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1. Introduction 

How do monkeys and humans make reaching movements toward a visual target? This question has 

received much attention in neuroscience and the detailed neural mechanisms underlying visually-guided reaching 

remains an open question on many levels. One of the most important areas in the brain for sensorimotor 

transformation, with respects to visually-guided hand movements, is the posterior parietal cortex (PPC) – more 

specifically, the medial intraparietal area (MIP) residing in the PPC. Transformation signals in MIP are currently of 

particular interest to scientists and engineers due to their potential role in building better neural prosthetics (Andersen 

et al., 2005).  One issue with attempting to decode MIP signals, however, is the dearth of information concerning the 

exact input and output structure of neurons in this region. 

In this report I will review the somewhat sparse anatomical and neurophysiological literature on MIP 

inputs/outputs in order to sort out various types of neuronal activity found in this key reaching region, then discuss 

MIP’s role in spatial planning and continuous updating of a reaching movement. The goal of this study is to construct a 

simplified first-pass neural model of MIP input connectivity and attempt to replicate the neural recordings of Gail and 

Andersen (2006). Adapting the Grossberg-like equations from Cisek (2006), a more detailed view of MIP neural 

activity is presented for insight into the experimental results of visually-guided arm movement shown by the 

Andersen lab and other MIP researchers. 

 

2. MIP Inputs and Outputs 

Before discussing the functional considerations of MIP it is important to point out where this area resides in 

the brain. MIP is located in the posterior half of the medial wall of the intraparietal sulcus (IPS), carved out of the 

former “PEa” area of the superior parietal lobe (SPL) and first named by Colby et al. (1988) as a parietal area sending 
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connections to area PO (now known as V6/V6A). To confuse matters more, the Andersen lab refers to MIP in 

functional terms as the parietal reach region (PRR) for obvious reasons. One issue with this is that these researchers 

associate the area with reach-related activity which may involve V6a as well, so there could be some overlap 

between MIP and V6A that is coined “PRR”.  

As for inputs, there is strong evidence that MIP receives inputs from the parietal occipital area (PO) which is 

receives inputs from most primary visual areas as well as MT (Colby & Duhamel, 1991; Johnson et al., 1996; Caminiti 

et al., 1999). Area PO is considered to be homologous with areas V6 and V6A combined, all of which show important 

connections with MIP (Shipp et al., 1998) to the point of being lumped together into one functionally-defined region – 

PRR. Another primary input area to MIP is the ventral intraparietal area (VIP) which is a highly polymodal and 

direction-of-movement specific region (Colby, 1988; Lewis & Van Essen, 2000a). There is also the possibility that 

MIP has reciprocal projections with LIP, an area which codes saccade goal planning, on the lateral wall of the IPS. 

Lastly, there is speculation and hand-waving that PMd sends its projections from the frontal lobe back to MIP, 

however, most studies refer only to MIP’s projections to PMd. Given MIP’s activity during target selection, there is 

strong evidence that PMd is indeed sending projections reciprocally (Scherberger & Andersen, 2007).  

 The outputs from MIP are better studied than its inputs, with the most important projection being to PMd, 

presumably sending extrinsic reach plans to the more intrinsic, motor planning-based premotor cortex (Caminiti et al., 

1999; Cisek, 2006). More specifically, projections to PMd are to more trunk- or arm-related areas along the 

somatotopic mapping of PMd. It is also believed that output to M1 occurs in addition to PMd. Lastly, as mentioned 

earlier, V6a receives axon collaterals from MIP. Figure 1 below gives an anatomical map of the PPC. 

 As for the MIP itself, it is known to be highly plastic and modified by learning, expected value, and other high-

level cognitive factors which seems a logical conclusion when looking at which inputs project to it. Within this highly 

plastic region, anterior MIP is more concerned with motor information whereas posterior and ventral MIP is more 

visuomotor tuned. I propose in the last section that in order to simulate neurons in this are one must take into account 

the gradient of visual-to-motor encoding in MIP and that this gradient may reflect the spatiotemporal activity here. 

