A massively parallel architecture for a self organizing neural pattern recognition machine

Author(s): Carpenter, G.A. | Grossberg, S. |

Year: 1987

Citation: Computer Vision, Graphics, and Image Processing, 37(1), 54-115.

Abstract: A neural network architecture for the learning of recognition categories is derived. Real-time network dynamics are completely characterized through mathematical analysis and computer simulations. The architecture self-organizes and self-stabilizes its recognition codes in response to arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns. Top-down attentional and matching mechanisms are critical in self-stabilizing the code learning process. The architecture embodies a parallel search scheme which updates itself adaptively as the learning process unfolds. After learning self-stabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their recognition codes without any search. Thus recognition time does not grow as a function of code complexity. A novel input pattern can directly access a category if it shares invariant properties with the set of familiar exemplars of that category. These invariant properties emerge in the form of learned critical feature patterns, or prototypes. The architecture possesses a context-sensitive self-scaling property which enables its emergent critical feature patterns to form. They detect and remember statistically predictive configurations of featural elements which are derived from the set of all input patterns that are ever experienced. Four types of attentional process?priming, gain control, vigilance, and intermodal competition?are mechanistically characterized. Top?down priming and gain control are needed for code matching and self-stabilization. Attentional vigilance determines how fine the learned categories will be. If vigilance increases due to an environmental disconfirmation, then the system automatically searches for and learns finer recognition categories. A new nonlinear matching law (the ⅔ Rule) and new nonlinear associative laws (the Weber Law Rule, the Associative Decay Rule, and the Template Learning Rule) are needed to achieve these properties. All the rules describe emergent properties of parallel network interactions. The architecture circumvents the noise, saturation, capacity, orthogonality, and linear predictability constraints that limit the codes which can be stably learned by alternative recognition models.

Topics: Biological Learning, Machine Learning, Mathematical Foundations of Neural Networks, Applications: Character Recognition, Models: ART 1,

PDF download

Cross References