
  

  

Abstract—Understanding how humans learn to view 3D 

scenes, gauging depth and distance is an important topic in 

neuroscience. In this paper we investigate motion parallax by 

way of Mr. T, a virtually simulated robot with a torso, arms, 

anthropomorphic neck, head, and cameras for eyes. Using 

proprioceptive and visual information, Mr. T was able learn 

how to foveate its camera and pan the head towards a novel end 

effector position after several training trials. A K-Nearest 

Neighbors algorithm was used to test Mr. T’s learning, 

however, a theory of cortical networks that are potentially 

involved in extracting features such as depth and distance in 

humans is also discussed. 

I. INTRODUCTION 

 

HE extraction of depth and distance information from 

2D retinal inputs is a difficult and still misunderstood 

area of neuroscience. The neural computations involved in 

establishing 3D spatial representations of the outside world 

rely upon a vast network of visual, parietal, and frontal lobe 

regions with different regions becoming active over space 

and time. Humans and other animals use more than retinal 

inputs to calculate distance and depth, coordinating eye, 

head, and body movements as well. This framework suggests 

that in order to process spatial distance from our body to a 

target, an animal must take into account dynamic variables 

computed by the brain via multiple gradients of input flow in 

space and time. 

 

This paper explores a method for calculating distance 

information implicitly encoded in the arm position to 

calibrate the 3D information given by head-movement 

parallax. The robot, Mr. T, as well as the Mr. T Simulator, 

were used to learn distance calculation along the azimuthal 

plane in one eye. Using eye, head, and proprioceptive arm 

position information, Mr. T was able to learn distance and 

depth cues in space over time. 

 

Although the K-nearest-neighbors (KNN) algorithm used 

to learn the task is not biologically plausible, several key 

brain regions (located in the occipital, parietal and frontal 

cortex) and functional properties of these areas are discussed 

in order to give a realistic approach to how the brain might 

be computing the different apparent motion of end effector 

position at different distances.  

 
Manuscript received May 13, 2008.  

II. SIMULATION METHODS 

 

Mr. T is a humanoid robot developed at Boston 

University’s Active Perception Lab which was built to show 

how computational models could perform behavioral tasks 

pertaining to vision, in particular. Mr. T accurately replicates 

retinal image motion during fast macroscopic saccades and 

during fixational eye movements, and is equipped with two 

anthropomorphic arms, each with 5 degrees of freedom. 

Before testing a task on Mr. T, however, simulations were 

run on the Mr. T Simulator that uses physically-based 

rendering software and Matlab to replicate in a 3D 

simulation space the physical movements of Mr. T’s eye, 

head, and arm movements. 

 

 First, to reduce the scope of issues associated with 

parallax, simulations were restricted to the azimuthal (x-y) 

plane in just one of Mr. T’s two eyes (right). Also, to 

simplify the visual field within the Simulator, a point light 

source (PLS), acting as the focal point, was affixed to the 

right index finger of Mr. T’s arm. This white dot PLS on the 

center of the camera’s (“eye”) field of view is determined by: 

1) if the PLS is on the left half of the screen rotate the eye x 

degrees where x is small enough to avoid making the dot 

disappear. If this procedure does not move the PLS to the 

right half of the screen, x is moved again until the PLS is 

centered in the camera’s field of view. Once the PLS is on 

the right half of the screen, the camera moves left by x/2 

degrees, x/4 degrees, x/8 degrees, etc., until it is centered. 

Note that this entire procedure takes place in eye 

coordinates; the head and arms stay still during this first task. 

 

 Second, the issue of parallax is addressed when the head, 

first looking straight ahead, pans by a fixed amount, θ  

degrees to the right, and calculate the amount, φ1 , needed to 

rotate the fovea to the left in order to re-center the camera. 

Then, the camera is moved θ  degrees to the left and a turn 

to the right, φ2 , is calculated. Note that φ1  and φ2  are the 

changes in eye position, thus binocular disparity or vergence 

information is not being used here. Mr. T’s goal is to 

correlate the changes in eye position with x-y spatial position 

of the PLS in order to interpolate for un-sampled test 

locations of the arm in space. Thus, by using eye, head, and 

arm position information for a certain fixed arm position, 

Mr. T should be able to learn how to foveate its camera and 

pan the head towards a novel end effector position after 
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numerous training trials. 