This is based on the timed inputs from various regions which are integrated in a dorsal-caudal to ventral-rostral 

direction over spatial location and time. 
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Figure 1: Cortical areas near PPC (Lewis & Van Essen, 2000b) 

 

3. Experimental Data 

 Reaching towards an object seems to be a simple task at first glance, yet the ability to perform such a 

“simple” task requires a vast network of brain regions. Not only must one worry about the actual online movement of 

the limb, but there is also the issue of goal-directed behavior which integrates rules in order to carry out abstract motor 

goals. There is also the problem of integrating eye coordinates and hand coordinates in the brain. MIP has been shown 

to be highly involved in this parietofrontal network for planning a reaching movement. More specifically MIP 

integrates visual information with abstract motor goals and somatosensory feedback of the limb in a manner which is 

still poorly understood.  

 The Andersen lab in particular continues to be a key investigator of how intended movements goals are 

stored in the parietofrontal network. Recently, this lab looked into the context-specific visuomotor mappings for 

visually guided reaches by spatially dissociating the cue from the motor goal via a memory-guided anti-reach task 

(Gail & Andersen, 2006). Two male rhesus monkeys performed the task and extracellular neural recordings were 

made from up to five microelectrodes. Single-cell spiking activity from successful memory reach trials were analyzed 

for spatial selectivity on a cell-by-cell and population level. Figure 2 shows the task where a monkey fixated on a 
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small central red dot throughout the trial, then at the cue a green (reach) or blue (anti-reach) dot appeared, letting the 

monkey know whether it should make a reach or anti-reach to the target after a variable memory period (MEM). 

Visual feedback (FDB) appeared only after the monkey touched the correct goal on the screen. Figure 2C shows the 

typical delay period tuning in MIP The example neuron in Fig. 2C shows a selective firing during the time between the 

CUE and MOV periods for movements to the right. 

 

Figure 2: Memory-guided anti-reach task (Gail & Andersen, 2006). 

  

From these results the researchers point out that during the delay period of a memory reach task MIP represents 

motor goals more than “visual memories”. Results from 143 MIP neurons rendered two primary neural response 

categories as seen in Fig. 3, allowing one to discriminate visual sensory information (CUE response) from motor goal 

information (MEM & MOV response). Neuron A represents the location of the monkey’s motor goal during the MEM 

period as seen in the neural response in Fig. 2C. Note that this cell is only active for “up” motor goals giving it motor 

goal tuning. Neuron B, on the other hand, responds to the spatial location for the dot during the CUE period yet 

changes to selectivity for the spatial location of the motor goal during the MEM period giving it visuomotor tuning. 
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Figure 3: A) Example neuron with sustained motor goal tuning and B) example neuron with visuomotor tuning.  
Green traces represent reaches and blue traces anti-reaches (Gail & Andersen, 2006). 

 

 These results suggest that sensory representation is quickly replaced by a motor goal representation in MIP 

neurons; in fact, only 13% of MIP neurons recorded showed visual tuning and most of these adapted to motor tuning 

over the trial period whereas 52% showed motor goal tuning throughout. It is evident here that MIP is integrating both 

visual and motor information and based on its neurons’ tuning properties and that this area temporally shifts between 

sensory and motor tuning based on the current or most relevant incoming signals.  

 In another paper involving the Andersen lab (Buneo & Andersen, 2006), the relation of MIP to the PPC as a 

whole  is addressed. In particular, does MIP correlate to arm movement goals in the same way LIP does for saccade 

preparation? The researchers pose this question by discussing separable PPC neurons where hand and target signals 

are independently coded. Inseparable PPC neurons, then, are dependently encoded for both hand and target variables. 

With this framework in mind a “separability gradient” of responses (Fig. 4) are found in the superior parietal lobe 

where MIP neurons seem to show both separable and inseparable qualities. Buneo and Andersen interpret this by 

saying MIP encodes “hand position in eye coordinates” where motor error and body position signals are multiplexed 

then transmitted to the frontal lobe. Further, PPC may map three-dimensional target and hand positions in eye-

centered coordinates to the four-dimensional space of arm postures. Lastly, Fig. 3 shows that, as a part of PPC, MIP is 

involved in the inverse kinematics problem of converting sensory information into motor commands. Recent evidence 

also shows MIP may be important for the forward kinematics process of integrating sensory input with previous or 

ongoing motor commands during an arm movement. The neuron activity in Fig. 2 seems to imply that MIP is indeed 

involved in both computations.  
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Figure 4: PPC’s possible roles in reach planning (Buneo & Andersen, 2006) 

 

 To verify Buneo and Andersen’s intuition concerning a correlation between LIP saccade goal activity and 

MIP arm movement goal activity, one study (Quiroga et al., 2006) shows that MIP tunes for reaches in a similar 

manner as LIP’s saccade tuning. For this experiment, a monkey performed interleaved delayed reach and saccade 

trials. Figure 5 shows that activations for both PPC areas occur during the delay period and have similar neural 

responses for planning movement in the upper right direction. 

