set typically has simple dynamics, with most orbits
converging to attracting cycles.

The filled Julia set consists of all points whose orbits are bounded. The Julia
set denoted J(Fλ) is the boundary of the filled Julia set. The Julia set of the
unperturbed quadratic map J(F0) is called the basilica and is shown in Figure
1 (iii). We denote the immediate basin of attraction of infinity by Bλ. The
region about the origin in the dynamical plane that is mapped to Bλ under one
iteration is called the trap door and is denoted Tλ.
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Figure 2: The filled Julia set of F0.00001 enlarged about the trap door, with
details of the doubly inverted basilicas.

It is known that Tλ and Bλ are disjoint when |λ| is sufficiently small; in this
paper we assume this to always be the case. The boundary of the immediate
basin of attraction of infinity under Fλ is denoted ∂Bλ and is homeomorphic to
J(F0). The map Fλ restricted to ∂Bλ is conjugate to F0 on J(F0). However,
the inner structure of J(Fλ) is much more intricate: there are infinitely many
doubly inverted copies of J(F0) for λ values near zero [1]. Examples of doubly
inverted basilicas are given in Figure 2.

3 Critical Orbit Remains Bounded
In this section, we prove necessary conditions for J(Fλ) converging to the filled
basilica as λ→ 0+. The dynamical behavior of the critical points determine the
structure of the Julia set. If the second iterates of the critical points lie in the
trap door, then previous results would allow the possibility of an annuli in the
Fatou set, which would not allow the Julia set to convegre to the filled basilica
[3]. We show that the critical orbit remains bounded for all iterations of Fλ, by
finding an invariant interval in the filled Julia set of Fλ extending between Tλ
and its preimage under F 2

λ .
The four distinct critical points of Fλ are cλ = λ1/4. In the case of λ ∈

R the four cλ are mapped to −1 ± 2
√
λ. By simple analysis, it follows that

limλ→0 F
3
λ(cλ) = −15/16. This value lies a constant distance from the preimage

of Tλ about −1 for |λ| small enough.
We introduce the following notation to help in the discussion of Julia sets.

Let D0 denote the bulb of the Julia set of F0 that contains 0. Similarly, let
D1 be the bulb of the Julia set about −1. The corresponding objects in the
perturbed map Fλ are denoted the same.

We prove that the filled Julia set of Fλ contains a connected interval along
the real axis running between Tλ, and its preimage in D1. This is done by
showing no preimages of Tλ are located in this interval. The orbits of all points
within this interval, including −15/16, remain bounded for all iterations of Fλ.
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Figure 3: Graphical analysis of intervals I = [F−2
λ (p1), F−1

λ (p1)] and I ′ =
[F−1
λ (p2(λ)), p2(λ)]. The dynamics of the featured section is similar to that

of the regular quadratic map.

Proposition 1 Let p2(λ) denote the negative fixed point of Fλ(z) near zero.
The interval I ′ = [F−1

λ (p2(λ)), p2(λ)] contains the local minima of the quadratic
map, i.e., F−1

λ (p2(λ)) < −1 + 2
√
λ for all λ.

Proof: We obtain an algebraically closed form for p2(λ) and its preimage
F−1
λ (p2(λ)) in terms of λ in 4 steps:

1. In order to find the fixed point, we solve the quartic equation z2 − 1 +
λ/z2 = z using Ferrari’s method. Multiplying by z2 and rearranging terms
we obtain z4 − z3 − z2 + λ = 0. Using Ferrari’s method we transform our
quartic into the cubic y3 + y2 + 4λy − 5λ = 0.

2. We use Cardano’s formula to solve the cubic and obtain a formula of the
fixed point p2(λ) in terms of λ. The details are left to the reader.

3. We substitute the value of the fixed point p2(λ) into the biquadratic for-
mula for the preimage of Fλ. Hence we obtain a closed form equation for
F−1
λ (p2(λ)) with λ as the only parameter.

F−1(λ) = −

√
p2(λ) + 1 +

√
(−(p2(λ) + 1))2 − 4λ

2
(1)

4. For small |λ| values, we have that F−1
λ (p2(λ))

< −1 + 2
√
λ. Hence the local minimum of the perturbed quadratic map

is contained in the interval I ′ = [F−1
λ (p2(λ)), p2(λ)] completing the proof.
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QED
Note that solving with Ferrari’s method and Cardano’s formula require no

numerical methods so the proof of Proposition 1 is mathematically rigorous.
Let p1 = (1 −

√
5)/2 denote the fixed point of the unperturbed quadratic

map. Let I = [F−2
λ (p1), F−1

λ (p1)]. In this case I ⊆ I ′, see Figure 3.

Corollary 1 As λ→ 0, the closed inteval I contains one of the two local min-
ima of Fλ along the real axis.

By graphical analysis of Fλ over the interval I given in Figure 3, we find
that the interval I is invariant under Fλ.

Corollary 2 Fλ maps the closed interval I 2-to-1 onto itself.