 

 We used KNN classification (with k = 1) trained on 15 

sample points. Each training point was obtained by 

positioning the end effector in a new position by varying the 

elbow and wrist joint angles. The locations of the PLS are 

plotted below in Figure 1. Our KNN classifier works by 

selecting the cluster with the smallest difference between the 

trained and computed eye-pan angles. 

 

A natural extension to this model would be to find the two 

closest clusters to a given point and interpolating linearly, 

with weights proportional to the differences of the computed 

and trained eye-pan angles. In addition we expect that with 

more training points, the performance will improve 

significantly and could easily be adapted to learn 3-

dimensional depth cues. 

 

Furthermore, it would be worth exploring the 

representation of depth in visual and parietal cortex to 

formulate a better interpretation of these abstract clusters. 

Either a topographic layout of depth representation or 

information about the grain of sampling could be added on to 

the model to explore the effects of such an organization and 

to lend additional biological plausibility. 

 
Figure 1: Locations of the PLS as seen by Mr. T’s right eye during 

training of the KNN classifier 

 

III. SIMULATION RESULTS 

 

The shoulder azimuth was kept constant at 90
◦
, the 

shoulder elevation was kept at –45
◦
 and neck azimuth was 

also held constant at –45
◦
. These values were chosen in order 

to get the hand as close as possible to Mr. T’s head, as 

parallax cues are strongest when the object is close to the 

eyes – this is evident mathematically and observed in 

psychophysics. The closest hand position had a wrist angle 

of 40
◦
 and an elbow angle of 100

◦
, as depicted in Figure 2. 

 

 
Figure 2: (left) View from Mr. T’s right eye looking straight at the 

closest hand position, (right) Overhead view of Mr. T. at the same 

position 

 

The furthest hand position had a wrist angle of 0
◦
 and an 

elbow angle of 90
◦
, as depicted in Figure 3. 

 

 

 
Figure 3: (left) View from Mr. T’s right eye looking straight at the 

furthest hand position, (right) Overhead view of Mr. T. at the same 

position 

 

 We ran the simulations with our fixation algorithm and 

computed the relative angular eye displacements after neck 

pans. After training, we ran the algorithm on test points and 

recorded the eye-pan angles. The eye-pan angles for one of 

the examples for a set of three fixations are shown below in 

Figure 3. The elbow angle was 97
◦
, and the wrist angle 21

◦
. 

 

 
Figure 4: Eye-pan angle values during a set of three fixational eye 

movements 



  

 

Note the three large dips in the above graph – these 

correspond to the first large eye movements, followed by 

smaller jittering (by design of the algorithm) leading to 

foveation (i.e. centering of the PLS on the image) at an eye-

pan angle of approximately –1
◦
, as shown in Fig. 4. Then 

around time = 15, we pan Mr. T’s neck 3
◦
 to the right and 

fixate on the PLS once again, leading to an eye-pan angle of 

approximately –4
◦
. Finally, the neck is panned another 3

◦
 to 

the right and this process is repeated to yield and eye-pan 

angle of about –7
◦
. 

 

These two values of eye-pan angles (approximately –4
◦
 

and –7
◦
) are then used as the input to the trained KNN 

classifier. The classifier outputs an elbow angle of 95
◦
 and 

wrist angle of 20
◦
, which is a very close approximation to the 

actual values of 97
◦
 and 21

◦
 respectively. 

 

IV. DISCUSSION 

 

A. Mr. T’s Learning 

 

The most prominent feature of our algorithm was to 

enable Mr. T to perform visuo-motor transforms, by learning 

the mappings of eye-pan angles directly to joint angles 

required for performing reaches and manipulating objects. 

Note that at least in the peripersonal space, visuo-motor 

transformations of this kind are believed to take place in 

parietal cortex, as will be discussed in the next section. 

 

Evaluated independently of the ARPI modeling package, 

the fixation, parallax, and classification algorithms 

performed well. When combined, numerous ARPI bugs 

crippled our simulation effort. 

 

Temporal issues when interacting with the full ARPI 

simulation suite caused a first round of issues. The ARPI 

functions update Mr. T’s state asynchronously, a behavior 

which is not well-documented or well-handled. Since the 

API does not provide callback or synchronization 

functionality, the only way to ensure that a robot state update 

had completed after a command was to force a hand-coded 

delay. Without such a measure, queries to the API issued 

during a state update would return inconsistent results. Even 

with a hard-coded delay, behavior was still stochastic. Under 

more CPU-intensive conditions, the hand-coded delay was 

not sufficient to ensure synchronization. 