 

Figure 5: Response of A) PRR cell and B) LIP cell to delayed reach and delayed saccade trials (Quiroga et al., 2006) 
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Another study (Eskandar & Assad, 1999) has shown that MIP neurons are selectively modulated by the 

direction of hand movement when a monkey is trained to use a joystick for guiding a spot of light to a circular target 

while fixating. Figure 6 shows that an example MIP neuron was active for occluded trials with the hand moving in one 

direction but not the reverse direction, irrespective of the direction of stimulus movement. The researchers conclude 

that MIP uses extraretinal direction selectivity related to the direction of hand movement. One thing to note here is 

that recording was at the start of the joystick movement, thus the response over time would probably have been 

different between the visible and occluded trials had they started recording at cue onset. 

 

Figure 6: Single neuron response in MIP (Eskandar & Assad, 1999) 

 

 The last study I want to present here discusses what happens in MIP neurons when a monkey selects one of 

two visual stimuli as a movement reach target (Scherberger & Andersen, 2007). Similar to results shown above, MIP 

neural activity initially reflects the visual target stimulus then changes into a motor goal tuning over time. For choice 

between two targets, T1 and T2, this representation is either up- or down-modulated according to which stimulus of 

the two is chosen. Representation of T2 is suppressed in the population of T2-selective cells if the network is strongly 

active for T1 and vice versa. After this target selection process, the population activity represents the selected 

movement that is eventually executed (Fig. 7). Timing of the second target is important during this selective 

competition because the further the plan to move to T1 has evolved, the harder it will be for T2 to compete against the 

existing T1 movement plan. MIP activity as shown in Fig. 7, say Scherberger & Andersen, can be interpreted in terms 

of a race or mutual competition model such as the one proposed by Cisek, Kalaska, Wang and others. In conclusion, 



  8 

this experiment is conducive with the idea that MIP integrates top-down choice preferences with bottom-up visual 

stimuli for the selection of reach targets.  Further, MIP is part of a larger “decision network” for reach movements and 

has important reciprocal connections with PMd and other PPC areas.    

 

Figure 7: Influence of stimulus-onset asynchrony on choice activity (Scherberger & Andersen, 2007) 

 

 All of the experimental studies above illuminate various pieces of the sensorimotor 

transformation puzzle in order to find what kinds of neurons are firing in visual, somatosensory, motor, 

or cognitive domains. All of these types of signals are present in MIP and by looking at neural response 

over the time span of an entire delayed reach trial one can get a better intuition about what types of 

neurons are firing and at what location within MIP itself. 

 

4. Modeling Efforts 

 In 1999 a review article (Burnod et al., 1999) proposed a model for explaining the parieto-frontal 

network’s organization along with its importance  for visually-guided arm-reaching movements. The 

review was extensive and made several important steps toward building a computational model of this 
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network using a parallel, neurophysiologically-sound approach. Also noted by the authors was the 

concept of combinatorial domains matching different sources of signals when discussing sensory-

motor transformations in particular. The core of the model simply states that there is optimal 

activation in one region of the network when two inputs are parallel or “matching”, where neural nets 

align distributed sensory and motor representations. Figure 8 shows the full parieto-frontal network 

for visually-guided reaching. The areas most important for the matching criteria are found in what 

Burnod and colleagues call iM and iP, or intermediate motor and intermediate parietal, where the green 

connections between them are reciprocal and primarily arm-related in signal type. The authors, 

however, do note that this structure is a loose approximation and that areas along a divide such as that 

between iP and pP will see mixtures of neural response. For the iP/pP border scenario one would 

expect to see arm- or gaze-related activity and this is indeed the case…as is recorded in MIP. 

 

Figure 8: A) A monkey chooses to move its hand from either a butterfly or an apple with the appropriate  
network shown (dark blue, retinal; light blue, gaze; green, arm; yellow, muscles); B) architecture of the cortical 

network underlying reaching with reciprocal connectivity among each of the four major categories. 
 

