The role of attention in the tinnitus decompensation: reinforcement of a large-scale neural decompensation measure

Author(s): Delb, W. | Low, Y.F. | Strauss, D.J. | Trenado, C. | CoronaStrauss, F.I. |

Year: 2007

Citation: Conf Proc IEEE Eng Med Biol Soc Volume: 2007 Pages: 2485-8

Abstract: Large-scale neural correlates of the tinnitus decompensation have been identified by using wavelet phase stability criteria of single sweep sequences of auditory late responses (ALRs). The suggested measure provided an objective quantification of the tinnitus decompensation and allowed for a reliable discrimination between a group of compensated and decompensated tinnitus patients. By interpreting our results with an oscillatory tinnitus model, our synchronization stability measure of ALRs can be linked to the focus of attention on the tinnitus signal. In the following study, we examined in detail the correlates of this attentional mechanism in healthy subjects. The results support our previous findings of the phase synchronization stability measure that reflected neural correlates of the fixation of attention to the tinnitus signal. In this case, enabling the differentiation between the attended and unattended conditions. It is concluded that the wavelet phase synchronization stability of ALRs single sweeps can be used as objective tinnitus decompensation measure and can be interpreted in the framework of the Jastreboff tinnitus model and adaptive resonance theory. Our studies confirm that the synchronization stability in ALR sequences is linked to attention. This measure is not only able to serve as objective quantification of the tinnitus decompensation, but also can be applied in all online and real time neurofeedback therapeutic approach where a direct stimulus locked attention monitoring is compulsory as if it based on a single sweeps processing.

Topics: Machine Learning, Applications: Medical Diagnosis, Models: ART 1,

PDF download




Cross References