 

Besides undocumented temporal behavior, numerous 

inconsistencies and issues with the base API functions 

caused significant problems. When building the fixation 

algorithm, we implemented both vertical and horizontal eye 

motion. However, the API call to retrieve the current angle 

of the eye returned a consistent garbage value. Without valid 

feedback, the vertical eye fixation code looped infinitely. 

 

Taken alone, none of the bugs were critical. The 

combination, however, significantly dampened our modeling 

efforts. The model we produced had some learning 

capability, but was riddled with workarounds designed to 

handle the numerous ARPI problems.  

 

B. Cortical Networks of Depth and Distance 

 

 Results for the simulation show that Mr. T can adapt its 

behavior in order to perform the simple task discussed here, 

however, if Mr. T were to perform more biologically-

realistic computations one must look into the networks of the 

brain for clues. Mr. T is an embodied robot which receives 

“proprioceptive feedback” from its eye, head, and arm 

positions as well as visual input from the cameras 

themselves, thus there are several cortical connections of 

interest. Below is a simplified overview of several areas 

which must be accounted for when considering a future,  

biologically plausible adaptive model for Mr. T. 

 

 First, retinal input is received in 2D and relayed through 

the LGN where it continues to process visual information in 

V1. Information from V1 then ascends into V2 and higher 

visual areas such as V3, V4, V6/V6a, MT, and MST. Many 

of these regions are reciprocally connected. In fact, it is 

believed a corollary discharge of the eye movement 

command updates an internal representation when the eye 

moves [1]. From these (and other) areas, features such as 

color, orientation, edge detection, figure-ground separation, 

motion, depth, distance, and a host of other difficult visual 

computation occurs via the supposed dorsal and ventral 

streams of the occipital cortex. For this paper we are more 

concerned with the dorsal “where” or “how” stream since we 

are interested in the establishment of 3D spatial 

representations needed for properly calculating distance from 

the eye/head to an end effector target position. 

 

One issue that must be addressed as well is the issue of 

varying representations of space in the brain. Visual cortex 

codes with retinotopic organization, somatosensory cortex is 

somatotopically organized, posterior parietal cortex is said to 

represent space as interactions between many modalities, and 

motor, premotor, and supplementary motor areas apparently 

have both spatial and motor representations. Thus it seems 

that association areas are ideally suited for spatial 

representation due to the ability of combining information 

from many modalities. Burnod et al. [2] have constructed an 

integrated framework for parieto-frontal coding of reaching 

that combines neural inputs based on four types of reach-

related signals: retinal, gaze, arm position/movement 

direction, and muscle output). It is believed that this sort of 



  

sensory-motor information flow based on combinatorial 

domains in the cortex can also be an important way of 

viewing the extraction of depth and distance from 2D 

images. 

 

For Mr. T’s purposes, there is information from the end 

effectors which act as motor-related limb feedback – as does 

information pertaining to eye and head position. The motor-

related vectors are received in primary somatosensory cortex 

and must be sent to other areas in order to combine its 

information with that entering from the actual visual input to 

V1 and other upstream occipital region processing. The area 

most often sited as being concerned with an allocentric, 3D 

spatial representation of external space is the posterior 

parietal cortex (PPC). It may be that a “spatiotopic” 

representation is achieved by way of multiple sensory 

modality inputs [3]. This process is said to occur in PPC’s 

interactions with primary modality regions and reciprocal  

frontal cortex connectivity. 

 

Some of the key PPC, more specifically the intraparietal 

sulcus (IPS) regions shown in Fig. 5, involved in 

establishment of 3D spatial representation will now be 

discussed. First there is the parietal occipital area (PO), also 

known as V6/V6a, which is not shown but is located just 

above the medial intraparietal (MIP) region. V6 receives 

inputs from V2, V3, V3a, and MST whereas V6a receives 

inputs no V2 input, weak V3/V3a inputs, and stronger V5 

inputs. It also sends strong projections to MIP and seems to 

code reaching activity retinotopically. 

 

 

Also not shown in Fig. 5 is the caudal intraparietal (CIP) 

area which is located just posterior and dorsal to lateral 

intraparietal (LIP) area. CIP receives inputs from V3, V3a 

and V4 in particular. It is said to be involved in 3D analysis 

of object features, containing surface-orientation-selective as 

well as axis-orientation-selective neurons. 

