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Direction Percept and Readout in MT 
 

 

Abstract 

 How a moving input stimulus becomes a direction percept  via processing in the human 

visual system is a complex and unresolved issue which involves numerous areas of the brain. 

One of the principal issues in determining direction percept entails decoding of the numerous 

signals are honing these signals down into one percept. More specifically, how do numerous 

orientation, disparity, and speed signals from V1 and V2 reduce to form a motion percept in MT, 

presuming MT is the pooling locus of motion activity. I then give four strategies as an overview 

in this field for explaining various motion percept tasks: winner-take-all, vector averaging, 

Bayesian, and a sigmoid feedback function. I conclude by elaborating upon a model by Van 

Wezel and Britten which details several of these percept strategies, offers a downstream 

mechanism to account for behavioral visuomotor outputs, and may also support the idea of a 

sigmoid feedback function being implemented in direction percept and readout of MT. 

 

Introduction 

 The ability to detect motion in the human visual system is an evolutionary boon, 

enhancing our species’ ability to evade predators and, in turn, visually track moving prey when 

hunting. So in what evolved brain area, or areas, do we code for movement across a visual scene 

with complex textures and objects moving in numerous directions at different depths? The 

middle temporal visual area (MT), which is also called V5, has been studied extensively over the 

past several decades and has since proven to be a key component of motion perception 
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processing. Located directly in the middle of the dorsal visual stream, MT receives strong V1 

magnocellular inputs as well as projections from V2 thick stripes, V3, and inferior pulvinar. 

 Like V1, MT is retinotopically organized in each hemisphere, however, MT cells have far 

larger receptive fields which code for preferred direction as well as binocular disparity and speed 

in a columnar structure (Born & Bradley, 2005). V1 already codes for many of these features, 

however, due to the large MT receptive fields, MT neurons can account for motion and disparity 

in a much larger spatial domain. More importantly, MT is considered by many researchers to be 

the locus of visual motion perception and also may be considered a branching point for 

determining behavioral motor outputs such as object tracking or saccadic generation. It is 

obvious from these feature qualities that MT is more concerned with decoding motion and spatial 

location than object recognition or color. 

 

Problems With Direction Percept 

In order to obtain a direction percept, MT must compute the velocity of input taken in 

from the retina, filter out and suppress noise signals sent from V1, and pool or extract a 

meaningful motion signal from this noisy system in order to segment what is moving or “figure” 

from what is static or “ground” in a visual environment.  All this processing may be why MT 

neurons are sensitive to not only preferred direction, but also overlapping features including 

disparity and speed. So how do numerous sensory signals become a solitary perceptual decision 

of direction in MT? And how does this “readout” effect visuomotor behavior?  

Much of the MT literature describes this area’s neural response as having a Gaussian bell 

shape as seen in a simple motion psychophysical test where a  white dot moves across a black 

screen in one direction. This Gaussian distribution correlates to numerous synaptic inputs from 

areas such as V1 across MT neurons’ large receptive fields, which must then be reduced to a 
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single percept, signal, or code. In order to determine one percept, a method of choice from an 

array of activity must be taken within MT. How this choice is made has been of particular 

interest to vision researchers and has spawned numerous models attempting to interpret direction 

percept selection and visuomotor behavioral output.  

Based on the limited number of papers I have read on this topic thus far, it appears that 

two primary methods have been proposed: 1) the most active neuron(s) in the input network 

“win” the competition and hence become the motion percept or 2) the mean activity across the 

network is computed and a certain spatiotemporal distribution, or “vector averaging,” determines 

the percept. Unfortunately, neither of these two methods on their own have been able to fully 

account for MT responses over a wide range of psychophysical motion percept experiments. It 

appears that MT uses the first, winner-take-all strategy on some occasions and the second, vector 

averaging strategy on other occasions. Born and Bradley mention a third option for decoding the 

motion percept – a model which relies on Bayesian methods. I will discuss the basic tenets of 

this model type in a later section as well as some issues with a Bayesian approach to direction 

percept. In turn, I will consider a fourth option for decoding MT direction percepts by 

implementing a sigmoid feedback function. 

 

Winner-Take-All 

 The Newsome Lab at Stanford is a chief contributor to discussion of sensory map read 

out with special emphasis on MT and its relation to visuomotor output at this level. In other 

words, they believe MT in integral to production of a proper motion signal for visually guided 

motor commands such as saccades or smooth pursuit eye movements. Groh and colleagues have 

also performed several electrophysiology experiments on rhesus monkeys in which visual target 

stimuli (V) were presented for fixation, saccade, and combined saccade/pursuit tasks (Groh et al., 
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1997). In addition to this visual stimulus, an artificial velocity signal (E) produced by 

microstimulation of an MT column was introduced while the monkey either fixated on a point, 

made a saccade to  moving target, or tracked a moving target.  