 Although the Burnod et al. review provides an excellent foundation for framing the major 

problems and strategies of planning a visually-guided movement, the model obviously falls short by 
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way of generalization in each area’s network function. Unfortunately, few (if any) models since this 

review have provided a computational account of MIP that explains the experiments discussed earlier. 

Before going into the details of this current project’s more MIP-specific model, I will briefly discuss 

two predominant variations relating to the computational foundations of sensorimotor 

transformation in the past decade. 

 The first approach uses the basis function where sensory information is recoded into “a flexible 

intermediate representation to facilitate the transformation into a motor command (Pouget & Snyder, 

2000).” The basis function is a form of population code which the authors believe is able to adequately 

transform and encode information from multiple reference frames. In a basis function map, each neuron 

contributes to multiple frames of reference making these neurons ideal for coordinating different 

behaviors such as eye and hand coordinates. In Fig. 9B a model for a nonlinear arm movement – as is 

required due to the geometry of the joints – has an intermediate layer of units for learning the 

sensorimotor transformation where learning is performed in two stages. First, the unsupervised layer 

self-organizes because the basis functions depend only on the input and not the motor command 

output. Second, the weights for predicting a motor command can be learned using an error signal 

typical of most radial basis functions. 

 

Figure 9: A) Learning spontaneous motor commands; B) Nonlinear arm movements with intermediate layer 
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 Lastly, a recent article (Cisek, 2006) has put forth a computational framework for how an 

animal would decide which of two objects to reach for (action selection) and plan the movement 

(action specification) in an integrated manner. Just as the Burnod et al. and Pouget/Snyder articles 

looked at an overall systems-level model, so does Cisek, with each population of cells organized as a 

layer of neurons tuned to spatial directions of “potential actions” (Fig. 10). 

 

Figure 10: A) Network architecture, B) Cells with directional preferences in a frontoparietal layer (Cisek, 2006) 

 

 Rather than use Bayesian or basis functions in the model, Cisek implements a Grossberg-style 

equation, dX / dt = !"X + (# ! X) $E ! X % I +& , to represent each neuron’s activity. There are 90 

such “neurons” in each layer where dX / dt  is the change in mean firing rate of a neuron over time, E  is 

the excitatory input, I  is the inhibitory input, !  is a decay rate, !  is the maximum activity of the 

neuron, !  is the excitatory gain, and !  is Gaussian noise. As shown in Fig. 10B, the cells compete to 

learn tuning preferences in a population of cells and Fig. 10C shows that higher cell activity accounts 

for more neighboring cells being influenced.  
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5. A Detailed MIP Model 

 The experimental data in Section 3 provide a truncated list of the different ways in which MIP neurons 

behave over time. Gail and Andersen showed that there are most probably two major categories of cell response in 

MIP based on their goal-tuning properties – motor-tuned and visuomotor-tuned. My conjecture is that this variation in 

response may be due to combining visual inputs coming in the posterior and ventral regions of MIP with motor-related 

inputs arriving in the anterior and dorsal portions of MIP. The change of visuomotor-tuned cells to motor tuning 

properties over time in posterior MIP may be due to the influence of anterior MIP cells across the entire MIP area over 

time in preparation for a reaching movement. In the Buneo and Anderson review the notion of separable versus 

inseparable neurons was discussed where MIP neurons seemed to show a mixture of these two types of cells. This 

hypothesis fits well with the idea of visuomotor versus motor-tuned responses in MIP. Eskandar and Assad’s results 

showed that MIP uses extraretinal direction selectivity related to the direction of hand movement, thus certain MIP 

neuron populations may be coding for the different goal-based directional movements. Lastly, Scherberger and 

Andersen accounted for selection between two objects for a reach-related movement in MIP, taking into account 

temporal and spatial dynamics. 

 This data raises several important questions. Do MIP neurons respond differently based on 1) preference of 

goal information, 2) variation of inputs from different regions at different times, 3) more visual cue-based MIP being 

complimented by the later arrival of motor goal tuning neural activity during the “MEM” period of the Gail and 

Andersen task, or 4) a mixture of these elements? A computational model of MIP must account for these questions 

and the neural responses in MIP data thus far. For this project I consider the two basic types of neural response in MIP 

based on the Gail and Andersen experiment by modeling a gradient of cell responses in MIP, emphasizing the fact 

that a majority of neurons have a more motor- rather than visually-related reaching plan response. The eventual 

motor-tuned responses in all MIP neurons may be acting as an output stage to its reciprocally-connected regions in 

order to strengthen the weights for various reaching-related goals.  