In the next proposition, we show the intervals I and I ′ both contain the
segment connecting the Tλ to its preimage, by proving that p2(λ) lies on ∂Tλ,
and that the I ′ interval is invariant under F 2

λ . As a result there is a connected
piece in J(Fλ) joining Tλ and its preimage in D1. Moreover, we find that
p2(λ) > F−1(p1) where p2(λ) is the negative fixed point near 0. One can find a
closed form for the fixed point p1(λ), the fixed point near p1 = (1 −

√
5)/2, in

terms of λ using the method outlined for p2(λ) in Proposition 1.

Proposition 2 Two preimages of the fixed point p1(λ) lie at ∂Tλ ∩R, and two
lie at ±p1(λ).

Proof: Recall that for case λ = 0 every point in J(F0) has exactly two
preimages, i.e., the map F0 is 2-to-1. The disk D0 is mapped 2-to-1 onto the
disk D1, as no other regions are mapped onto D1. Define D2 to be the disk
symmetrically located to D1 with respect to the imaginary axis. Regions D1

and D2 are both mapped 1-to-1 onto D0. By the boundary mapping principle
∂D1 and ∂D2 are both mapped 1-to-1 onto ∂D0, and ∂D0 is mapped 2-to-1
onto ∂D1.

For the case J(Fλ) where λ 6= 0, zero is mapped to infinity, thus there is a
trap door Tλ about zero that is mapped to Bλ by Fλ. Under Fλ, every point
within bulb D0 is mapped within bulb D1. The map Fλ is continuous, so by the
boundary mapping principle ∂D0 must be mapped onto ∂D1. We know that
Fλ(−1) ∈ Bλ, so ∂Tλ must be mapped 2-to-1 onto the outer boundary of D1.
The perturbed quadratic map is 4-to-1 and maps both the real and imaginary
axis onto the real axis. Hence, we are able to locate the four preimages of p1(λ)
along the real line. They are as follows:

1. The fixed point p1(λ) itself.

2. The point −p1(λ) is also a preimage. This can be shown by graphical anal-
ysis, or the symmetry of map Fλ and J(Fλ) with respect to the imaginary
axis.
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3. The negative real point in ∂Tλ ∩ R after removing the attachments. We
know ∂Tλ is mapped to the ’outer’ boundary of D1 at ∂Bλ. The 4-to-
1 map takes the real points of ∂Tλ onto either ±p1(λ). There are two
purely imaginary values in ∂Tλ that map onto the real axis. Due to the
continuity of Fλ the image of the ∂Tλ wraps around the outer boundary of
D1 exactly two times. This implies that the two real values of ∂D0 ∩ ∂Tλ
are mapped to p1(λ). The two purely imaginary points of ∂D0 ∩ ∂Tλ are
mapped to the other real value on the outer boundary of D1, and are
mapped to −p1(λ) under F 2

λ .

4. The positive real point in ∂Tλ ∩ R after removing the attachments. This
can be readily verified using symmetry assumptions on Tλ and Fλ, or
through graphical analysis.

We find that the four preimages of p1(λ) are all real numbers. Furthermore,
the purely imaginary points of ∂D0 map to −p1(λ) under F 2

λ . QED

Figure 4: Graphical analysis of the first and second iterate of Fλ(z). We illus-
trate the fixed point p1(λ) and its preimages under the first and second iterate.
I ′ is the invariant interval. The dashed lines indicates regions from which orbits
of points within I ′ cannot escape under F 2

λ .

Using Proposition 2, we complete the proof of the existence of an invariant
interval connecting Tλ and p2(λ). We know that purely imaginary and purely
real values of ∂D0 are mapped onto R ∩ ∂D1. Next, the real dynamics of
the interval I ′ described in Corollary 1 is studied to prove the existence of an
invariant interval under the F 2

λ .

Proposition 3 There is an invariant interval I ′ in the filled Julia set under
the map F 2

λ connecting Tλ to the preimage of Tλ in D1.
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Proof: By the graphical analysis shown in Figure 4, under the second
iterate all orbits of points between the first and second preimages of the fixed
point F−1

λ (p1) and F−2
λ (p1) remain in interval I ′. QED

The third iterate of the critical point is −15/16 and lies in the invariant
interval I ′, so the critical orbit remains bounded for all iterations.

4 Construction of the Invariant Cantor Necklace
In this section, we prove the existence of a Cantor necklace in J(Fλ) for small
enough λ ∈ R+. The Cantor necklace will guarantee the convergence of J(Fλ)
to the filled basilica. Cantor necklaces have been recently introduced into the
literature [5], and have proven useful for studying the dynamics for perturbed
rational maps [3], [8].

Definition 1 A Cantor necklace is a set homeomorphic to the following subset
of the plane: construct a Cantor middle thirds set, and place an open disk of
radius 1/(3j · 2) at the midpoint of each of the 1/3j segments not contained in
the Cantor middle thirds set with corresponding lengths. The Cantor necklace
is the union of the Cantor middle thirds set and the family of open disks (see
Figure 5).

Figure 5: The Cantor middle thirds necklace.