A winner-take-all algorithm would predict that the winning percept (either the V or E 

vector) depends on which signal wins the competition. So, if the V vector were to win, the 

monkey should see the normal visual stimulus and ignore the electrode stimulation, whereas if 

the E vector were to win the opposite would be true. In other words, this method picks the more 

salient of two stimuli choices. Were both V and E of equal weights or activity in  this set up, one 

would expect the winner to be probabilistic, varying from trial to trial. 

 The results of this experiment demonstrates that the pattern across target velocities in MT 

used different mechanisms for different tasks. It was believed that a winner-take-all schema was 

chosen to segregate distinct motion signals and may be most useful when more than one moving 

object  or pattern overlaps in the visual space. For the most part, however, this algorithmic 

method for defining the motion percept was not seen often in their experiments. In a later 

experiment by the same lab (Nichols & Newsome, 2002) it was shown that, in perceptual tasks, 

neurons in MT with preferred direction differences over 140° competed for direction percept 

dominance. To account for preferred direction differences less than 140°, it was hypothesized 

that disparate motion signals cooperated in order to influence the direction estimate. This brings 

us to the next topic of vector averaging. 

 

Vector Averaging 

 In the experimental representation mentioned above, the researchers found that the 

pattern of stimulation-induced errors in the saccade and pursuit tasks gave evidence that a vector 
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averaging algorithm was used to decode the bell-shaped MT input in order to produce a single 

motion vector percept. Vector averaging is the notion that preferred velocities are averaged 

together and scaled according to their relative input strength. This strategy may be important for 

quick decisions in saccade generation since it can rapidly approximate motion information in 

small spatial regions in order to track or fixate on an important region of the visual scene. Such a 

strategy would seem to have extraordinary evolutionary significance which is why it may be a 

common algorithmic method used by MT. 

 It is important to note that the outcome of vector averaging always reflects the presence 

of all stimuli entering MT, which is the opposite scenario from a winner-take-all setup.  There 

have been numerous experiments performed, most of which seem to agree with the idea that 

vector averaging is the method of choice for initial direction of smooth pursuit, saccadic velocity 

compensation, and choice of motion percept. It is pointed out that errors to averaging predictions 

for short-duration trials were much smaller than winner-take-all predictions whereas the opposite 

is true for long-duration trials (van Wezel & Britten, 2002). Also, MT cells seem to be switching 

from an averaging algorithm to a winner-take-all preference after around 200ms – the time at 

which pursuit movement tends to take place. Thus, it seems that fast readout relies on vector 

averaging in MT yet this mechanism switches over to winner-take-all once tracking of an object 

becomes necessary. This 200ms latency, however, may be due to other areas interacting with MT 

in downstream areas such as MST or posterior parietal cortex (PPC). 

 As shown above, vector averaging relies on combining direction signals in order to 

formulate a single motion percept, yet it seems to work best for only simple stimuli. It may be for 

this reason that such an algorithmic method cannot fully explain more complex illusory stimuli 

like the moving plaids. It would be also important to know how MT accounts for multiple 
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objects moving in various directions for every day scenarios in addition to psychophysical 

experiments controlled in a lab. A recent proposal to solve this problem relies upon a Bayesian 

model of motion perception. 

 

Bayesian 

 So far I have proposed that the direction percept correlates to discrete activity peak 

choice or activity pooling, yet another element should be included in this picture – the notion of 

uncertainty. It could be said that integration of V1 and LGN information into more global motion 

descriptions is an ambiguous measurement procedure, thus one can account for a certain amount 

of uncertainty when speaking of motion percepts (Weiss et al., 2002). Weiss mentions that 

intersection of constraints, vector averaging, and feature tracking together still do not give a 

holistic model for predicting perceived direction velocity.  

 The solution proposed is based on Helmholtz’s view of percepts being a best guess of 

what is going on in the world coupled with a Bayesian estimation framework. The model is 

based on two assumptions: 1) local image measurements are noisy and 2) image velocities tend 

to be slow. The velocity estimate is calculated from one equation which takes the mean or 

maximum of the posterior Gaussian distribution and predicts an ideal observer’s velocity 

estimate for any image sequence. This single Bayesian algorithm was able to correctly forecast a 

number of psychophysical results, such as the plaids, once a nonlinear gain control function was 

later added to the model. The authors state that the abstracted perceptual noise model presented 

here can be seen as a way of accounting for the uncertainties of neural responses in MT. 