 

LIP receives inputs from PO, ventral intraparietal (VIP) 

area, MT, MST, V2, V3, V4, supplementary motor area 

(SMA), and frontal eye fields (FEF). LIP is said to be an 

extremely important area, as shown by its numerous inputs, 

with much research showing its significance for  saccade 

planning. 

 

MIP receives inputs from PO, VIP, and dorsal premotor 

cortex (PMd). Just as LIP is known to be vital for saccade 

planning, MIP is vital for arm reaching movement planning. 

VIP receives inputs from MT and MST, as well as 

numerous primary somatosensory areas. It is known to be 

highly polymodal and sensitive to direction of sensory 

movement (be it tactile or visual) in particular. It has also 

been hypothesized that the VIP-F4 circuit is possibly 

involved in peripersonal space coding for movement [4]. 

 

Finally, anterior intraparietal (AIP) area receives inputs 

from CIP and the hand-related motor areas of F5. It is known 

to be involved in coding of 3D object characteristics 

primarily for grasping-related visuomotor transformations. 

 

So how does all this tie together? It is believed that each 

parieto-premotor circuit is dedicated to a specific 

sensorimotor transformation [5]. For example, for the AIP-

F5 circuit, a multiple pragmatic description of 3D objects is 

provided by AIP, proposing several grasp possibilities to F5. 

F5, then, selects the most appropriate grasp based on prior 

context and rule-association and sends it to F1 for motor 

output as well as back to AIP neurons coding that selected 

grip in order to keep them active during movement 

execution. This same sort of circuitry occurs in the MIP-

PMd circuit for reach planning and the LIP-FEF/SMA circuit 

for saccade planning.  

 

One more issue needs to be addressed concerning 

establishment of 3D spatial representation – the relation of 

time and space in visual perception. The inner representation 

of space cannot be considered solely via static investigation 

since animals are actively viewing and acting in their 

environment. These inner representations are also dependent 

upon dynamic variables computed by the brain on the basis 

of “gradients of input flow” over space and time [6]. 

 

The views of PPC and visual cortex above suggest that 

visuomotor transformation relies on parallel collaboration 

between frontal, parietal and occipital areas which form 

unique parietofrontal (and parieto-occipital) circuits where 

sensory and motor signals are integrated. This idea is also 

consistent with the high level of plasticity in PPC due to its 

need for adaptation to anterior and posterior inputs needed to 

create 3D representations of space over time. Such a view 

also sees space coding as perhaps being a secondary result of 

 
 

Fig. 5.  Detail of the intraparietal sulcus where AIP is more 

anterior towards frontal cortex and LIP is more posterior 

towards occipital cortex. Note: dashed line represents opening 

of sulcus for better view. 



  

the activity of these circuits where spatial location of an 

object is coded according to the animal’s motor planning 

purposes. Thus, multiple space representations are 

constructed that, if true, should be seen experimentally in 

lesions of that specific circuit. Were such a theory to be true 

this suggests that existence of a single, multipurpose space 

are is inconsistent with anatomical and neurophysiological 

data. 

 

Using this hypothesis as a framework, then, we can 

propose a method for how Mr. T would perform the 

simulation task mentioned early in the paper within a 

biologically-plausible adaptive model. First, saccadic 

movement to the PLS on the tip of the end effector may 

primarily occur in the LIP-FEF circuit which also involves 

the SMA and superior colliculus (SC). Then, the head must 

move to where the fovea/camera was previously centered on 

the PLS; proprioceptive information from Mr. T’s neck 

rotation must be used to move an appropriate degree amount 

either left or right. In the brain, somatosensory neck inputs 

may be sent to VIP which is direction-specific across 

modalities, which then requires the eye to re-adjust in order 

to center the PLS in its foveated vision space. This requires 

the LIP area to adjust, learning a new saccadic movement in 

conjunction with the head movement. This task also requires 

proprioceptive information from the relative position of the 

arm in space. Putting it all together, arm feedback is also sent 

to the PPC for analysis in primarily the MIP-PMd circuit 

which is also linked to the V6/V6a areas for updating of 

future arm movements in space. Thus, Mr. T can adaptively 

learn novel saccades and head movements to a PLS attached 

to an arm over time based on visual input from the eye and 

proprioceptive feedback from eye, head, and arm position. 
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