Using symbolic dynamics we show the existence of a Cantor necklace in
region D0 of the dynamical plane. Let I0 denote the fundamental sector in the
diskD0 containing z = |z|eiθ with 0 < θ < π/2 between ∂Tλ and ∂Bλ. Similarly,
let I1 denote the sector with π/2 < θ < π. Let I2 = −I0 and I3 = −I1 denote
the remaining two fundamental sectors, see Figure 6.

Proposition 4 D0 can be divided into four disjoint fundamental sectors along
real and imaginary axes such that under Fλ each fundamental sector is mapped
1-to-1 onto D1. Under F 2

λ each fundamental sector is mapped 1-to-1 onto D0.

Proof: Proposition 2 characterized the images under Fλ of the purely real
and imaginary points of ∂D0 and ∂D1. Using the continuity of Fλ, we invoke
the boundary mapping principle to find the images of all boundary points of D0

and D1. The images of the interior of the fundamental sectors can be derived
from the images of their respective boundary points. In Figure 6, we give the
resulting images of the four fundamental sectors under F 2

λ , where boundaries
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are colored edges. The critical points cλ are mapped to the critical values at
−1±2

√
λ. The four preimages of Tλ must be contained in the Fatou set. QED

Figure 6: Preimages of the fundamental sectors in D0. The four preimages of
D0 in J(Fλ) under F 2

λ are illustrated. Segments of the same color are mapped
onto each other.

By Proposition 4, we have that F 2
λ : D0 → D0 is a 4-to-1 map. We as-

sign indices i1i2i3 . . . to the subdivided parts of the fundamental sectors, such
that i1i2i3 · · · ∈ {s1s2 . . . |sj ∈ {0, 1, 2, 3}}, in a way that the indices satisfy
F 2
λ(Ii1i2i3...) = Ii2i3...; see Figure 6.
We construct a conjugacy between F 2

λ and the shift map on two symbols
ik ∈ {0, 2}. It follows from Proposition 4 that F 2

λ maps both I0 and I2 1-to-1
ontoD0∪Tλ. Let Γλ be the set of points which remain in I0∪I2 for all iterations.
We have shown the following statement.

Proposition 5 F 2
λ |Γλ is conjugate to the shift map on two symbols.

Finally, we construct a Cantor necklace in the filled Julia set analogous to
that in [2].

Theorem 1 Γλ together with Tλ and the subset of preimages of Bλ remaining
in I0 ∪ I2 before landing on Tλ, form a Cantor necklace in the dynamical plane
under F 2

λ .

Proof: Using Proposition 5 we construct the Cantor necklace in the dy-
namical plane. The central disk in the Cantor necklace is Tλ. The real points
of ∂Tλ are sent to 1/3 and 2/3 in the Cantor necklace. The critical values lie in
the filled Julia set, so the trap door has 4 preimages, of which by symmetry only
two lie in the fundamental sectors I0∪I2. The boundary of these preimages each
contain two preiamges of the real points of ∂Tλ, these points are junction points
in Figure 6. The disks with diameter 1/3n in the Cantor necklace correspond to
the n-th preimeges of Tλ in regions I0 and I2, and the points in Γλ are mapped
in a natural manner to the points in the Cantor middle thirds set. The first
three steps of the construction are illustrated Figure 7. QED
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Figure 7: The first three steps in the construction of the Cantor necklace stretch-
ing over D0. This is a homeomorphic generalization of the Cantor middle thirds
necklace shown in Figure 5. The green regions are preimages of Bλ, the yellow
and brown sectors trace the evolution of the Cantor necklace.

5 Proof of the Julia set converging to the filled
Basilica

Using the Cantor necklace in the dynamical plane constructed in Theorem 1, we
conclude the proof of the Julia set converging to the filled basilica. We state a
theorem analogous to Theorem 3 in [3]. Adapting the proof for a topologically
different Julia set we prove our result.

Theorem 2 Let Bε(z0) denote the disk of radius ε > 0 centered at z0. There
exists a µ > 0 such that, for any λ ∈ R+ such that 0 < |λ| ≤ µ, J(Fλ)∩Bε(z0) 6=
∅ for all z0 ∈ D0, i.e., the Julia set J(Fλ) converges to the filled basilica.

Proof: Assume the theorem does not hold. For all ε > 0, there is a sequence
of λj → 0 and a sequence of points zk ∈ D0 such that J(Fλj

) ∩B2ε(zj) 6= ∅ for
all j. D0 is a compact set, so there exists a subsequence zj that converges to
z∗ ∈ D0. For all parameter values in this subsequence J(Fλj

) ∩ B2ε(z∗) 6= ∅.
Consider the circle of radius |z∗| about the origin. Let γ = {z| |z| = z∗}∩Bε(z∗),
and denote l = |γ|. Select k such that 22kl ≥ 2π. As λj → 0, if j is large enough
then |F iλj

− F i0| is small for 1 ≤ i ≤ k. D0 is invariant under F 2
λ , furthermore

F 2k
λj

(γ) winds around the origin at least once. By Theorem 1, F 2k
λj

meets the
Cantor necklace stretching across D0, hence J(F 2k

λj
) ∩ B2ε(z∗) 6= ∅. By the

backwards invariance of the Julia set under map Fλ, this result proves that the
Julia set converges to the filled basilica as λ→ 0+. QED
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