 The Bayesian concept described above accounts for noise effects and prior weight biases 

yet cannot explain complicated motions such as rotations or even multiple motions in general. 

The larger issue here, however, is that a Bayesian approach is able to produce a certain 
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perceptual outcome by tweaking certain algorithmic parameters, yet completely bypasses the fact 

that actual neurons are wired together and synaptically functioning in specific networks within 

the brain. Instead, Weiss’s Bayesian method acts like a revived behaviorism mathematical model 

which merely looks at an input and produces a workable algorithm for perceptual output. There 

is indeed some element of noise and chance in neural activity, yet a purely probabilistic model of 

biological MT neural function (even with some weighting factors involved) seems untenable. 

 

Sigmoid Function 

 The Newsome Lab research states that evidence for each of the direction percept 

algorithms is due to variance on the kind of task being performed, yet this may not be the only 

explanation. In order to know the underpinnings of the visual system’s motion networks, it seems 

as if there may be some degree of task invariance which explains transition in algorithm usage 

for MT neurons. Since there are times when these signals behave in a winner-take-all manner 

and in an averaging manner elsewhere, it may be possible to explain this algorithmic variation 

using a sigmoid feedback function instead (Grossberg, 1973). 

 This fourth option is not a strictly bottom-up method as are the prior three concepts, thus 

it adds another level of complexity. The three major properties of this function are: 1) its ability 

to contrast enhance small signals, 2) store intermediate signals with little distortion, and 3) 

uniformize very large signals. The sigmoid signal itself is made of an initial faster-than-linear 

function which acts as a winner-take-all pattern storage and “quenches” small, noisy activities. 

The middle section of the function is linear which means that after the small activities are 

quenched a perfect pattern is stored. Finally, the last portion of the function is slower-than-linear, 

and thus it reduces contrast and increases uniformization. How much of a network’s activity is 

quenched can be adjusted in order to determine the resulting pattern.  
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 This type of method relies on a shunting on-center off-surround network with feedback, 

which means that for MT neurons the output of the population would  be a sigmoid function of 

its activity. Interestingly, the weighted average of the feedback gains from a sigmoid feedback 

functions exhibits the same bell-shaped curve as the MT neuron distribution. These last few 

statements are purely speculative and give rise to a host of other questions, namely asking where 

(if at all) the recurrence and feedback stem from in order to adequately account for a variety of 

motion percept tasks.  

  

A Few More Thoughts on Sensory Readout  

 Van Wezel and Britten believe adaptation effects occur downstream of MT where a 

winner-take-all step is more likely to be taken. At the level of MT, effects of adaptation are very 

selective, selectively attenuating the adaptation direction and leaving the opposite direction 

alone. Thus adaptation effects become symmetric with stimulus direction and may be a loose 

parallel to the notion of a quenching threshold via recurrence from downstream activity. 

 So how does this all relate to the problem of readout from sensory maps to cortical maps 

in order to generate percepts or motor behaviors? Van Wezel & Britten propose that different 

downstream structures have different rule sets that run in parallel on the output from sensory 

maps such as the one for MT. Returning to an earlier statement about MT cells switching from 

winner-take-all to averaging behavior, the latency seen here may be due to downstream 

competitive mechanisms which could implement a Grossbergian sort of sigmoid feedback 

function. These same authors propose a model with three linked parts: 1) sensory maps in cortex 

are task invariant, 2) basic rules for varying combined signals are also relatively invariant and 

thus readout rules remain somewhat stable, and 3) multiple readout mechanisms are able to 

coexist for varying tasks. One thing that is missing from this model is a notion of synaptic 
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plasticity and how this would effect the sensory maps and the notion of direction percept over 

time. 

In this type of model, vector averaging can take place within the MT while faster-than-

linear decisions are made in parietal or frontal cortex regions. Variation in tasks is seen as 

accessing different downstream circuits in parallel, which may also be feeding back to MT and 

MST. This setup attempts to account for an MT direction percept as well as describing how 

signals to premotor areas could be produced for behavioral outputs such as saccade generation or 

object tracking.  

 

Conclusion 

 Hopefully this short overview illustrates that determining the neural mechanisms “under 

the hood” of direction percept in MT is still an open research question with some promising 

options.  I believe that in order for the “correct” algorithm to be determined from direction 

percept depends on more than just input from areas such as V1 or V2. One must take into 

account a more full connectivity schema in MT where feedback from higher, downstream 

cortical areas may be playing a role in determining direction percept signals. Van Wezel and 

Britten’s simple model seems like a good basis for beginning to approach this broader view of 

algorithmic choice in MT. 
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