So in what order does the MIP receive its numerous inputs? It is believed that PO is the first region to activate 

MIP as shown in the numerous activity profiles of this area, followed by VIP which may be involved with selecting the 

actual direction of a goal-tuned movement since VIP is highly sensitive to motion direction information  across 

numerous sensory modalities. PMd inputs, then, may arrive after MIP sends output to PMd which then projects the 
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intrinsic motor plan back to MIP for updating of its synaptic weights. Implied here is the idea that MIP initially posseses 

no object selection preference until it receives feedback from PMd after learning. Over time, MIP-encoded weights 

are adapted for fast updating of a desired movement goal as well as online adapting to effector target trajectories – a 

concept that correlates with this area’s high level of plasticity. Lastly, MIP neurons receive mutual excitation from 

neighboring cells with similar preferred direction (PD) and inhibitory input from cells with different PDs via an on-

center off-surround architecture. 

 For this project I have adapted the Cisek (2006) model of sensorimotor transformation between brain 

regions using the following equation for each neuron: dX
i

R
/ dt = !"X

i

R
+ (# ! X

i

R
) $E

i

R ! X
i

R $ I
i

R
+%(0,&)  

which is similar to the Cisek equation shown earlier only X
i

R  here refers to the particular region of 

activity and !  is simply the variance with mean zero for the Gaussian noise. The medial intraparietal 

regions (R ) for this project are 1) MIP1 that represents the posterior, visuomotor-tuned neurons and 

2) MIP2 that represents the anterior, motor-tuned neurons. The output of each neuron has a threshold 

which is determined by Y
i

R
= [X

i

R
! "] . No parameter values are given for these equations since no 

simulation is being completed for this project. For these equations 25 MIP1 cells and 125 MIP2 cells are 

used in order to account for the predominance of MIP2-type cells. 

 Excitatory input to MIP1 is calculated by 

Ei
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= Vi
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MIP1!MIP2

j

" #Yj

MIP2
+ KEji # f (Yj

MIP1
)

j

"  where V
i

PO  is the PO area input, the second 

term sums the weights and output activity from MIP2 to MIP1, and the final summation refers to the 

excitatory kernel representing lateral connections between cells [defined as a Difference-of-Gaussians 

(DOG) function] within that region multiplied by the transfer function which is sigmoidal. The 

inhibitory input to MIP1 is Ii
MIP1

= KI ji ! f (Yj

MIP1
)

j

"  where KI  is also a DOG function. Lastly, MIP2 

excitatory input is calculated by  Ei
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where V
i

VIP  is the VIP area input and V
i

PMd  is the PMd area input to MIP2. The inhibitory input to MIP1 
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is defined as Ii
MIP2

= KI ji ! f (Yj

MIP2
)

j

" .  

This system of equations is described visually in Fig. 11 where yellow circles represent 

visuomotor goal tuning and orange circles are motor goal tuning. Each circle is a small population of 

cells. Even though the cartoon shows a gradient of response I have depicted this in only major 

categories – MIP1 (yellow circles) and MIP2 (orange circles). Also note that LIP connections to MIP are 

purely speculative at this point thus they were not added to the equations above.  

 

Figure 11: Proposed MIP input and output architecture based on goal-tuning neuron population features 
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6. Conclusion 

 Since the proposed model was not simulated fully as of yet, the expected results would 

hopefully be similar to the neural responses of Fig. 3, given that the inputs to the model are analogous 

to the task setup shown in Gail and Andersen. In conclusion, the model presented here gives more 

detail than the widespread schemas of Burnod, Cisek, or Pouget however the close attention paid to 

MIP begs the question as to how the hard-wired inputs from PMd, VIP, and PO acquire their respective 

inputs before outputting to MIP. More detailed models of these areas linked together would give a 

more full explanation of sensorimotor transformation. Nonetheless, based on the experimental data 

and current models proposed thus far it appears that MIP is an integral part of the parietofrontal 

network, initiating visually-guided, goal-directed movements which are needed for quick, online 

adapting to effector target trajectories.  
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